1
|
El Ayoubi NK, Khoury SJ. Blood Biomarkers as Outcome Measures in Inflammatory Neurologic Diseases. Neurotherapeutics 2017; 14:135-147. [PMID: 27757816 PMCID: PMC5233628 DOI: 10.1007/s13311-016-0486-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system. Only a few biomarkers are available in MS clinical practice, such as cerebrospinal fluid oligoclonal bands and immunoglobulin index, serum anti-aquaporin 4 antibodies, and serum anti-John Cunningham virus antibodies. Thus, there is a significant unmet need for biomarkers to assess prognosis, response to therapy, or potential treatment complications. Here we describe emerging biomarkers that are in development, focusing on those from peripheral blood. There are several limitations in the process of discovery and validation of a good biomarker, such as the pathophysiological complexity of MS and the technical difficulties in globally standardizing methods for sampling, processing, and conserving biological specimens. In spite of these limitations, ongoing international collaborations allow the exploration of many interesting molecules and markers to validate diagnostic, prognostic, and therapeutic-response biomarkers.
Collapse
Affiliation(s)
- Nabil K El Ayoubi
- American University of Beirut and Medical Center, Nehme and Therese Tohme Multiple Sclerosis Center, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Samia J Khoury
- American University of Beirut and Medical Center, Nehme and Therese Tohme Multiple Sclerosis Center, Riad El Solh, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
2
|
Mohammadi A, Fazeli B, Taheri M, Sahebkar A, Poursina Z, Vakili V, Yazdi SZ, Keramati Z, Boostani R, Hampson I, Rafatpanah H. Modulatory effects of curcumin on apoptosis and cytotoxicity-related molecules in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. Biomed Pharmacother 2017; 85:457-462. [DOI: 10.1016/j.biopha.2016.11.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
|
3
|
Lin R, Kim H, Hong J, Li QJ. Biological evaluation of subglutinol a as a novel immunosuppressive agent for inflammation intervention. ACS Med Chem Lett 2014; 5:485-90. [PMID: 24900866 DOI: 10.1021/ml4004809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/10/2014] [Indexed: 12/31/2022] Open
Abstract
Subglutinol A (1) is an immunosuppressive natural product isolated from Fusarium subglutinans, an endophytic fungus from the vine Tripterygium wilfordii. We show that 1 exerts multimodal immune-suppressive effects on activated T cells in vitro: subglutinol A (1) effectively blocks T cell proliferation and survival while profoundly inhibiting pro-inflammatory IFNγ and IL-17 production by fully differentiated effector Th1 and Th17 cells. Our data further reveal that 1 may exert its anti-inflammatory effects by exacerbating mitochondrial damage in T cells. Additionally, we demonstrate that 1 significantly reduces lymphocytic infiltration into the footpad and ameliorates footpad swelling in the mouse model of Th1-driven delayed-type hypersensitivity. These results suggest the potential of 1 as a novel therapeutic for inflammatory diseases.
Collapse
Affiliation(s)
- Regina Lin
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Hyoungsu Kim
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jiyong Hong
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
4
|
One calcitriol dose transiently increases Helios+FoxP3+ T cells and ameliorates autoimmune demyelinating disease. J Neuroimmunol 2013; 263:64-74. [DOI: 10.1016/j.jneuroim.2013.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 01/10/2023]
|
5
|
Moreno M, Sáenz-Cuesta M, Castilló J, Cantó E, Negrotto L, Vidal-Jordana A, Montalban X, Comabella M. Circulating levels of soluble apoptosis-related molecules in patients with multiple sclerosis. J Neuroimmunol 2013; 263:152-4. [DOI: 10.1016/j.jneuroim.2013.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/26/2022]
|
6
|
Ho PP, Kanter JL, Johnson AM, Srinagesh HK, Chang EJ, Purdy TM, van Haren K, Wikoff WR, Kind T, Khademi M, Matloff LY, Narayana S, Hur EM, Lindstrom TM, He Z, Fiehn O, Olsson T, Han X, Han MH, Steinman L, Robinson WH. Identification of naturally occurring fatty acids of the myelin sheath that resolve neuroinflammation. Sci Transl Med 2012; 4:137ra73. [PMID: 22674551 DOI: 10.1126/scitranslmed.3003831] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lipids constitute 70% of the myelin sheath, and autoantibodies against lipids may contribute to the demyelination that characterizes multiple sclerosis (MS). We used lipid antigen microarrays and lipid mass spectrometry to identify bona fide lipid targets of the autoimmune response in MS brain, and an animal model of MS to explore the role of the identified lipids in autoimmune demyelination. We found that autoantibodies in MS target a phosphate group in phosphatidylserine and oxidized phosphatidylcholine derivatives. Administration of these lipids ameliorated experimental autoimmune encephalomyelitis by suppressing activation and inducing apoptosis of autoreactive T cells, effects mediated by the lipids' saturated fatty acid side chains. Thus, phospholipids represent a natural anti-inflammatory class of compounds that have potential as therapeutics for MS.
Collapse
Affiliation(s)
- Peggy P Ho
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Spanier JA, Nashold FE, Olson JK, Hayes CE. The Ifng gene is essential for Vdr gene expression and vitamin D₃-mediated reduction of the pathogenic T cell burden in the central nervous system in experimental autoimmune encephalomyelitis, a multiple sclerosis model. THE JOURNAL OF IMMUNOLOGY 2012; 189:3188-97. [PMID: 22896638 DOI: 10.4049/jimmunol.1102925] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Compelling evidence suggests that vitamin D3 insufficiency may contribute causally to multiple sclerosis (MS) risk. Experimental autoimmune encephalomyelitis (EAE) research firmly supports this hypothesis. Vitamin D3 supports 1,25-dihydroxyvitamin D3 (1,25-[OH]2D3) synthesis in the CNS, initiating biological processes that reduce pathogenic CD4+ T cell longevity. MS is prevalent in Sardinia despite high ambient UV irradiation, challenging the vitamin D-MS hypothesis. Sardinian MS patients frequently carry a low Ifng expresser allele, suggesting that inadequate IFN-γ may undermine vitamin D3-mediated inhibition of demyelinating disease. Testing this hypothesis, we found vitamin D3 failed to inhibit EAE in female Ifng knockout (GKO) mice, unlike wild-type mice. The two strains did not differ in Cyp27b1 and Cyp24a1 gene expression, implying equivalent vitamin D3 metabolism in the CNS. The 1,25-(OH)2D3 inhibited EAE in both strains, but 2-fold more 1,25-(OH)2D3 was needed in GKO mice, causing hypercalcemic toxicity. Unexpectedly, GKO mice had very low Vdr gene expression in the CNS. Injecting IFN-γ intracranially into adult mice did not increase Vdr gene expression. Correlating with low Vdr expression, GKO mice had more numerous pathogenic Th1 and Th17 cells in the CNS, and 1,25-(OH)2D3 reduced these cells in GKO and wild-type mice without altering Foxp3+ regulatory T cells. Thus, the Ifng gene was needed for CNS Vdr gene expression and vitamin D3-dependent mechanisms that inhibit EAE. Individuals with inadequate Ifng expression may have increased MS risk despite high ambient UV irradiation because of low Vdr gene expression and a high encephalitogenic T cell burden in the CNS.
Collapse
Affiliation(s)
- Justin A Spanier
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
8
|
Comi C, Fleetwood T, Dianzani U. The role of T cell apoptosis in nervous system autoimmunity. Autoimmun Rev 2012; 12:150-6. [PMID: 22504460 DOI: 10.1016/j.autrev.2011.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 12/20/2022]
Abstract
Fas is a transmembrane receptor involved in the death program of several cell lines, including T lymphocytes. Deleterious mutations hitting genes involved in the Fas pathway cause the autoimmune lymphoprolipherative syndrome (ALPS). Moreover, defective Fas function is involved in the development of common autoimmune diseases, including autoimmune syndromes hitting the nervous system, such as multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). In this review, we first explore some peculiar aspects of Fas mediated apoptosis in the central versus peripheral nervous system (CNS, PNS); thereafter, we analyze what is currently known on the role of T cell apoptosis in both MS and CIDP, which, in this regard, may be seen as two faces of the same coin. In fact, we show that, in both diseases, defective Fas mediated apoptosis plays a crucial role favoring disease development and its chronic evolution.
Collapse
Affiliation(s)
- C Comi
- Department of Clinical and Experimental Medicine, Section of Neurology, Amedeo Avogadro University, Novara, Italy.
| | | | | |
Collapse
|
9
|
Hagman S, Raunio M, Rossi M, Dastidar P, Elovaara I. Disease-associated inflammatory biomarker profiles in blood in different subtypes of multiple sclerosis: Prospective clinical and MRI follow-up study. J Neuroimmunol 2011; 234:141-7. [DOI: 10.1016/j.jneuroim.2011.02.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/03/2011] [Accepted: 02/15/2011] [Indexed: 12/29/2022]
|
10
|
Abstract
INTRODUCTION MS is a heterogeneous disorder that requires the development of better diagnostics to identify disease subtypes enabling appropriate therapeutic intervention at an early stage of the disease. Accumulating evidence indicates that members of the inhibitor of apoptosis (IAP) family play an important role in the pathogenesis of MS by reducing the apoptotic elimination of autoreactive immune cells. AREAS COVERED The authors describe improved animal modeling strategies to identify compounds that have immunomodulatory, neurorestorative and neuroprotective properties. In addition, the authors propose new approaches to better model cognitive dysfunction in MS, which will aid the development of novel therapeutics for this complex disorder. The paper provides the reader with an appreciation for the diagnostic and therapeutic potential of apoptosis-related proteins for MS. EXPERT OPINION Recent evidence suggests that increased resistance of autoreactive immune cells to apoptotic elimination is a contributing factor to both disease susceptibility and progression in MS. This occurs, at least in part, because of elevated levels of the IAP family of anti-apoptotic genes that display distinct expression profiles associated with different subtypes of MS. The authors believe that the detection and targeting of members of the IAP family can provide better drugs for MS. Particularly, the authors feel that the overexpression of IAPs in animal models can provide novel insights into MS for both its pathogenesis and the discovery of new lead compounds.
Collapse
Affiliation(s)
- Jordan Warford
- Dalhousie University , Department of Pharmacology , Halifax, NS B3H 1X5 , Canada
| | | |
Collapse
|
11
|
Administration of 2-arachidonoylglycerol ameliorates both acute and chronic experimental autoimmune encephalomyelitis. Brain Res 2011; 1390:126-41. [PMID: 21406188 DOI: 10.1016/j.brainres.2011.03.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE Experimental autoimmune encephalomyelitis (EAE) is a widely used model of multiple sclerosis (MS) and both conditions have been reported to exhibit reduced endocannabinoid activity. The purpose of this study was to address the effect of exogenously administered 2-arachidonoylglycerol (2AG), an endocannabinoid receptor ligand, on acute phase and chronic disability in EAE. EXPERIMENTAL APPROACH Acute and chronic EAE models were induced in susceptible mice and 2AG-treatment was applied for 14 days from day of disease induction. KEY RESULTS 2AG-treatment ameliorated acute phase of disease with delay of disease onset in both EAE models and reduced disease mortality and long-term (70 days post-induction) clinical disability in chronic EAE. Reduced axonal pathology in the chronic EAE- (p<0.0001) and increased activation and ramification of microglia in the 2AG-treated acute EAE- (p<0.05) model were noticed. The latter was accompanied by a 2- to 4-fold increase of the M2-macrophages in the perivascular infiltrations (p<0.001) of the 2AG-treated animals in the acute (day 22), although not the chronic (day 70), EAE model. Expression of cannabinoid receptors 1 (CB1R) and 2 (CB2R) was increased in 2AG-treated animals of acute EAE vs. controls (p<0.05). In addition, ex vivo viability assays exhibited reduced proliferation of activated lymph node cells when extracted from 2AG-treated EAE animals, whereas a dose-dependent response of activated lymphocytes to 2AG-treatment in vitro was noticed. CONCLUSION AND IMPLICATIONS Our data indicate for the first time that 2AG treatment may provide direct (via CBRs) and immune (via M2 macrophages) mediated neuroprotection in EAE.
Collapse
|
12
|
Abstract
Autoreactive T cell responses have a crucial role in central nervous system (CNS) diseases such as multiple sclerosis. Recent data indicate that CNS autoimmunity can be mediated by two distinct lineages of CD4+ T cells that are defined by the production of either interferon-gamma or interleukin-17. The activity of these CD4+ T cell subsets within the CNS influences the pathology and clinical course of disease. New animal models show that myelin-specific CD8+ T cells can also mediate CNS autoimmunity. This Review focuses on recent progress in delineating the pathogenic mechanisms, regulation and interplay between these different T cell subsets in CNS autoimmunity.
Collapse
Affiliation(s)
- Joan Goverman
- Department of Immunology, University of Washington, Seattle, Washington 98195-7650, USA.
| |
Collapse
|
13
|
Hestvik ALK, Skorstad G, Vartdal F, Holmøy T. Idiotope-specific CD4(+) T cells induce apoptosis of human oligodendrocytes. J Autoimmun 2009; 32:125-32. [PMID: 19250800 DOI: 10.1016/j.jaut.2009.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/09/2009] [Accepted: 01/26/2009] [Indexed: 12/19/2022]
Abstract
CD4(+) T cells specific for immunologic non-self determinants on self-IgG, idiotopes (Id), can be raised from cerebrospinal fluid (CSF) and blood of patients with multiple sclerosis (MS). To test if Id-specific CD4(+) T cells have the potential to destroy oligodendrocytes (ODCs), we analyzed their ability to induce apoptosis of human ODC cell lines. Id-specific CD4(+) T cells stimulated with either Id-bearing B cells, Id-peptide presented by other antigen presenting cells, or by anti-CD3/anti-CD28 in the absence of accessory cells induced DNA fragmentation and killed ODCs. Killing required contact between the ODCs and the T cells, it did not depend on the cytokine profile of the T cells, it was independent of other cell types, and was inhibited by a general caspase inhibitor and an anti-Fas antibody. Activated CD4(+) T cells specific for glutamic acid decarboxylase 65 also induced apoptosis, showing that killing does not depend on cognate interaction between T cells and target cells but rather on the activation status of the T cells.
Collapse
Affiliation(s)
- Anne Lise Karlsgot Hestvik
- Institute of Immunology, Faculty of Medicine, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | |
Collapse
|
14
|
Increased X-linked inhibitor of apoptosis protein (XIAP) expression exacerbates experimental autoimmune encephalomyelitis (EAE). J Neuroimmunol 2009; 203:79-93. [PMID: 18687476 DOI: 10.1016/j.jneuroim.2008.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/17/2008] [Accepted: 06/19/2008] [Indexed: 01/27/2023]
Abstract
Dysregulated apoptotic signaling has been implicated in most forms of cancer and many autoimmune diseases, such as multiple sclerosis (MS). We have previously shown that the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP) is elevated in T cells from mice with experimental autoimmune encephalomyelitis (EAE). In MS and EAE, the failure of autoimmune cells to undergo apoptosis is thought to exacerbate clinical symptoms and contribute to disease progression and CNS tissue damage. Antisense-mediated knockdown of XIAP, in vivo, increases the susceptibility of effector T cells to apoptosis, thus attenuating CNS inflammation and thereby alleviating the clinical signs of EAE. We report for the first time, generation of transgenic mice whereby the ubiquitin promoter drives expression of XIAP (ubXIAP), resulting in increased XIAP expression in a variety of tissues, including cells comprising the immune system. Transgenic ubXIAP mice and wild-type (WT) littermates were immunized with myelin oligodendrocyte glycoprotein (MOG35-55) in complete Freund's adjuvant and monitored daily for clinical symptoms of EAE over a 21-day period. The severity of EAE was increased in ubXIAP mice relative to WT-littermates, suggesting that XIAP overexpression enhanced the resistance of T cells to apoptosis. Consistent with this finding, T cells derived from MOG35-55-immunized ubXIAP mice and cultured in the presence of antigen were more resistant to etoposide-mediated apoptosis compared to WT-littermates. This work identifies XIAP is an important apoptotic regulator in EAE and a potential pharmacological target for treating autoimmune diseases such as MS.
Collapse
|
15
|
Tian L, Rauvala H, Gahmberg CG. Neuronal regulation of immune responses in the central nervous system. Trends Immunol 2009; 30:91-9. [PMID: 19144568 DOI: 10.1016/j.it.2008.11.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/21/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
The central nervous system (CNS) has traditionally been considered to be immunologically privileged, but over the years there has been a re-evaluation of this dogma. To date, studies have tended to focus on the immune functions of glial cells, whereas the roles of neurons have been regarded as passive and their immune-regulatory properties have been less examined. However, recent findings indicate that CNS neurons actively participate in immune regulation by controlling their glial cell counterparts and infiltrated T cells. Here, we describe the immune-regulatory roles of CNS neurons by both contact-dependent and contact-independent mechanisms. In addition, we specifically deal with the immune functions of neuronal cell adhesion molecules, many of which are key modulators of neuronal synaptic formation and plasticity.
Collapse
Affiliation(s)
- Li Tian
- Neuroscience Center, University of Helsinki, Viikinkaari 4, FIN-00014, Helsinki, Finland.
| | | | | |
Collapse
|
16
|
Abstract
The clearance of apoptotic cells is a highly regulated mechanism, normally associated with anti-inflammatory response. During early stages of apoptosis the cell is promptly recognized and engulfed by professional phagocytes or tissue cells to avoid the outflow of intracellular content and limit the immunological reaction against released antigens. However, increasing evidences suggest that impairment in the uptake of apoptotic cell debris is linked to the development of autoimmunity. In fact, autoantigens have been demonstrated to be content within apoptotic bodies and apoptotic cells seems to be critical in the presentation of antigens, activation of innate immunity and regulation of macrophage cytokine secretion. We herein review the known mechanisms for regulating the uptake of the products of apoptosis in the development of autoimmunity.
Collapse
Affiliation(s)
- Ana Lleo
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Division of Internal Medicine and Liver Unit, San Paolo School of Medicine University of Milan, Milan, Italy
| | - Carlo Selmi
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Division of Internal Medicine and Liver Unit, San Paolo School of Medicine University of Milan, Milan, Italy
| | - Pietro Invernizzi
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Division of Internal Medicine and Liver Unit, San Paolo School of Medicine University of Milan, Milan, Italy
| | - Mauro Podda
- Division of Internal Medicine and Liver Unit, San Paolo School of Medicine University of Milan, Milan, Italy
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA, USA
| |
Collapse
|