1
|
Maiworm M, Koerbel K, Anschütz V, Jakob J, Schaller-Paule MA, Schäfer JH, Friedauer L, Wenger KJ, Hoelter MC, Steffen F, Bittner S, Foerch C, Yalachkov Y. BDNF levels in serum and CSF are associated with clinicoradiological characteristics of aggressive disease in MS patients. J Neurol 2025; 272:147. [PMID: 39812717 PMCID: PMC11735549 DOI: 10.1007/s00415-024-12875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND BDNF has increasingly gained attention as a key molecule controlling remyelination with a prominent role in neuroplasticity and neuroprotection. Still, it remains unclear how BDNF relates to clinicoradiological characteristics particularly at the early stage of the disease where precise prognosis for the further MS course is crucial. METHODS BDNF, NfL and GFAP concentrations in serum and CSF were assessed in 106 treatment naïve patients with MS (pwMS) as well as 73 patients with other inflammatory/non-inflammatory neurological or somatoform disorders using a single molecule array HD-1 analyser. PwMS were evaluated for highly active profiles by applying the aggressive disease course criteria proposed by ECTRIMS. Serum/CSF values were logarithmically transformed and compared across groups using one-way ANOVA, while correlations were calculated using Pearson's correlations. ROC analysis and AUC comparisons for diagnostic performance of the three biomarkers were computed in an explorative analysis. RESULTS Serum BDNF (sBDNF) concentrations were higher in treatment naïve pwMS with disease onset after the age of 40 years (p = 0.029), in pwMS with ≥2 gadolinium-enhancing lesions (p = 0.009) and with motor, cerebellar, cognitive or sphincter symptoms at onset (p = 0.036). BDNF correlated positively with NfL (r = 0.198, p = 0.014) and GFAP (r = 0.253, p = 0.002) in serum, but not in CSF. Neurological patients with an acute inflammatory relapse showed significantly higher sBDNF levels (p = 0.03) compared to somatoform controls, while patients without acute relapse did not differ from somatoform controls (p = 0.4). Better diagnostic performance was found for sBDNF than sNfL and sGFAP in differentiating between patients with vs. without 2 or more gadolinium-enhancing lesions (p < 0.05) and for sBDNF as compared to sNfL for separating patients with disease onset after vs. before age of 40 years. CONCLUSION In pwMS, BDNF serum levels differ depending on disease-related characteristics, suggesting that not only inflammatory activity but also remyelination capacities may vary with disease severity. BDNF is increased when other biomarkers of neuroaxonal damage and neurodegeneration, such as NfL and GFAP, are elevated, possibly as a compensatory mechanism, and reflect possibly further pathophysiological aspects in MS beyond NfL and GFAP, probably including an apoptotic role for BDNF in neuroinflammation.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany.
| | - Kimberly Koerbel
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Victoria Anschütz
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Jasmin Jakob
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin A Schaller-Paule
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
- Practice for Neurology and Psychiatry Eltville, Eltville Am Rhein, Germany
| | - Jan Hendrik Schäfer
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Lucie Friedauer
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Katharina J Wenger
- Institute of Neuroradiology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Maya C Hoelter
- Department of Radiology, Sankt Katharinen Hospital, Frankfurt Am Main, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Foerch
- Department of Neurology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Yavor Yalachkov
- Department of Neurology, University Hospital Frankfurt, Frankfurt Am Main, Germany
| |
Collapse
|
2
|
Al‐kuraishy HM, Sulaiman GM, Mohammed HA, Albukhaty S, Albuhadily AK, Al‐Gareeb AI, Klionsky DJ, Abomughaid MM. The Compelling Role of Brain-Derived Neurotrophic Factor Signaling in Multiple Sclerosis: Role of BDNF Activators. CNS Neurosci Ther 2024; 30:e70167. [PMID: 39654365 PMCID: PMC11628746 DOI: 10.1111/cns.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin, acting as a neurotrophic signal and neuromodulator in the central nervous system (CNS). BDNF is synthesized from its precursor proBDNF within the CNS and peripheral tissues. Through activation of NTRK2/TRKB (neurotrophic receptor tyrosine kinase 2), BDNF promotes neuronal survival, synaptic plasticity, and neuronal growth, whereas it inhibits microglial activation and the release of pro-inflammatory cytokines. BDNF is dysregulated in different neurodegenerative diseases and depressions. However, there is a major controversy concerning BDNF levels in the different stages of multiple sclerosis (MS). Therefore, this review discusses the potential role of BDNF signaling in stages of MS, and how BDNF modulators affect the pathogenesis and outcomes of this disease.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied SciencesUniversity of TechnologyBaghdadIraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of PharmacyQassim UniversityQassimSaudi Arabia
| | | | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | | | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesUniversity of BishaBishaSaudi Arabia
| |
Collapse
|
3
|
Maiworm M. The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Front Neurol 2024; 15:1385042. [PMID: 39148705 PMCID: PMC11325594 DOI: 10.3389/fneur.2024.1385042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Background Neuroplasticity as a mechanism to overcome central nervous system injury resulting from different neurological diseases has gained increasing attention in recent years. However, deficiency of these repair mechanisms leads to the accumulation of neuronal damage and therefore long-term disability. To date, the mechanisms by which remyelination occurs and why the extent of remyelination differs interindividually between multiple sclerosis patients regardless of the disease course are unclear. A member of the neurotrophins family, the brain-derived neurotrophic factor (BDNF) has received particular attention in this context as it is thought to play a central role in remyelination and thus neuroplasticity, neuroprotection, and memory. Objective To analyse the current literature regarding BDNF in different areas of multiple sclerosis and to provide an overview of the current state of knowledge in this field. Conclusion To date, studies assessing the role of BDNF in patients with multiple sclerosis remain inconclusive. However, there is emerging evidence for a beneficial effect of BDNF in multiple sclerosis, as studies reporting positive effects on clinical as well as MRI characteristics outweighed studies assuming detrimental effects of BDNF. Furthermore, studies regarding the Val66Met polymorphism have not conclusively determined whether this is a protective or harmful factor in multiple sclerosis, but again most studies hypothesized a protective effect through modulation of BDNF secretion and anti-inflammatory effects with different effects in healthy controls and patients with multiple sclerosis, possibly due to the pro-inflammatory milieu in patients with multiple sclerosis. Further studies with larger cohorts and longitudinal follow-ups are needed to improve our understanding of the effects of BDNF in the central nervous system, especially in the context of multiple sclerosis.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Sokolowski I, Kucharska-Lusina A, Miller E, Majsterek I. Exploring the mRNA and Plasma Protein Levels of BDNF, NT4, SIRT1, HSP27, and HSP70 in Multiple Sclerosis Patients and Healthy Controls. Int J Mol Sci 2023; 24:16176. [PMID: 38003363 PMCID: PMC10671202 DOI: 10.3390/ijms242216176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune neurodegenerative disease affecting the central nervous system. It is a major cause of non-traumatic neurological disability among young adults in North America and Europe. This study focuses on neuroprotective genes (BDNF, NT4/5, SIRT1, HSP70, and HSP27). Gene expression and protein levels of these markers were compared between MS patients and healthy controls. Blood samples were collected from 42 patients with multiple sclerosis (MS) and 48 control subjects without MS. Quantitative real-time PCR was performed to measure the expression of specific genes. The samples were analyzed in duplicate, and the abundance of mRNA was quantified using the 2-ΔCt method. ELISA assay was used to measure the concentration of specific proteins in the plasma samples. The results show that a 3.5-fold decrease in the gene expression of BDNF corresponds to a 1.5-fold downregulation in the associated plasma protein concentration (p < 0.001). Similar trends were observed with NT-4 (five-fold decrease, slight elevation in protein), SIRT1 (two-fold decrease, two-fold protein decrease), HSP70 (four-fold increase, nearly two-fold protein increase), and HSP27 (four-fold increase, two-fold protein increase) (p < 0.001). This study reveals strong correlations between gene expression and protein concentration in MS patients, emphasizing the relevance of these neuroprotective markers in the disease.
Collapse
Affiliation(s)
- Igor Sokolowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.)
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (I.S.); (A.K.-L.)
| |
Collapse
|
5
|
Afarid M, Bahari H, Sanie-Jahromi F. In Vitro Evaluation of Apoptosis, Inflammation, Angiogenesis, and Neuroprotection Gene Expression in Retinal Pigmented Epithelial Cell Treated with Interferon α-2b. J Interferon Cytokine Res 2023. [PMID: 37289822 DOI: 10.1089/jir.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Angiogenesis, retinal neuropathy, and inflammation are the main molecular features of diabetic retinopathy (DR) and should be taken into consideration for potential treatment approaches. Retinal pigmented epithelial (RPE) cells play a major role in DR progression. This study evaluated the in vitro effect of interferon (IFN) α-2b on the expression of genes involved in apoptosis, inflammation, neuroprotection, and angiogenesis in RPE cells. RPE cells were cocultured with IFN α-2b at 2 doses (500 and 1,000 IU) and treatment periods (24 and 48 h). The quantitative relative expression of genes (BCL-2, BAX, BDNF, VEGF, and IL-1b) was evaluated in the treated versus control cells through real-time polymerase chain reaction (PCR). The result of this study demonstrated that IFN treatment at 1,000 IU (48 h) led to significant upregulation of BCL-2, BAX, BDNF, and IL-1b; however, the BCL-2/BAX ratio was not statistically altered from 1:1, in any of the treatment patterns. We also showed that VEGF expression was downregulated in RPE cells treated with 500 IU for 24 h. It can be concluded that IFN α-2b was safe (BCL-2/BAX ∼1:1) and enhanced neuroprotection at 1,000 IU (48 h); however-at the same time-IFN α-2b induced inflammation in RPE cells. Moreover, the antiangiogenic effect of IFN α-2b was solely observed in RPE cells treated with 500 IU (24 h). It seems that IFN α-2b in lower doses and short duration exerts antiangiogenic effects and in higher doses and longer duration has neuroprotective and inflammatory effects. Hence, appropriate concentration and duration of treatment, according to the type and stage of the disease, should be considered to achieve success in IFN therapy.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bahari
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Nociti V, Romozzi M. The Role of BDNF in Multiple Sclerosis Neuroinflammation. Int J Mol Sci 2023; 24:ijms24098447. [PMID: 37176155 PMCID: PMC10178984 DOI: 10.3390/ijms24098447] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and degenerative disease of the central nervous system (CNS). Inflammation is observed in all stages of MS, both within and around the lesions, and can have beneficial and detrimental effects on MS pathogenesis. A possible mechanism for the neuroprotective effect in MS involves the release of brain-derived neurotrophic factor (BDNF) by immune cells in peripheral blood and inflammatory lesions, as well as by microglia and astrocytes within the CNS. BDNF is a neurotrophic factor that plays a key role in neuroplasticity and neuronal survival. This review aims to analyze the current understanding of the role that inflammation plays in MS, including the factors that contribute to both beneficial and detrimental effects. Additionally, it explores the potential role of BDNF in MS, as it may modulate neuroinflammation and provide neuroprotection. By obtaining a deeper understanding of the intricate relationship between inflammation and BDNF, new therapeutic strategies for MS may be developed.
Collapse
Affiliation(s)
- Viviana Nociti
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Centro Sclerosi Multipla, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marina Romozzi
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
7
|
Karimi N, Ashourizadeh H, Akbarzadeh Pasha B, Haghshomar M, Jouzdani T, Shobeiri P, Teixeira AL, Rezaei N. Blood levels of brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis (MS): A systematic review and meta-analysis. Mult Scler Relat Disord 2022; 65:103984. [PMID: 35749959 DOI: 10.1016/j.msard.2022.103984] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Multiple sclerosis is an autoimmune demyelinating disease marked by the involvement of multiple pathophysiological pathways, including BDNF. BDNF (brain-derived neurotrophic factor) is one of the main neurotrophic factors in the adult brain. The amount of BDNF in the blood can be utilized as a surrogate for the central expression of this marker. Given contradicting reports, we set out to answer the question, "How do blood levels of BDNF differ in people with multiple sclerosis (PwMS) compared to controls?" METHODS We performed a thorough search in MEDLINE, EMBASE, Web of Science, and the Cochrane Library databases, resulting in 13 eligible investigations. Eleven studies compared BDNF in serum of PwMS versus healthy controls (HC), and two studies provided BDNF levels in the plasma of PwMs. R version 4.0.4 was used for meta-analysis and visualizations. Mean difference (MD) was used for the measurement of effect size. RESULTS The final analysis included thirteen studies with 689 patients with MS and 583 controls. The preliminary results indicated that MS patients had statistically significant lower levels of BDNF than controls: SMD -5.1992 (95% CI [-8.4488; -1.9496], p-value < 0.0001. Additionally, subgroup analysis revealed a statistically significant difference in serum and plasma levels (p-value=0.01). Performing univariate meta-regression, disease duration and the proportion of males had, respectively, a significant negative and positive correlation with BDNF levels. CONCLUSION Circulating levels of BDNF are decreased in MS. Future studies should investigate the role of BDNF as a biomarker of disease severity and/or progression for a personalized approach to MS.
Collapse
Affiliation(s)
- Nastaran Karimi
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Helia Ashourizadeh
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Boshra Akbarzadeh Pasha
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran 14194, Iran
| | - Maryam Haghshomar
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran 14194, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tahmineh Jouzdani
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran 14194, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nima Rezaei
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran 14194, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Oraby MI, El Masry HA, Abd El Shafy SS, Abdul Galil EM. Serum level of brain-derived neurotrophic factor in patients with relapsing–remitting multiple sclerosis: a potential biomarker for disease activity. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00296-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Brain-derived neurotrophic factor (BDNF) is secreted by immune cells in response to neuroimmune and inflammatory cascades as an act to prevent axonal and neuronal damage after various pathological insults. The serum level of BDNF is altered in a diversity of neurological diseases. The aim of this work was to investigate the serum level of BDNF in patients with relapsing–remitting multiple sclerosis and the relation between BDNF and disease activity and severity.
Methods
A case–control study was conducted on 90 subjects: 60 patients with relapsing–remitting multiple sclerosis (30 in relapse and 30 in remission) on different lines of medical treatment and 30 healthy volunteers as a control. Clinical, functional, and radiological evaluation was done for the patients, and all the patients and controls were subjected to assessment of the serum level of BDNF by sandwich-ELISA technique.
Results
The BDNF level was significantly higher in MS patients in relapse than in patients in remission (P value = 0.006). In the remission group, there was no significant linear correlation between different MS patients’ characteristics and BDNF level, while in the relapse group, a positive linear correlation was found between the number of T2 infratentorial lesions and BDNF level (r = 0.402, P = 0.028). There was no statistically significant difference between the BDNF level in patients administered different drugs for MS in both remission and relapse groups (P value > 0.05).
Conclusion
BDNF was significantly higher in relapsing–remitting multiple sclerosis patients in the relapse phase. Attention should be paid to the link between serum BDNF level as a neuroprotective factor and multiple sclerosis; it can be a biomarker for MS activity in the near future.
Collapse
|
9
|
Shajarian M, Alsahebfosoul F, Etemadifar M. The Effect of IFN-β Treatment on Plasma Levels of BDNF and IL-6 in Relapsing-Remitting Multiple Sclerosis Patients. Neuroimmunomodulation 2021; 28:150-157. [PMID: 34182566 DOI: 10.1159/000515595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/26/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In recent investigations addressing neurodegenerative diseases, especially multiple sclerosis (MS), the roles of brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) have been examined. METHODS Forty-five relapsing-remitting MS (RRMS) patients, including 32 IFN-β-treated and 13 newly identified untreated cases as well as 45 sex- and age-matched healthy controls, were recruited in the study. Plasma levels of BDNF and IL-6 were assessed using the ELISA method. Data were analyzed by SPSS (ver.21). RESULTS There were significant differences between the case and healthy control groups in terms of the plasma levels of BDNF (p value = 0.044) and IL-6 (p value <0.001). Besides, the treatment with IFN-β had no significant impact on the level of BDNF or IL-6 in RRMS patients as compared to healthy controls (p value = 0.716 and 0.623 for BDNF and IL-6, respectively). Furthermore, the increase in the plasma levels of BDNF and IL-6 indicated a direct correlation in the case group (r = 0.508, p value = 0.008). In detail, following the classification of the case group into 2 subgroups of IFN-β-treated and untreated patients, a direct positive correlation was observed between the plasma levels of BDNF and IL-6 in IFN-β-treated patients (r = 0.495, p value = 0.026). CONCLUSION The IFN-β treatment seems not to be effective for upregulating BDNF and IL-6 in RRMS patients.
Collapse
Affiliation(s)
- Mansour Shajarian
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Alsahebfosoul
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Abbaspoor E, Zolfaghari M, Ahmadi B, Khodaei K. The effect of combined functional training on BDNF, IGF-1, and their association with health-related fitness in the multiple sclerosis women. Growth Horm IGF Res 2020; 52:101320. [PMID: 32305012 DOI: 10.1016/j.ghir.2020.101320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Exercise-induced changes in the neurotrophic factors and the physical function are essential for the rehabilitation of the multiple sclerosis (MS) persons. The aim of this study was investigating of effectiveness of the combined functional training (CFT) on brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and their association with health-related fitness in the MS women. DESIGN Twenty women with relapsing-remitting MS randomly assigned to CFT and control (CON) groups. The CFT consisted of 8 weeks (3 days per week) rhythmic aerobic exercise, TRX suspension training, elastic band training, and bodyweight training. BDNF, IGF-1, and health-related fitness components were assessed before and after the intervention. RESULTS There was no significant difference in BDNF level between the CFT and the CON group. In contrast, IGF-1, walking speed, and strength of the right- and left-hand was significantly increased in the CFT compared with the CON group. Furthermore, there was a significant and positive correlation between IGF-1 and some fitness components. CONCLUSIONS The findings indicated that CFT might a useful training mode in the rehabilitation of the MS women. CFT improved IGF-1 level that is a neuroprotective agent in MS. Positive and significant association between IGF-1 and some health-related fitness components indicates of the importance of IGF-1 in the rehabilitation of the MS persons than BDNF.
Collapse
Affiliation(s)
- Elnaz Abbaspoor
- Department of Sport Physiology and Corrective Exercise, Sport Sciences Faculty, Urmia University, Urmia, Iran
| | - Mohammadreza Zolfaghari
- Department of Sport Physiology and Corrective Exercise, Sport Sciences Faculty, Urmia University, Urmia, Iran
| | - Babak Ahmadi
- Urmia University of Medical Sciences, Urmia, Iran
| | - Kazem Khodaei
- Department of Sport Physiology and Corrective Exercise, Sport Sciences Faculty, Urmia University, Urmia, Iran.
| |
Collapse
|
11
|
Karmand Z, Hartung HP, Neuhaus O. Interferon beta-1a induces expression of brain-derived neurotrophic factor in human T lymphocytes in vitro and not in vivo. FUTURE NEUROLOGY 2020. [DOI: 10.2217/fnl-2019-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To detect IFN β-1a-induced expression of brain-derived neurotrophic factor (BDNF) to undermine the hypothesis of IFN β-1a-associated neuroprotection in multiple sclerosis (MS). Methods: The influence of IFN β-1a on in vitro activated peripheral blood lymphocytes from healthy donors was tested. Proliferation analyses were made to detect T-cell growth. BDNF expression was measured by standard ELISA. To assess the influence of IFN β-1a on BDNF expression in vivo, BDNF serum levels of MS patients treated with IFN β-1a were compared with those of untreated patients. Results: IFN β-1a inhibited T-cell proliferation dose dependently. It induced BDNF expression at middle concentrations. MS patients treated with IFN β-1a exhibited significantly lower BDNF serum levels than untreated patients. Conclusion: IFN β-1a may promote neuroprotection by inducing BDNF expression, but its importance in vivo remains open.
Collapse
Affiliation(s)
- Zarlascht Karmand
- Heinrich Heine Universität Düsseldorf, Department of Neurology, 40225 Düsseldorf, Germany
| | - Hans-Peter Hartung
- Heinrich Heine Universität Düsseldorf, Department of Neurology, 40225 Düsseldorf, Germany
| | - Oliver Neuhaus
- Heinrich Heine Universität Düsseldorf, Department of Neurology, 40225 Düsseldorf, Germany
- SRH Krankenhaus Sigmaringen, Department of Neurology, 72488 Sigmaringen, Germany
| |
Collapse
|
12
|
Semkina AA, Alifirova VM, Titova MA, Maltseva AN, Abadzhyan MB. [Brain-derived neurotrophic factor in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:28-35. [PMID: 31156238 DOI: 10.17116/jnevro20191192228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review presents data on brain-derived neurotrophic factor (BDNF), its structure and functions, the effect on the pathogenesis of experimental autoimmune encephalomyelitis and multiple sclerosis (MS). The correlation of BDNF level with clinical manifestations of MS and the changes of its level during disease-modifying therapy is considered.
Collapse
Affiliation(s)
- A A Semkina
- Siberian State Medical University, Tomsk, Russia
| | | | - M A Titova
- Siberian State Medical University, Tomsk, Russia
| | - A N Maltseva
- Siberian State Medical University, Tomsk, Russia
| | | |
Collapse
|
13
|
Kalinowska-Łyszczarz A, Pawlak MA, Wyciszkiewicz A, Osztynowicz K, Kozubski W, Michalak S. Immune-cell BDNF expression in treatment-naïve relapsing-remitting multiple sclerosis patients and following one year of immunomodulation therapy. Neurol Neurochir Pol 2018; 52:483-489. [PMID: 29643001 DOI: 10.1016/j.pjnns.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Abstract
Although neurons are the main source of neurotrophins in the healthy brain, neurotrophins can also be expressed in the immune system. We have previously shown that in relapsing-remitting multiple sclerosis (RRMS) lower immune-cell neurotrophin levels are associated with brain atrophy and cognitive impairment. The aim of the present study was to assess if immune-cell neurotrophin expression is impaired in MS as compared with the healthy controls, and to describe if these levels change in treatment-naïve RRMS patients, following one year of immunomodulation. Fifty treatment-naïve RRMS patients were assessed at baseline and after one year of immunomodulation (beta-interferons/glatiramer acetate). The control group included 39 healthy subjects matched according to age and gender. Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized blood using Ficoll-Histopaque gradient. The levels of brain-derived-neurotrophic-factor (BDNF), beta-nerve-growth-factor (beta-NGF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) were measured in PBMC lysates with ELISA. BDNF levels were significantly lower in MS than in the healthy controls (median 613 vs. 1657pg/mg protein, p<0.001). After one year of immunomodulation, BDNF expression did not change significantly (p=0.06) on the group level. In 70% of patients there was no increase in BDNF level, and in 30% it increased. We observed no differences between treatment groups. Other neurotrophins were detected in a minority of MS samples (as opposed to the controls). To conclude, we have shown that immune-cell production of neurotrophins is impaired in MS patients. In our MS cohort standard immunomodulation failed to restore normal BDNF levels in PBMCs within one year of therapy.
Collapse
Affiliation(s)
- Alicja Kalinowska-Łyszczarz
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Mikołaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders, Poznan University of Medical Sciences, 34 Dojazd Street, 60-631 Poznan, Poland.
| | - Aleksandra Wyciszkiewicz
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Krystyna Osztynowicz
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Sławomir Michalak
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| |
Collapse
|
14
|
Kalinowska-Łyszczarz A, Pawlak MA, Wyciszkiewicz A, Pawlak-Buś K, Leszczyński P, Puszczewicz M, Paprzycki W, Kozubski W, Michalak S. Immune Cell Neurotrophin Production Is Associated with Subcortical Brain Atrophy in Neuropsychiatric Systemic Lupus Erythematosus Patients. Neuroimmunomodulation 2017. [PMID: 29539621 DOI: 10.1159/000487139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Central nervous system (CNS) involvement in systemic lupus erythematosus (SLE) remains poorly understood. Damage within the CNS is driven by the autoimmune response; however, immunopathophysiology of neuropsychiatric (NP) SLE is multifactorial. Immune cell neurotrophin production could be neuroprotective against autoimmunity-driven CNS damage, as has been shown in multiple sclerosis. The aim of this study was to establish whether immune cell neurotrophin production is associated with damage severity in NPSLE. METHODS Selected neurotrophins (BDNF, NGF, NT-3, and NT-4/5) were measured with ELISA within peripheral blood mononuclear cells (PBMCs) isolated from 38 NPSLE patients matched with 39 healthy controls. Subcortical and cortical structure volumes were segmented with the Freesurfer 5.3 pipeline on T1-weighted isotropic images acquired on a 1.5-T MRI scanner. RESULTS BDNF and NGF levels in PBMCs were reduced in NPSLE compared to the healthy population. The PBMC BDNF level was associated with reduced thalamus, caudate, and putamen volumes. The NGF level correlated with lateral ventricles enlargement and thalamic volume loss. CONCLUSIONS In NPSLE, immune cell BDNF and NGF levels are linked with subcortical atrophy. Higher BDNF levels are associated with higher midsagittal atrophy, which may reflect compensatory mechanisms, upregulating BDNF when neuroprotection is needed. These data require further confirmation.
Collapse
Affiliation(s)
- Alicja Kalinowska-Łyszczarz
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), Poznan, Poland
| | - Mikołaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders, PUMS, Poznan, Poland
| | - Aleksandra Wyciszkiewicz
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), Poznan, Poland
| | | | | | | | | | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Sławomir Michalak
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), Poznan, Poland
| |
Collapse
|
15
|
Increased Serum Brain-derived Neurotrophic Factor in Multiple Sclerosis Patients on Interferon-β and Its Impact on Functional Abilities. Neurologist 2015; 20:57-60. [DOI: 10.1097/nrl.0000000000000053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Ehling R, Di Pauli F, Lackner P, Rainer C, Kraus V, Hegen H, Lutterotti A, Kuenz B, De Zordo T, Schocke M, Glatzl S, Löscher WN, Deisenhammer F, Reindl M, Berger T. Impact of glatiramer acetate on paraclinical markers of neuroprotection in multiple sclerosis: A prospective observational clinical trial. J Neuroimmunol 2015; 287:98-105. [DOI: 10.1016/j.jneuroim.2015.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 01/12/2023]
|
17
|
Serum BDNF levels are not reliable correlates of neurodegeneration in MS patients. Mult Scler Relat Disord 2015; 4:65-6. [DOI: 10.1016/j.msard.2014.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 11/22/2022]
|
18
|
Lalive PH, Benkhoucha M, Tran NL, Kreutzfeldt M, Merkler D, Santiago-Raber ML. TLR7 signaling exacerbates CNS autoimmunity through downregulation of Foxp3+ Treg cells. Eur J Immunol 2013; 44:46-57. [PMID: 24018482 DOI: 10.1002/eji.201242985] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 08/02/2013] [Accepted: 09/06/2013] [Indexed: 12/21/2022]
Abstract
The innate Toll-like receptor 7 (TLR7) detects infections by recognizing viral and bacterial single-stranded RNA. In addition to pathogen-derived RNA, immune cells expressing high levels of TLR7, such as B cells and dendritic cells (DCs), can be activated by self-RNA. During myelin-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, TLR7 expression is increased within the central nervous system (CNS). To define the contribution of TLR7 to the development of EAE, we evaluated the course of the disease in C57BL/6-Tlr7-deficient mice compared with that in WT mice and found that TLR7-deficient mice had decreased disease severity. This protection was associated with decreased myelin oligodendrocyte glycoprotein-specific T-cell activation by primed DCs, decreased circulating autoantibodies, attenuated inflammation within the CNS, and increased Foxp3(+) regulatory T cells in the periphery and in the CNS. In conclusion, we show that TLR7 is involved in the maintenance of autoimmunity in the pathogenesis of EAE.
Collapse
Affiliation(s)
- Patrice H Lalive
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Division of Neurology, Department of Clinical Neurosciences, Neuroimmunology Laboratory, Geneva University Hospital, Geneva, Switzerland; Division of Laboratory Medicine, Department of Genetic and Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Mahurkar S, Moldovan M, Suppiah V, O’Doherty C. Identification of shared genes and pathways: a comparative study of multiple sclerosis susceptibility, severity and response to interferon beta treatment. PLoS One 2013; 8:e57655. [PMID: 23469041 PMCID: PMC3585216 DOI: 10.1371/journal.pone.0057655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/24/2013] [Indexed: 12/30/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have successfully identified several gene loci associated with multiple sclerosis (MS) susceptibility, severity or interferon-beta (IFN-ß) response. However, due to the nature of these studies, the functional relevance of these loci is not yet fully understood. We have utilized a systems biology based approach to explore the genetic interactomes of these MS related traits. We hypothesised that genes and pathways associated with the 3 MS related phenotypes might interact collectively to influence the heterogeneity and unpredictable clinical outcomes observed. Individual genetic interactomes for each trait were constructed and compared, followed by prioritization of common interactors based on their frequencies. Pathway enrichment analyses were performed to highlight shared functional pathways. Biologically relevant genes ABL1, GRB2, INPP5D, KIF1B, PIK3R1, PLCG1, PRKCD, SRC, TUBA1A and TUBA4A were identified as common to all 3 MS phenotypes. We observed that the highest number of first degree interactors were shared between MS susceptibility and MS severity (p = 1.34×10−79) with UBC as the most prominent first degree interactor for this phenotype pair from the prioritisation analysis. As expected, pairwise comparisons showed that MS susceptibility and severity interactomes shared the highest number of pathways. Pathways from signalling molecules and interaction, and signal transduction categories were found to be highest shared pathways between 3 phenotypes. Finally, FYN was the most common first degree interactor in the MS drugs-gene network. By applying the systems biology based approach, additional significant information can be extracted from GWAS. Results of our interactome analyses are complementary to what is already known in the literature and also highlight some novel interactions which await further experimental validation. Overall, this study illustrates the potential of using a systems biology based approach in an attempt to unravel the biological significance of gene loci identified in large GWAS.
Collapse
Affiliation(s)
- Sunil Mahurkar
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Max Moldovan
- Australian Institute of Health Innovation, University of New South Wales, Sydney, Australia
| | - Vijayaprakash Suppiah
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
- * E-mail:
| | - Catherine O’Doherty
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
20
|
Reyes-Izquierdo T, Argumedo R, Shu C, Nemzer B, Pietrzkowski Z. Stimulatory Effect of Whole Coffee Fruit Concentrate Powder on Plasma Levels of Total and Exosomal Brain-Derived Neurotrophic Factor in Healthy Subjects: An Acute Within-Subject Clinical Study. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/fns.2013.49127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Interferon-β induces hepatocyte growth factor in monocytes of multiple sclerosis patients. PLoS One 2012; 7:e49882. [PMID: 23166786 PMCID: PMC3498184 DOI: 10.1371/journal.pone.0049882] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/15/2012] [Indexed: 12/24/2022] Open
Abstract
Interferon-β is a first-line therapy used to prevent relapses in relapsing-remitting multiple sclerosis. The clinical benefit of interferon-β in relapsing-remitting multiple sclerosis is attributed to its immunomodulatory effects on inflammatory mediators and T cell reactivity. Here, we evaluated the production of hepatocyte growth factor, a neuroprotective and neuroinflammation-suppressive mediator, by peripheral blood mononuclear cells collected from interferon-β−treated relapsing-remitting multiple sclerosis patients, relapsing remitting multiple sclerosis patients not treated with interferon-β, and healthy volunteers. Using intracellular flow cytometry analysis, increased production of hepatocyte growth factor was observed in circulating CD14+ monocytes from patients undergoing long-term treatment with interferon-β versus untreated patients. Complementary in vitro studies confirmed that treatment with interferon-β induced rapid and transient transcription of the hepatocyte growth factor gene in CD14+ monocytes and that intracellular and secreted monocytic hepatocyte growth factor protein levels were markedly stimulated by interferon-β treatment. Additional exploration revealed that “pro-inflammatory” (CD14+CD16+) monocytes produced similar levels of hepatocyte growth factor in response to interferon-β as “classical” (CD14+CD16−) monocytes, and that CD14+ monocytes but not CD4+ T cells express the hepatocyte growth factor receptor c-Met. Our findings suggest that interferon-β may mediate some of its therapeutic effects in relapsing-remitting multiple sclerosis through the induction of hepatocyte growth factor by blood monocytes by coupling immune regulation and neuroprotection.
Collapse
|
22
|
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) with unknown etiology. It was recently suggested that autoimmunity, which had long been considered to be destructive in MS, might also play a protective role in the CNS of MS patients. Neurotrophins are polypeptides belonging to the neurotrophic factor family. While neurotrophins mediate cell survival and proliferation in the nervous system, they are also expressed within peripheral blood mononuclear cells fraction (PBMCs) of immunological system. In MS additional neurotrophic support from PBMCs might compensate relative neurotrophins deficiency in the damaged CNS tissue that needs to be repaired. Failure to produce the adequate neurotrophins concentrations might result in decreased protection of the CNS, consequently leading to increased atrophy, which is the main determinant of MS patients' end-point disability. There are several lines of evidence, both from clinical research and animal models, suggesting that neurotrophins play a pivotal role in neuroprotective and neuroregenerative processes that are often defective in the course of MS. It seems that neuroprotective strategies might be used as potentially valuable add-on therapies, alongside traditional immunomodulatory treatment in multiple sclerosis.
Collapse
|
23
|
Polymorphisms of the BDNF gene show neither association with multiple sclerosis susceptibility nor clinical course. J Neuroimmunol 2012; 244:107-10. [DOI: 10.1016/j.jneuroim.2012.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/17/2012] [Accepted: 01/24/2012] [Indexed: 02/07/2023]
|
24
|
Waschbisch A, Wenny I, Tallner A, Schwab S, Pfeifer K, Mäurer M. Physical Activity in Multiple Sclerosis: A Comparative Study of Vitamin D, Brain-Derived Neurotrophic Factor and Regulatory T Cell Populations. Eur Neurol 2012; 68:122-8. [DOI: 10.1159/000337904] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/27/2012] [Indexed: 11/19/2022]
|
25
|
Kalinowska-Łyszczarz A, Pawlak MA, Michalak S, Paprzycki W, Losy J. Immune cell NT-3 expression is associated with brain atrophy in multiple sclerosis patients. J Neuroimmunol 2011; 240-241:109-13. [PMID: 22036954 DOI: 10.1016/j.jneuroim.2011.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/17/2011] [Accepted: 10/07/2011] [Indexed: 01/03/2023]
Abstract
While neurotrophins mediate cell survival and proliferation in the nervous system, they are also expressed within peripheral blood mononuclear cells (PBMCs) of the immunological system. In multiple sclerosis (MS) neurotrophins released from PBMCs might play a neuroprotective role, delaying neurodegeneration within central nervous system. We aimed for identifying the link between neurotrophins' PBMCs expression and brain atrophy markers in relapsing-remitting MS (RRMS) patients. We have found that neurotrophin-3 PBMCs concentration is strongly correlated with brain-parenchymal fraction and corpus callosum cross-sectional area, which are well-established brain atrophy measures. Thus, PBMC-derived neurotrophin-3 might exert a direct or indirect neuroprotective effect in MS.
Collapse
Affiliation(s)
- Alicja Kalinowska-Łyszczarz
- Department of Clinical Neuroimmunology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland.
| | | | | | | | | |
Collapse
|
26
|
Graber JJ, Dhib-Jalbut S. Biomarkers of disease activity in multiple sclerosis. J Neurol Sci 2011; 305:1-10. [DOI: 10.1016/j.jns.2011.03.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/15/2022]
|
27
|
Filippi M, Rocca MA, Camesasca F, Cook S, O'Connor P, Arnason BGW, Kappos L, Goodin D, Jeffery D, Hartung HP, Comi G, Wolinsky JS, Bogumil T, Pohl C, Beckmann K, Sandbrink R, Croze E, Brown C, Desimone TM, Arnold DL, Cutter G, Knappertz V. Interferon β-1b and glatiramer acetate effects on permanent black hole evolution. Neurology 2011; 76:1222-8. [PMID: 21464426 DOI: 10.1212/wnl.0b013e3182143577] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare interferon β-1b (IFNβ-1b) and glatiramer acetate (GA) on new lesion (NL) (gadolinium-enhancing, new T2) evolution into permanent black holes (PBH)--a marker of irreversible tissue damage--in patients with relapsing-remitting multiple sclerosis (RRMS). METHODS BEYOND was a large, phase III, clinical trial comparing IFNβ-1b 250 μg, IFNβ-1b 500 μg, and GA (2:2:1). Patient scans were reexamined post hoc for PBH in a rater-blinded manner. Two predefined coprimary endpoints compared IFNβ-1b 250 μg with GA: first, number of PBH per patient at year 2 evolving from year 1 NL, then proportion of year 1 NL evolving into PBH at year 2. IFNβ-1b 500 μg and GA were compared in an exploratory fashion. RESULTS Approximately 90% (1,957/2,244) of patients had NL at year 1 with follow-up at year 2. Mean numbers of PBH per patient at year 2 evolving from year 1 NL were lower for IFNβ-1b 250 μg than GA (0.30 vs 0.43; p = 0.0451). The proportion of NL evolving into PBH was similar (IFNβ-1b 250 μg vs GA: 21.6% vs 23.5%; p > 0.20). For IFNβ-1b 500 μg, both the mean PBH number per patient at year 2 evolving from year 1 NL (0.26 vs 0.43; p = 0.0037) and proportion of NL evolving into PBH (16.3% vs 23.5%; p = 0.0409) were lower relative to GA. CONCLUSION IFNβ-1b affected PBH development to a similar or better extent than GA. IFNβ-1b favorably influences an MRI outcome indicative of permanent tissue destruction in the brains of patients with multiple sclerosis. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that IFNβ-1b is associated with a reduction in MRI PBH formation and evolution compared with GA between years 1 and 2 of treatment.
Collapse
Affiliation(s)
- M Filippi
- University Hospital San Raffaele, Via Olgettina, 20132 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lindquist S, Hassinger S, Lindquist JA, Sailer M. The balance of pro-inflammatory and trophic factors in multiple sclerosis patients: effects of acute relapse and immunomodulatory treatment. Mult Scler 2011; 17:851-66. [DOI: 10.1177/1352458511399797] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: In multiple sclerosis inflammation is primarily injurious to the central nervous system, but its therapeutic suppression might inhibit repair-promoting factors. Objectives: We aimed at better describing the complexity of biological effects during an acute relapse and analysed the effects of intervention with high-dose i.v. glucocorticoids and immunomodulatory treatment with interferon-beta (IFNβ). Methods: We studied the intracellular expression levels of the pro-inflammatory mediators tumour necrosis factor alpha (TNFα) and inducible nitric oxide synthase (iNOS) together with the neurotrophins ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in freshly isolated peripheral blood mononuclear cells of multiple sclerosis patients during an acute relapse, after intervention with i.v. methylprednisolone and at baseline, using a highly quantitative flow-cytometric approach. Results: We demonstrated the expression of CNTF in human leucocytes. We showed that CNTF levels differed in acutely relapsing multiple sclerosis patients compared with controls and increased after corticosteroid treatment. CNTF can counteract the toxicity of TNFα towards oligodendrocytes and we found TNFα increased during acute relapses. Following corticosteroids, neither TNFα nor iNOS expression was reduced. Levels of BDNF were not affected by glucocorticoids, but increased during IFNβ therapy. However, IFNβ also increased the expression of iNOS and major histocompatibility complex class I (MHC-I), underlining its immunomodulatory potential. Conclusions: Multiple sclerosis patients might benefit from reparative, and not solely from anti-inflammatory, effects of glucocorticoids. Interactive effects of glucocorticoid- and IFNβ-treatment need to be considered to improve neuroprotection and remyelination resulting from immunomodulatory treatment.
Collapse
Affiliation(s)
- Sabine Lindquist
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Sarah Hassinger
- University Clinic for Neurology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jonathan A Lindquist
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke-University, Magdeburg, Germany
- Co-senior authors
| | - Michael Sailer
- University Clinic for Neurology, Otto-von-Guericke-University, Magdeburg, Germany
- Centre for Neurological Rehabilitation, Magdeburg, Germany
- Co-senior authors
| |
Collapse
|
29
|
Interferon-beta treatment normalises the inhibitory effect of serum from multiple sclerosis patients on oligodendrocyte progenitor proliferation. Neurosci Lett 2010; 485:107-11. [DOI: 10.1016/j.neulet.2010.08.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 11/21/2022]
|
30
|
Yoshimura S, Ochi H, Isobe N, Matsushita T, Motomura K, Matsuoka T, Minohara M, Kira JI. Altered production of brain-derived neurotrophic factor by peripheral blood immune cells in multiple sclerosis. Mult Scler 2010; 16:1178-88. [DOI: 10.1177/1352458510375706] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: Within multiple sclerosis lesions, brain-derived neurotrophic factor is detected in neurons and immunocytes. Objective: To clarify brain-derived neurotrophic factor production by peripheral blood immunocytes and its relationship with clinical parameters in multiple sclerosis. Methods: Serum brain-derived neurotrophic factor levels were measured by conventional enzyme-linked immunosorbent assay while brain-derived neurotrophic factor production by immunocytes was determined by an in situ enzyme-linked immunosorbent assay in 74 multiple sclerosis patients, 32 healthy controls, and 86 patients with other neurological diseases. The tyrosine kinase receptor TrkB expression level in peripheral blood mononuclear cells was measured by real-time polymerase chain reaction. Results: Multiple sclerosis patients showed significantly higher serum brain-derived neurotrophic factor levels than healthy controls and patients with other neurological diseases. Multiple sclerosis patients with high brain-derived neurotrophic factor levels were younger, and showed fewer relapse numbers than those with low brain-derived neurotrophic factor levels. Brain-derived neurotrophic factor production by T cells increased with age in healthy controls, but not in multiple sclerosis patients. Interferon beta induced a significant increase in serum brain-derived neurotrophic factor levels. Brain-derived neurotrophic factor production from T cells and TrkB expression levels in peripheral blood mononuclear cells were significantly enhanced in interferon beta-treated multiple sclerosis patients compared with untreated ones. Conclusions: A high brain-derived neurotrophic factor level is related to early mild disease in young multiple sclerosis patients. Interferon beta potentiates brain-derived neurotrophic factor production and brain-derived neurotrophic factor receptor expression in peripheral blood mononuclear cells, which may act beneficially.
Collapse
Affiliation(s)
- Satoshi Yoshimura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Ochi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko Motomura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Matsuoka
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motozumi Minohara
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan,
| |
Collapse
|
31
|
De Santi L, Annunziata P, Sessa E, Bramanti P. Brain-derived neurotrophic factor and TrkB receptor in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neurol Sci 2009; 287:17-26. [DOI: 10.1016/j.jns.2009.08.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/24/2009] [Accepted: 08/27/2009] [Indexed: 01/31/2023]
|
32
|
Rossi S, Furlan R, De Chiara V, Musella A, Lo Giudice T, Mataluni G, Cavasinni F, Cantarella C, Bernardi G, Muzio L, Martorana A, Martino G, Centonze D. Exercise attenuates the clinical, synaptic and dendritic abnormalities of experimental autoimmune encephalomyelitis. Neurobiol Dis 2009; 36:51-9. [PMID: 19591937 DOI: 10.1016/j.nbd.2009.06.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/25/2009] [Accepted: 06/28/2009] [Indexed: 11/18/2022] Open
Abstract
Voluntary exercise is beneficial in models of primarily neurodegenerative disorders. Whether exercise also affects inflammatory neurodegeneration is unknown. In the present study, we evaluated the clinical, synaptic and neuropathological effects of voluntary wheel running in mice with myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Exercising EAE mice exhibited less severe neurological deficits compared to control EAE animals. The sensitivity of striatal GABA synapses to the stimulation of cannabinoid CB1 receptors was dramatically downregulated following EAE induction, and was rescued by exercise in EAE mice with access to a running wheel. Finally, we found that exercise was able to contrast dendritic spine loss induced by EAE in striatal neurons, although the degree of inflammatory response was similar in the two experimental groups. Our work suggests that life style and experiences can impact the clinical course of inflammatory neurodegenerative diseases by affecting their synaptic bases.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Corpus Striatum/pathology
- Dendrites/pathology
- Dendrites/physiology
- Dendrites/ultrastructure
- Disease Models, Animal
- Dronabinol/analogs & derivatives
- Dronabinol/pharmacology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/rehabilitation
- Female
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Glycoproteins
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Movement Disorders/etiology
- Myelin-Oligodendrocyte Glycoprotein
- Neurons/pathology
- Neurons/physiology
- Neuroprotective Agents/pharmacology
- Patch-Clamp Techniques/methods
- Peptide Fragments
- Physical Conditioning, Animal
- Silver Staining/methods
- Statistics, Nonparametric
- Synapses/physiology
- Synapses/ultrastructure
- Synaptic Potentials/drug effects
- Synaptic Potentials/physiology
Collapse
Affiliation(s)
- Silvia Rossi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Current World Literature. Curr Opin Neurol 2009; 22:321-9. [DOI: 10.1097/wco.0b013e32832cf9cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Liguori M, Fera F, Patitucci A, Manna I, Condino F, Valentino P, Telarico P, Cerasa A, Gioia MC, di Palma G, Quattrone A. A longitudinal observation of brain-derived neurotrophic factor mRNA levels in patients with relapsing-remitting multiple sclerosis. Brain Res 2008; 1256:123-8. [PMID: 19071096 DOI: 10.1016/j.brainres.2008.11.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/06/2008] [Accepted: 11/06/2008] [Indexed: 11/26/2022]
Abstract
This report is part of a 2-year study assessing the functional effect of Brain-Derived Neurotrophic Factor (BDNF) and its Val66Met polymorphism on a selected population of Relapsing-Remitting Multiple Sclerosis (RRMS) patients from Southern Italy. For this purpose, we measured the peripheral BDNF expression in RRMS patients compared to healthy controls. The influence of concomitant IFNbeta therapy was also evaluated. Thirty-six inactive RRMS patients and 37 healthy controls were genotyped for BDNF Val66Met, and total RNA was extracted at time-points 0-24 months. The BDNF level was quantified by ABI Prism 7900 HT Sequence Detection System, and its relative expression was calculated by the comparative method of 2(-DeltaDeltaCt). At baseline and after 24 months, the BDNF levels of RRMS patients resulted significantly higher than controls (p=0.001), independently of the concomitant IFNbeta treatment; no correlations were found with the investigated clinical and MRI features of MS. Otherwise, carriers of the Met-allele showed significantly higher levels of BDNF in RRMS patients than healthy controls (p=0.005). These data was replicated after a 24-month interval. The present study confirms the increased levels of peripheral BDNF levels in RRMS, even during the inactive phase of the disease. Although with caution due to the small sample size, it also underscores the potential role of the Val66Met polymorphism on the peripheral BDNF expression in RRMS. Functional studies are needed to better clarify this issue.
Collapse
Affiliation(s)
- Maria Liguori
- Institute of Neurological Sciences, National Research Council, Contrada Burga, Mangone, Cosenza 87050, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Graber JJ, Dhib-Jalbut S. Protective autoimmunity in the nervous system. Pharmacol Ther 2008; 121:147-59. [PMID: 19000712 DOI: 10.1016/j.pharmthera.2008.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 12/31/2022]
Abstract
The immune system can play both detrimental and beneficial roles in the nervous system. Multiple arms of the immune system, including T cells, B cells, NK cells, mast cells, macrophages, dendritic cells, microglia, antibodies, complement and cytokines participate in limiting damage to the nervous system during toxic, ischemic, hemorrhagic, infective, degenerative, metabolic and immune-mediated insults and also assist in the process of repair after injury has occurred. Immune cells have been shown to produce neurotrophic growth factors and interact with neurons and glial cells to preserve them from injury and stimulate growth and repair. The immune system also appears to participate in proliferation of neural progenitor stem cells and their migration to sites of injury. Neural stem cells can also modify the immune response in the central and peripheral nervous system to enhance neuroprotective effects. Evidence for protective and reparative functions of the immune system has been found in diverse neurologic diseases including traumatic injury, ischemic and hemorrhagic stroke, multiple sclerosis, infection, and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis). Existing therapies including glatiramer acetate, interferon-beta and immunoglobulin have been shown to augment the protective and regenerative aspects of the immune system in humans, and other experimental interventions such as vaccination, minocycline, antibodies and neural stem cells, have shown promise in animal models of disease. The beneficent aspects of the immune response in the nervous system are beginning to be appreciated and their potential as pharmacologic targets in neurologic disease is being explored.
Collapse
Affiliation(s)
- Jerome J Graber
- New York University School of Medicine, Department of Neurology, New York, NY, USA
| | | |
Collapse
|