1
|
Andreadou M, Ingelfinger F, De Feo D, Cramer TLM, Tuzlak S, Friebel E, Schreiner B, Eede P, Schneeberger S, Geesdorf M, Ridder F, Welsh CA, Power L, Kirschenbaum D, Tyagarajan SK, Greter M, Heppner FL, Mundt S, Becher B. IL-12 sensing in neurons induces neuroprotective CNS tissue adaptation and attenuates neuroinflammation in mice. Nat Neurosci 2023; 26:1701-1712. [PMID: 37749256 PMCID: PMC10545539 DOI: 10.1038/s41593-023-01435-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Interleukin-12 (IL-12) is a potent driver of type 1 immunity. Paradoxically, in autoimmune conditions, including of the CNS, IL-12 reduces inflammation. The underlying mechanism behind these opposing properties and the involved cellular players remain elusive. Here we map IL-12 receptor (IL-12R) expression to NK and T cells as well as neurons and oligodendrocytes. Conditionally ablating the IL-12R across these cell types in adult mice and assessing their susceptibility to experimental autoimmune encephalomyelitis revealed that the neuroprotective role of IL-12 is mediated by neuroectoderm-derived cells, specifically neurons, and not immune cells. In human brain tissue from donors with multiple sclerosis, we observe an IL-12R distribution comparable to mice, suggesting similar mechanisms in mice and humans. Combining flow cytometry, bulk and single-nucleus RNA sequencing, we reveal an IL-12-induced neuroprotective tissue adaption preventing early neurodegeneration and sustaining trophic factor release during neuroinflammation, thereby maintaining CNS integrity in mice.
Collapse
Affiliation(s)
- Myrto Andreadou
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Teresa L M Cramer
- Institute of Pharmacology and Toxicology, Neurodevelopmental Pharmacology, University of Zurich, Zurich, Switzerland
| | - Selma Tuzlak
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Schreiner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Pascale Eede
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shirin Schneeberger
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Maria Geesdorf
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederike Ridder
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christina A Welsh
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Laura Power
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Systems Immunology, Weizmann Institute, Rehovot, Israel
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, Neurodevelopmental Pharmacology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Frank L Heppner
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Correlation between the Neutrophil-to-Lymphocyte Ratio and Multiple Sclerosis: Recent Understanding and Potential Application Perspectives. Neurol Res Int 2022; 2022:3265029. [PMID: 36340639 PMCID: PMC9629953 DOI: 10.1155/2022/3265029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/28/2022] [Accepted: 10/15/2022] [Indexed: 11/28/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating immune-mediated disease of the central nervous system, which causes demyelination and neuroaxonal damage. Low-grade systemic inflammation has been considered to lead to pathogenesis owing to the amplification of pathogenic immune response activation. However, there is a shortage of reliable systemic inflammatory biomarkers to predict the disease activity and progression of MS. In MS patients, a series of cytokines and chemokines promote the proliferation of neutrophils and lymphocytes and their transfer to the central nervous system. The neutrophil-to-lymphocyte ratio (NLR), which combines the information of the inherent and adaptive parts of the immune system, represents a reliable measure of the inflammatory burden. In this review, we aimed to discuss the inflammatory response in MS, mainly the function of lymphocytes and neutrophils, which can be implemented in the utility of NLR as a diagnostic tool in MS patients. The underlying pathophysiology is highlighted to identify new potential targets for neuroprotection and to develop novel therapeutic strategies.
Collapse
|
3
|
Fraga-Silva TFDC, Munhoz-Alves N, Mimura LAN, de Oliveira LRC, Figueiredo-Godoi LMA, Garcia MT, Oliveira ES, Ishikawa LLW, Zorzella-Pezavento SFG, Bonato VLD, Junqueira JC, Bagagli E, Sartori A. Systemic Infection by Non-albicans Candida Species Affects the Development of a Murine Model of Multiple Sclerosis. J Fungi (Basel) 2022; 8:jof8040386. [PMID: 35448617 PMCID: PMC9032036 DOI: 10.3390/jof8040386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
Candidiasis may affect the central nervous system (CNS), and although Candida albicans is predominant, non-albicans Candida species can also be associated with CNS infections. Some studies have suggested that Candida infections could increase the odds of multiple sclerosis (MS) development. In this context, we investigated whether systemic infection by non-albicans Candida species would affect, clinically or immunologically, the severity of experimental autoimmune encephalomyelitis (EAE), which is an animal model used to study MS. For this, a strain of C. glabrata, C. krusei, and C. parapsilosis was selected and characterized using different in vitro and in vivo models. In these analysis, all the strains exhibited the ability to form biofilms, produce proteolytic enzymes, and cause systemic infections in Galleria mellonella, with C. glabrata being the most virulent species. Next, C57BL/6 mice were infected with strains of C. glabrata, C. krusei, or C. parapsilosis, and 3 days later were immunized with myelin oligodendrocyte glycoprotein to develop EAE. Mice from EAE groups previously infected with C. glabrata and C. krusei developed more severe and more prevalent paralysis, while mice from the EAE group infected with C. parapsilosis developed a disease comparable to non-infected EAE mice. Disease aggravation by C. glabrata and C. krusei strains was concomitant to increased IL-17 and IFN-γ production by splenic cells stimulated with fungi-derived antigens and with increased percentage of T lymphocytes and myeloid cells in the CNS. Analysis of interaction with BV-2 microglial cell line also revealed differences among these strains, in which C. krusei was the strongest activator of microglia concerning the expression of MHC II and CD40 and pro-inflammatory cytokine production. Altogether, these results indicated that the three non-albicans Candida strains were similarly able to reach the CNS but distinct in terms of their effect over EAE development. Whereas C. glabrata and C. Krusei aggravated the development of EAE, C. parapsilosis did not affect its severity. Disease worsening was partially associated to virulence factors in C. glabrata and to a strong activation of microglia in C. krusei infection. In conclusion, systemic infections by non-albicans Candida strains exerted influence on the experimental autoimmune encephalomyelitis in both immunological and clinical aspects, emphasizing their possible relevance in MS development.
Collapse
Affiliation(s)
- Thais Fernanda de Campos Fraga-Silva
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
- Correspondence:
| | - Natália Munhoz-Alves
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Luiza Ayumi Nishiyama Mimura
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | | | - Lívia Mara Alves Figueiredo-Godoi
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Maíra Terra Garcia
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Evelyn Silva Oliveira
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Larissa Lumi Watanabe Ishikawa
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Sofia Fernanda Gonçalves Zorzella-Pezavento
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Vânia Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto 14049-900, Brazil;
| | - Juliana Campos Junqueira
- Institute of Science and Technology, São Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil; (L.M.A.F.-G.); (M.T.G.); (J.C.J.)
| | - Eduardo Bagagli
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
| | - Alexandrina Sartori
- Department of Chemistry and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (N.M.-A.); (L.A.N.M.); (E.S.O.); (L.L.W.I.); (S.F.G.Z.-P.); (E.B.); (A.S.)
- Postgraduate Program in Tropical Disease, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil;
| |
Collapse
|
4
|
Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron 2018; 97:742-768. [DOI: 10.1016/j.neuron.2018.01.021] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
|
5
|
Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci 2013; 333:76-87. [PMID: 23578791 DOI: 10.1016/j.jns.2013.03.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). The etiology of MS is not well understood, but it is believed that myelin-specific CD4(+) T cells play a central role in initiating and orchestrating CNS inflammation. In this scenario, CD4(+) T cells, activated in the periphery, infiltrate the CNS, where, by secreting cytokines and chemokines, they start an inflammatory cascade. Given the central role of CD4(+) T cells in CNS autoimmunity, they have been studied extensively, principally by using experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the late 1980s, CD4(+) T cells, based on their cytokine production, were divided into two helper lineages, Th1 and Th2 cells. It was postulated that Th1 cells, which produce IFN-γ, mediate inflammation of the CNS in MS/EAE, while Th2 cells, which produce IL-4, have a beneficial effect in disease, because of their antagonistic effect on Th1 cells. The Th1/Th2 paradigm remained the prevailing view of MS/EAE pathogenesis until 2005, when a new lineage, Th17, was discovered. In a relatively short period of time it became apparent that Th17 cells, named after their hallmark cytokine, IL-17A, play a crucial role in many inflammatory diseases, including EAE, and likely in MS as well. The Th17 paradigm developed rapidly, initiating the debate of whether Th1 cells contribute to EAE/MS pathogenesis at all, or if they might even have a protective role due to their antagonistic effects on Th17 cells. Numerous findings support the view that Th17 cells play an essential role in autoimmune CNS inflammation, perhaps mainly in the initial phases of disease. Th1 cells likely contribute to pathogenesis, with their role possibly more pronounced later in disease. Hence, the current view on the role of Th cells in MS/EAE pathogenesis can be called the Th17/Th1 paradigm. It is certain that Th17 cells will continue to be the focus of intense investigation aimed at elucidating the pathogenesis of CNS autoimmunity.
Collapse
|
6
|
Liu R, Zhang Z, Lu Z, Borlongan C, Pan J, Chen J, Qian L, Liu Z, Zhu L, Zhang J, Xu Y. Human Umbilical Cord Stem Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Immunoinflammation and Remyelination. Stem Cells Dev 2013; 22:1053-62. [PMID: 23140594 DOI: 10.1089/scd.2012.0463] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rong Liu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhuo Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhengjuan Lu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Cesar Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, Florida
| | - Jie Pan
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Junhao Chen
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Lai Qian
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhuo Liu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Lin Zhu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, People's Republic of China
| | - Jun Zhang
- Jiangsu Provincial Stem Cell Engineering Research Center, Taizhou, Jiangsu Province, People's Republic of China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
7
|
Petermann F, Korn T. Cytokines and effector T cell subsets causing autoimmune CNS disease. FEBS Lett 2011; 585:3747-57. [PMID: 21477588 DOI: 10.1016/j.febslet.2011.03.064] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 12/21/2022]
Abstract
Although experimental autoimmune encephalomyelitis (EAE) is limited in its potency to reproduce the entirety of clinical and histopathologic features of multiple sclerosis (MS), this model has been successfully used to prove that MS like autoimmunity in the CNS is orchestrated by autoantigen specific T cells. EAE was also very useful to refute the idea that IFN-γ producing T helper type 1 (Th1) cells were the sole players within the pathogenic T cell response. Rather, "new" T cell lineages such as IL-17 producing Th17 cells or IL-9 producing Th9 cells have been first discovered in the context of EAE. Here, we will summarize new concepts of early and late T cell plasticity and the cytokine network that shapes T helper cell responses and lesion development in CNS specific autoimmunity.
Collapse
Affiliation(s)
- Franziska Petermann
- Klinikum Rechts der Isar, Department of Neurology, Technical University Munich, Munich, Germany
| | | |
Collapse
|
8
|
Hou G, Abrams GD, Dick R, Brewer GJ. Efficacy of tetrathiomolybdate in a mouse model of multiple sclerosis. Transl Res 2008; 152:239-44. [PMID: 19010295 DOI: 10.1016/j.trsl.2008.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
Abstract
Tetrathiomolybdate (TM) is a potent anticopper drug developed for Wilson's disease. We have found multiple efficacious results from decreasing copper levels with TM in mouse models of disease, using serum Cp as a surrogate marker of copper status and targeting Cp values of 20% to 50% of baseline. We have found efficacious results of TM therapy in mouse models of fibrosis; inflammation; damage from exogenous agents, such as acetaminophen and doxorubicin; and immune-modulated diseases, such as concanavalin A hepatitis, collagen II-induced arthritis, and the non-obese diabetic (NOD) mouse model of type I diabetes. In the current study, we examine TM efficacy in the EAE mouse model of multiple sclerosis (MS). We find that clinical scores of neurologic damage are significantly inhibited by TM therapy, whether therapy is started before MS-inducing antigen administration or after symptoms from antigen administration develop. Furthermore, we find that experimental autoimmune encephalomyelitis (EAE) treatment produces a marked increase of oxidant damage, as measured by urine isoprostane levels, and TM suppresses these isoprostane increases strongly and significantly. Finally, we find marked increases of inflammatory and immune-related cytokines in this model, and we find that TM strongly and significantly suppresses these increases.
Collapse
Affiliation(s)
- Guoqing Hou
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Mich. 48109-0534, USA
| | | | | | | |
Collapse
|
9
|
Kelchtermans H, Billiau A, Matthys P. How interferon-γ keeps autoimmune diseases in check. Trends Immunol 2008; 29:479-86. [DOI: 10.1016/j.it.2008.07.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 11/15/2022]
|
10
|
Touil T, Ciric B, Ventura E, Shindler KS, Gran B, Rostami A. Bowman-Birk inhibitor suppresses autoimmune inflammation and neuronal loss in a mouse model of multiple sclerosis. J Neurol Sci 2008; 271:191-202. [PMID: 18544456 PMCID: PMC2723951 DOI: 10.1016/j.jns.2008.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/11/2008] [Accepted: 04/22/2008] [Indexed: 12/25/2022]
Abstract
The Bowman-Birk inhibitor (BBI) is a soybean-derived serine protease inhibitor. BBI concentrate (BBIC) is an extract enriched with BBI, but predominantly contains other ingredients including several protease inhibitors. We previously found that BBIC administration to Lewis rats with experimental autoimmune encephalomyelitis (EAE) significantly suppresses disease. In the present study we determined whether BBI mediates the suppressive effects of BBIC in EAE, evaluated its potential neuroprotective effects, and investigated mechanisms of BBI action. We tested effects of purified BBI on clinical and histopathological parameters of EAE in two models (relapsing/remitting EAE in SJL/J mice and chronic EAE in C57BL/6 mice). Effects of BBI were compared to BBIC in relapsing/remitting EAE, and effects of BBI on neuronal survival were examined during acute optic neuritis. Treatment with BBI in both EAE models significantly improved EAE disease parameters (onset, severity, weight loss, inflammation and demyelination). BBI significantly reduced the incidence of optic neuritis and prevented loss of retinal ganglion cells. In most experiments proliferation of immune cells derived from BBI-treated mice was significantly lower relative to control groups. Using Boyden's chamber assay we found that BBI inhibited invasiveness of activated splenocytes through the matrigel barrier. BBI also induced higher production of EAE-suppressive cytokine IL-10 by immune cells. These results demonstrate that BBI is the active component of BBIC that ameliorates clinical EAE. BBI reduces inflammation and attenuates neuronal loss, making it an excellent candidate for oral therapy in MS. BBI likely ameliorates EAE by inhibiting multiple pathways involved in disease pathogenesis.
Collapse
Affiliation(s)
- Tarik Touil
- Department of Neurology, Thomas Jefferson University, Jefferson Hospital for Neuroscience, 900 Walnut Street, Suite 300, Philadelphia, PA 19107, USA
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Jefferson Hospital for Neuroscience, 900 Walnut Street, Suite 300, Philadelphia, PA 19107, USA
| | - Elvira Ventura
- Department of Neurology, Thomas Jefferson University, Jefferson Hospital for Neuroscience, 900 Walnut Street, Suite 300, Philadelphia, PA 19107, USA
| | - Kenneth S. Shindler
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, 51 North 39th Street, Philadelphia, PA 19104, USA
| | - Bruno Gran
- Department of Neurology, Thomas Jefferson University, Jefferson Hospital for Neuroscience, 900 Walnut Street, Suite 300, Philadelphia, PA 19107, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Jefferson Hospital for Neuroscience, 900 Walnut Street, Suite 300, Philadelphia, PA 19107, USA
| |
Collapse
|