1
|
Liu Y, Li Y, Wei X, Ullah I, Uddin S, Wang J, Xia R, Wang M, Yang H, Li H. A comparative study on the effects of human serum albumin and α-melanocyte-stimulating hormone fusion proteins on the anti-neuroinflammatory in the central nervous system of adult mice. Neuropeptides 2024; 104:102410. [PMID: 38308948 DOI: 10.1016/j.npep.2024.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
The immunomodulatory effects of α-melanocyte stimulating hormone (α-MSH) in the central nervous system (CNS) have been investigated for forty years. The clinical applications of α-MSH are limited due to its short half-life. Our previous study has indicated that the short half-life of α-MSH can be extended by fusion with carrier human serum albumin (HSA) and this fusion protein has also retained the anti-inflammatory effect on the CNS. This improvement is still far from the clinical requirements. Thus, we expected to enhance the half-life and activity of the fusion protein by optimizing the linker peptide to get closer to clinical requirements. In a previous study, we screened out two candidates in vitro experiments with a flexible linker peptide (fusion protein with flexible linker peptide, FPFL) and a rigid linker peptide (fusion protein with rigid linker peptide, FPRL), respectively. However, it was not sure whether the anti-inflammatory effects in vitro could be reproduced in vivo. Our results show that FPRL is the best candidate with a longer half-life compared to the traditional flexible linker peptides. Meanwhile, the ability of FPRL to penetrate the blood-brain barrier (BBB) was enhanced, and the inhibition of TNF-α and IL-6 was improved. We also found that the toxicity of FPRL was decreased. All of the results suggested that trying to choose the rigid linker peptide in some fusion proteins may be a potential choice for improving the unsatisfactory characteristics.
Collapse
Affiliation(s)
- Yiyao Liu
- Biopharmaceutical International Science and Technology Cooperation Base, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Yang Li
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Xueyan Wei
- Biopharmaceutical International Science and Technology Cooperation Base, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Inam Ullah
- Biopharmaceutical International Science and Technology Cooperation Base, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Shahab Uddin
- Biopharmaceutical International Science and Technology Cooperation Base, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Jiatao Wang
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Runjie Xia
- Biopharmaceutical International Science and Technology Cooperation Base, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Meizhu Wang
- Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Hui Yang
- Institute of Biology, Gansu Academy of Sciences, Dingxi Road No. 229, Lanzhou 730000, Gansu Province, People's Republic of China
| | - Hongyu Li
- Biopharmaceutical International Science and Technology Cooperation Base, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, Gansu Province, People's Republic of China; Gansu High Throughput Screening and Creation Center for Health Products, School of Pharmacy, Lanzhou University, Tianshui Road No. 222, Lanzhou 730000, Gansu Province, People's Republic of China.
| |
Collapse
|
2
|
Flores-Bastías O, Adriasola-Carrasco A, Karahanian E. Activation of Melanocortin-4 Receptor Inhibits Both Neuroinflammation Induced by Early Exposure to Ethanol and Subsequent Voluntary Alcohol Intake in Adulthood in Animal Models: Is BDNF the Key Mediator? Front Cell Neurosci 2020; 14:5. [PMID: 32063838 PMCID: PMC6997842 DOI: 10.3389/fncel.2020.00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
The concept that neuroinflammation induced by excessive alcohol intake in adolescence triggers brain mechanisms that perpetuate consumption has strengthened in recent years. The melanocortin system, composed of the melanocortin 4 receptor (MC4R) and its ligand α-melanocyte-stimulating hormone (α-MSH), has been implicated both in modulation of alcohol consumption and in ethanol-induced neuroinflammation decrease. Chronic alcohol consumption in adolescent rats causes a decrease in an α-MSH release by the hypothalamus, while the administration of synthetic agonists of MC4R causes a decrease in neuroinflammation and a decrease in voluntary alcohol consumption. However, the mechanism that connects the activation of MC4R with the decrease of both neuroinflammation and voluntary alcohol consumption has not been elucidated. Brain-derived neurotrophic factor (BDNF) has been implicated in alcohol drinking motivation, dependence and withdrawal, and its levels are reduced in alcoholics. Deficiencies in BDNF levels increased ethanol self-administration in rats. Further, BDNF triggers important anti-inflammatory effects in the brain, and this could be one of the mechanisms by which BDNF reduces chronic alcohol intake. Interestingly, MC4R signaling induces BDNF expression through the activation of the cAMP-responsive element-binding protein (CREB). We hypothesize that ethanol exposure during adolescence decreases the expression of α-MSH and hence MC4R signaling in the hippocampus, leading to a lower BDNF activity that causes dramatic changes in the brain (e.g., neuroinflammation and decreased neurogenesis) that predispose to maintain alcohol abuse until adulthood. The activation of MC4R either by α-MSH or by synthetic agonist peptides can induce the expression of BDNF, which would trigger several processes that lead to lower alcohol consumption.
Collapse
Affiliation(s)
- Osvaldo Flores-Bastías
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| | - Alfredo Adriasola-Carrasco
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
3
|
Behavioral effects of toll-like receptor-4 antagonist 'eritoran' in an experimental model of depression: role of prefrontal and hippocampal neurogenesis and γ-aminobutyric acid/glutamate balance. Behav Pharmacol 2019; 29:413-425. [PMID: 29561292 DOI: 10.1097/fbp.0000000000000390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Depression is the disease of the modern era. The lack of response to the available antidepressants, which were developed on the basis of the monoaminergic deficit hypothesis of depression, has encouraged scientists to think about new mechanisms explaining the pathogenesis of depression. In this context, the inflammatory theory has emerged to clarify many aspects of depression that the previous theories have failed to explain. Toll-like receptor-4 (TLR-4) has a regulatory role in the brain's immune response to stress, and its activation is suggested to play a pivotal role in the pathophysiology of depression. In this study, we tested eritoran (ERI), a TLR-4 receptor-4 antagonist, as a potential antidepressant. We investigated the effect of long-term administration of ERI in three different doses on behavioral changes, hippocampal and prefrontal cortex (PFC) neurogenesis, and γ-aminobutyric acid (GABA)/glutamate balance in male Wistar rats exposed to chronic restraint stress (CRS). Long-term administration of ERI ameliorated CRS-induced depressive-like symptoms and hypothalamic-pituitary-adrenal axis hyperactivity alongside reducing levels of hippocampal and PFC inflammatory cytokines, restoring GABA and glutamate balance, and enhancing PFC and hippocampal neurogenesis, by increasing BDNF gene and protein expression in a dose-dependent manner. The results demonstrate an antidepressant-like activity of ERI in Wistar rats exposed to CRS, which may be largely mediated by its ability to reduce neuroinflammation, increase BDNF, and restore GABA/glutamate balance in prefrontal cortex and hippocampus. Nonetheless, further studies are needed to characterize the mechanism of the antidepressant effect of ERI.
Collapse
|
4
|
Saba J, Carniglia L, Ramírez D, Turati J, Imsen M, Durand D, Lasaga M, Caruso C. Melanocortin 4 receptor activation protects striatal neurons and glial cells from 3-nitropropionic acid toxicity. Mol Cell Neurosci 2018; 94:41-51. [PMID: 30529228 DOI: 10.1016/j.mcn.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/23/2018] [Accepted: 12/02/2018] [Indexed: 01/18/2023] Open
Abstract
α-Melanocyte stimulating hormone (α-MSH) is a melanocortin which exerts potent anti-inflammatory and anti-apoptotic effects. Melanocortin 4 receptors (MC4R) are abundantly expressed in the brain and we previously demonstrated that [Nle(4), D-Phe(7)]melanocyte-stimulating hormone (NDP-MSH), an α-MSH analogue, increased expression of brain derived-neurotrophic factor (BDNF), and peroxisome proliferator-activated receptor-γ (PPAR-γ). We hypothesized that melanocortins could affect striatal cell survival through BDNF and PPAR-γ. First, we determined the expression of these factors in the striatum. Acute intraperitoneal administration (0.5 mg/kg) of α-MSH increased the levels of BDNF mRNA in rat striatum but not in rat cerebral cortex. Also, protein expression of PPAR-γ and MC4R was increased by acute treatment with α-MSH in striatum but not in cortex. No changes were observed by 48 h treatment. Next, we evaluated melanocortins effect on neuron and glial survival. 3-nitropropionic acid (3-NP), which is known to induce striatal degeneration, was used to induce cell death in the rat striatal cell line ST14A expressing mutant human huntingtin (Q120) or in ST14A cells expressing normal human huntingtin (Q15), in primary cultured astrocytes, and in BV2 cells. NDP-MSH protected Q15 cells, astrocytes and BV2 cells from death by 3-NP whereas it did not fully protect Q120 cells. Protection of Q15 cells and astrocytes was blocked by a MC4R specific inhibitor (JKC-363) and a PPAR-γ antagonist (GW9662). The BDNF receptor antagonist (ANA-12) abolished NDP-MSH protective effect in astrocytes but not in Q15 cells. We demonstrate for the first time that melanocortins, acting through PPAR-γ and BDNF, protect neurons and glial cells from 3-NP toxicity.
Collapse
Affiliation(s)
- Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Delia Ramírez
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Turati
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Imsen
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Central Modulation of Neuroinflammation by Neuropeptides and Energy-Sensing Hormones during Obesity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7949582. [PMID: 28913358 PMCID: PMC5587954 DOI: 10.1155/2017/7949582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Central nervous system (CNS) senses energy homeostasis by integrating both peripheral and autonomic signals and responding to them by neurotransmitters and neuropeptides release. Although it is previously considered an immunologically privileged organ, we now know that this is not so. Cells belonging to the immune system, such as B and T lymphocytes, can be recruited into the CNS to face damage or infection, in addition to possessing resident immunological cells, called microglia. In this way, positive energy balance during obesity promotes an inflammatory state in the CNS. Saturated fatty acids from the diet have been pointed out as powerful candidates to trigger immune response in peripheral system and in the CNS. However, how central immunity communicates to peripheral immune response remains to be clarified. Recently there has been a great interest in the neuropeptides, POMC derived peptides, ghrelin, and leptin, due to their capacity to suppress or induce inflammatory responses in the brain, respectively. These may be potential candidates to treat different pathologies associated with autoimmunity and inflammation. In this review, we will discuss the role of lipotoxicity associated with positive energy balance during obesity in proinflammatory response in microglia, B and T lymphocytes, and its modulation by neuropeptides.
Collapse
|
6
|
Brito HO, Radulski DR, Wilhelms DB, Stojakovic A, Brito LMO, Engblom D, Franco CRC, Zampronio AR. Female Sex Hormones Influence the Febrile Response Induced by Lipopolysaccharide, Cytokines and Prostaglandins but not by Interleukin-1β in Rats. J Neuroendocrinol 2016; 28. [PMID: 27483048 DOI: 10.1111/jne.12414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/05/2016] [Accepted: 07/29/2016] [Indexed: 11/26/2022]
Abstract
There are differences in the immune response, and particularly fever, between males and females. In the present study, we investigated how the febrile responses induced by lipopolysaccharide (LPS) and different endogenous pyrogens were affected by female gonadal hormones. The febrile response to i.p. injection of LPS (50 μg/kg) was 40% lower in female rats compared to male or ovariectomised (OVX) female rats. Accordingly, oestrogen replacement in OVX animals reduced LPS-induced fever. Treatment with the prostaglandin synthesis inhibitor indomethacin (2 mg/kg, i.p. 30 min before) reduced the febrile response induced by LPS in both OVX (88%) and sham-operated (71%) rats. In line with the enhanced fever in OVX rats, there was increased expression of cyclooxygenase-2 (COX-2) in the hypothalamus and elevated levels of prostaglandin E2 (PGE2 ). In addition, OVX rats were hyper-responsive to PGE2 injected i.c.v. By contrast to the enhanced fever in response to LPS and PGE2 , the febrile response induced by i.c.v. injection of interleukin (IL)-1β was unaffected by ovariectomy, whereas the responses induced by tumour necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-1α were completely abrogated. These results suggest that the mediators involved in the febrile response in females are similar to males, although the reduction of female hormones may decrease the responsiveness of some mediators such as TNF-α and MIP-1α. Compensatory mechanisms may be activated in females after ovariectomy such as an augmented synthesis of COX-2 and PGE2 .
Collapse
Affiliation(s)
- H O Brito
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | - D R Radulski
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | - D B Wilhelms
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A Stojakovic
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - L M O Brito
- Department of Medicine III, Federal University of Maranhão, São Luís, Brazil
| | - D Engblom
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - C R C Franco
- Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
| | - A R Zampronio
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
7
|
Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression. Sci Rep 2016; 6:32776. [PMID: 27612207 PMCID: PMC5017209 DOI: 10.1038/srep32776] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/15/2016] [Indexed: 01/16/2023] Open
Abstract
Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor.
Collapse
|
8
|
Ramírez D, Saba J, Carniglia L, Durand D, Lasaga M, Caruso C. Melanocortin 4 receptor activates ERK-cFos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus. Mol Cell Endocrinol 2015; 411:28-37. [PMID: 25892444 DOI: 10.1016/j.mce.2015.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023]
Abstract
Melanocortins are neuropeptides with well recognized anti-inflammatory and anti-apoptotic effects in the brain. Of the five melanocortin receptors (MCR), MC4R is abundantly expressed in the brain and is the only MCR present in astrocytes. We have previously shown that MC4R activation by the α-melanocyte stimulating hormone (α-MSH) analog, NDP-MSH, increased brain-derived neurotrophic factor (BDNF) expression through the classic cAMP-Protein kinase A-cAMP responsive element binding protein pathway in rat astrocytes. Now, we examined the participation of the mitogen activated protein kinases pathway in MC4R signaling. Rat cultured astrocytes treated with NDP-MSH 1 µM for 1 h showed increased BDNF expression. Inhibition of extracellular signal-regulated kinase (ERK) and ribosomal p90 S6 kinase (RSK), an ERK substrate, but not of p38 or JNK, prevented the increase in BDNF expression induced by NDP-MSH. Activation of MC4R increased cFos expression, a target of both ERK and RSK. ERK activation by MC4R involves cAMP, phosphoinositide-3 kinase (PI3K) and the non receptor tyrosine kinase, Src. Both PI3K and Src inhibition abolished NDP-MSH-induced BDNF expression. Moreover, we found that intraperitoneal injection of α-MSH induces BDNF and MC4R expression and activates ERK and cFos in male rat hypothalamus. Our results show for the first time that MC4R-induced BDNF expression in astrocytes involves ERK-RSK-cFos pathway which is dependent on PI3K and Src, and that melanocortins induce BDNF expression and ERK-cFos activation in rat hypothalamus.
Collapse
Affiliation(s)
- D Ramírez
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - J Saba
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - L Carniglia
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - D Durand
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - M Lasaga
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - C Caruso
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Habib M, Shaker S, El-Gayar N, Aboul-Fotouh S. The effects of antidepressants "fluoxetine and imipramine" on vascular abnormalities and Toll like receptor-4 expression in diabetic and non-diabetic rats exposed to chronic stress. PLoS One 2015; 10:e0120559. [PMID: 25826421 PMCID: PMC4380417 DOI: 10.1371/journal.pone.0120559] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/05/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Several studies reveal that diabetes doubles the odds of comorbid depression with evidence of a pro-inflammatory state underlying its vascular complications. Indeed, little information is available about vascular effects of antidepressant drugs in diabetes. METHOD We investigated the effect of chronic administration of fluoxetine "FLU" and imipramine "IMIP" on behavioral, metabolic and vascular abnormalities in diabetic and non-diabetic rats exposed to chronic restraint stress (CRS). RESULTS Both diabetes and CRS induced depressive-like behavior which was more prominent in diabetic/depressed rats; this was reversed by chronic treatment with FLU and IMIP in a comparable manner. Diabetic and non-diabetic rats exposed to CRS exhibited abnormalities in glucose homeostasis, lipid profile and vascular function, manifested by decreased endothelium-dependent relaxation, increased systolic blood pressure and histopathological atherosclerotic changes. Vascular and metabolic dysfunctions were associated with significant increase in aortic expression of TLR-4, and pro-inflammatory cytokines (TNF-α and IL-1ß). FLU ameliorated these metabolic, vascular and inflammatory abnormalities, while IMIP induced either no change or even worsening of some parameters. CONCLUSION FLU has favorable effect over IMIP on metabolic, vascular and inflammatory aberrations associated with DM and CRS in Wistar rats, clarifying the preference of FLU over IMIP in management of comorbid depression in diabetic subjects.
Collapse
Affiliation(s)
- Mohamed Habib
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Safaa Shaker
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesreen El-Gayar
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sawsan Aboul-Fotouh
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Lipopolysaccharide repeated challenge followed by chronic mild stress protocol introduces a combined model of depression in rats: reversibility by imipramine and pentoxifylline. Pharmacol Biochem Behav 2014; 126:152-62. [PMID: 25268312 DOI: 10.1016/j.pbb.2014.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/14/2014] [Accepted: 09/20/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The present study examined the effect of combined exposure to repeated challenge using low doses of lipopolysaccharide (LPS) and chronic mild stress (CMS) together. This combined exposure is thought to expose the animals to more realistic challenges, testable on different levels (behavioral, neurochemical, immunohistochemical and gene expression). The role of glial cells was examined, as well. Additionally, the effects of chronic administration of the tricyclic antidepressant imipramine and the anti-TNF-α pentoxyphylline were investigated. METHODS Wistar rats were exposed to either repeated LPS (50μg/kg i.p.) over 2weeks, CMS protocol for 4weeks or LPS over 2weeks then 4weeks of CMS. Two groups of rats were exposed to LPS/CMS protocol and treated with either imipramine or pentoxifylline. Rats were examined for behavioral, neurochemical and gene expression changes. RESULTS Animals exposed to LPS/CMS elaborated depressive-like symptoms with significant increase in both serum corticosterone and TNF-α levels compared to those in the saline, LPS or CMS groups. Hippocampal kynurenine/tryptophan ratio and TNF-α gene expression showed significant increase in the LPS/CMS model compared to those in saline, LPS or CMS groups. The immunohistochemical findings scrutinized the topography of the examined effects. Chronic treatment with imipramine or pentoxifylline significantly ameliorated the behavioral, neurochemical, immunohistochemical and TNF-α gene expression changes induced by the LPS/CMS protocol. CONCLUSION This study gave a clue to the neurobiological processes underlying, at least, the subtypes of depressive disorders. It highlighted the possible interactions between stress and immune-inflammatory pathways in the pathogenesis of depression and suggested a new animal model of depression that addresses these pathways.
Collapse
|
11
|
Palotai M, Kiss E, Bagosi Z, Jászberényi M, Tóth G, Váradi G, Telegdy G. Interleukin-1β (187-207)-induced hyperthermia is inhibited by interleukin-1β (193-195) in rats. Neurochem Res 2013; 39:254-8. [PMID: 24338284 DOI: 10.1007/s11064-013-1215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 11/28/2022]
Abstract
Interleukin-1β (IL-1β) is a pro-inflammatory cytokine, which plays an important role in the immune response and signal transduction both in the periphery and the central nervous system (CNS). Various diseases of the CNS, including neurodegenerative disorders, vascular lesions, meningo-encephalitis or status epilepticus are accompanied by elevated levels of IL-1β. Different domains within the IL-lβ protein are responsible for distinct functions. The IL-lβ domain in position 208-240 has pyrogenic properties, while the domain in position 193-195 exerts anti-inflammatory effects. Previous studies provide little evidence about the effect of the domain in position 187-207 on the body temperature. Therefore, the aim of the present study was to investigate the action of IL-1β (187-207) and its interaction with IL-1β (193-195) on the body temperature. IL fragments were administered intracerebroventricularly and the body temperature was measured rectally in male Wistar rats. IL-1β (187-207) induced hyperthermia, while IL-1β (193-195) did not influence the core temperature considerably. In co-administration, IL-1β (193-195) completely abolished the IL-1β (187-207)-induced hyperthermia. The non-steroid anti-inflammatory drug metamizole also reversed completely the action of IL-1β (187-207). Our results provide evidence that the IL-lβ domain in position 187-207 has hyperthermic effect. This effect is mediated through prostaglandin E2 stimulation and other mechanisms may also be involved in the action of IL-1β (187-207). It also suggests that IL-lβ domain in position 187-207 and IL-1β (193-195) fragment may serve as novel target for treatment of disorders accompanied with hyperthermia.
Collapse
Affiliation(s)
- Miklós Palotai
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, 6725, Semmelweis Str. 1, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
12
|
Caruso C, Carniglia L, Durand D, Scimonelli TN, Lasaga M. Astrocytes: new targets of melanocortin 4 receptor actions. J Mol Endocrinol 2013; 51:R33-50. [PMID: 23881919 DOI: 10.1530/jme-13-0064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Astrocytes exert a wide variety of functions with paramount importance in brain physiology. After injury or infection, astrocytes become reactive and they respond by producing a variety of inflammatory mediators that help maintain brain homeostasis. Loss of astrocyte functions as well as their excessive activation can contribute to disease processes; thus, it is important to modulate reactive astrocyte response. Melanocortins are peptides with well-recognized anti-inflammatory and neuroprotective activity. Although melanocortin efficacy was shown in systemic models of inflammatory disease, mechanisms involved in their effects have not yet been fully elucidated. Central anti-inflammatory effects of melanocortins and their mechanisms are even less well known, and, in particular, the effects of melanocortins in glial cells are poorly understood. Of the five known melanocortin receptors (MCRs), only subtype 4 is present in astrocytes. MC4R has been shown to mediate melanocortin effects on energy homeostasis, reproduction, inflammation, and neuroprotection and, recently, to modulate astrocyte functions. In this review, we will describe MC4R involvement in anti-inflammatory, anorexigenic, and anti-apoptotic effects of melanocortins in the brain. We will highlight MC4R action in astrocytes and discuss their possible mechanisms of action. Melanocortin effects on astrocytes provide a new means of treating inflammation, obesity, and neurodegeneration, making them attractive targets for therapeutic interventions in the CNS.
Collapse
Affiliation(s)
- Carla Caruso
- School of Medicine, Biomedical Research Institute (UBA-CONICET), University of Buenos Aires, Paraguay 2155 piso 10, 1121ABG Buenos Aires, Argentina IFEC (CONICET) Department of Pharmacology, School of Chemistry, National University of Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
13
|
Caruso C, Carniglia L, Durand D, Gonzalez PV, Scimonelli TN, Lasaga M. Melanocortin 4 receptor activation induces brain-derived neurotrophic factor expression in rat astrocytes through cyclic AMP-protein kinase A pathway. Mol Cell Endocrinol 2012; 348:47-54. [PMID: 21803120 DOI: 10.1016/j.mce.2011.07.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/28/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
Abstract
Melanocortin 4 receptors (MC4R) are mainly expressed in the brain. We previously showed that the anti-inflammatory action of α-melanocyte-stimulating hormone (α-MSH) in rat hypothalamus and in cultured astrocytes involved MC4R activation. However, MC4R mechanisms of action remain undetermined. Since brain-derived neurotrophic factor (BDNF) may be mediating MC4R hypothalamic anorexigenic actions, we determined melanocortin effects on BDNF expression in rat cultured astrocytes and certain mechanisms involved in MC4R signaling. α-MSH and its analogue NDP-MSH, induced production of cAMP in astrocytes. This effect was completely blocked by the MC4R antagonist, HS024. We found that NDP-MSH increased BDNF mRNA and protein levels in astrocytes. The effect of NDP-MSH on BDNF expression was abolished by the adenylate cyclase inhibitor SQ22536, and decreased by the PKA inhibitor Rp-cAMP. Since melanocortins are immunomodulators, we investigated their actions with bacterial lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulus. Although both α-MSH and LPS+IFN-γ increased cAMP responding element binding protein (CREB) activation, LPS+IFN-γ did not modify BDNF expression. On the other hand, α-MSH did not modify basal or LPS+IFN-γ-induced nuclear factor-κB activation. Our results show for the first time that MC4R activation in astrocytes induces BDNF expression through cAMP-PKA-CREB pathway without involving NF-κB.
Collapse
Affiliation(s)
- Carla Caruso
- Research Institute for Reproduction, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|