1
|
Aghaei Z, Karbalaei N, Namavar MR, Haghani M, Razmkhah M, Ghaffari MK, Nemati M. Neuroprotective Effect of Wharton's Jelly-Derived Mesenchymal Stem Cell-Conditioned Medium (WJMSC-CM) on Diabetes-Associated Cognitive Impairment by Improving Oxidative Stress, Neuroinflammation, and Apoptosis. Stem Cells Int 2023; 2023:7852394. [PMID: 37081849 PMCID: PMC10113062 DOI: 10.1155/2023/7852394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
According to strong evidence, diabetes mellitus increases the risk of cognitive impairment. Mesenchymal stem cells have been shown to be potential therapeutic agents for neurological disorders. In the current study, we aimed to examine the effects of Wharton's jelly-derived mesenchymal stem cell-conditioned medium (WJMSC-CM) on learning and memory, oxidative stress, apoptosis, and histological changes in the hippocampus of diabetic rats. Randomly, 35 male Sprague Dawley rats weighing 260-300 g were allocated into five groups: control, diabetes, and three diabetic groups treated with insulin, WJMSC-CM, and DMEM. The injections of insulin (3 U/day, S.C.) and WJMSC-CM (10 mg/week, I.P.) were done for 60 days. The Morris water maze and open field were used to measure cognition and anxiety-like behaviors. Colorimetric assays were used to determine hippocampus glutathione (GSH), malondialdehyde (MDA) levels, and antioxidant enzyme activity. The histopathological evaluation of the hippocampus was performed by Nissl staining. The expression levels of Bax, Bcl-2, BDNF, and TNF-α were detected by real-time polymerase chain reaction (RT-PCR). According to our findings, WJMSC-CM significantly reduced and increased blood glucose and insulin levels, respectively. Enhanced cognition and improved anxiety-like behavior were also found in WJMSC-CM-treated diabetic rats. In addition, WJMSC-CM treatment reduced oxidative stress by lowering MDA and elevating GSH and antioxidant enzyme activity. Reduced TNF-α and enhanced Bcl-2 gene expression levels and elevated neuronal and nonneuronal (astrocytes and oligodendrocytes) cells were detected in the hippocampus of WJMSC-CM-treated diabetic rats. In conclusion, WJMSC-CM alleviated diabetes-related cognitive impairment by reducing oxidative stress, neuroinflammation, and apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Zohre Aghaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Bi W, Lei T, Cai S, Zhang X, Yang Y, Xiao Z, Wang L, Du H. Potential of astrocytes in targeting therapy for Alzheimer’s disease. Int Immunopharmacol 2022; 113:109368. [DOI: 10.1016/j.intimp.2022.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
3
|
The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with Alzheimer's disease: crosstalk between autophagy and apoptosis. Stem Cell Res Ther 2022; 13:90. [PMID: 35241159 PMCID: PMC8895531 DOI: 10.1186/s13287-022-02765-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
The transplantation of bone marrow-derived mesenchymal stem cells (BMMSCs) alleviates neuropathology and improves cognitive deficits in animal models with Alzheimer's disease. However, the underlying mechanism remains undefined. Based on meta-analysis and comprehensive review, high-profile studies support the theory that transplanted BMMSCs activate autophagy, as evidenced by the expression levels of signal molecules such as Beclin-1, Atg5, LC3-II, and mTOR. Functional autophagy mitigates neuronal apoptosis, which is reflected by the alterations of IAPs, Bcl-2, caspase-3, and so forth. Moreover, the transplantation of BMMSCs can decrease aberrant amyloid-beta peptides as well as tau aggregates, inhibit neuroinflammation, and stimulate synaptogenesis. There is a signal crosstalk between autophagy and apoptosis, which may be regulated to produce synergistic effect on the preconditioning of stem cells. Forasmuch, the therapeutic effect of transplanted BMMSCs can be enhanced by autophagy and/or apoptosis modulators.
Collapse
|
4
|
Pang QM, Chen SY, Fu SP, Zhou H, Zhang Q, Ao J, Luo XP, Zhang T. Regulatory Role of Mesenchymal Stem Cells on Secondary Inflammation in Spinal Cord Injury. J Inflamm Res 2022; 15:573-593. [PMID: 35115806 PMCID: PMC8802142 DOI: 10.2147/jir.s349572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Hui Zhou
- The First School of Clinical Medicine, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jun Ao
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Xiao-Ping Luo
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
- Correspondence: Tao Zhang; Qian Zhang, Email ;
| |
Collapse
|
5
|
Novel Balance Mechanism Participates in Stem Cell Therapy to Alleviate Neuropathology and Cognitive Impairment in Animal Models with Alzheimer's Disease. Cells 2021; 10:cells10102757. [PMID: 34685737 PMCID: PMC8534506 DOI: 10.3390/cells10102757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy improves memory loss and cognitive deficits in animal models with Alzheimer's disease. The underlying mechanism remains to be determined, but it may involve the interaction of stem cells with hippocampal cells. The transplantation of stem cells alters the pathological state and establishes a novel balance based on multiple signaling pathways. The new balance mechanism is regulated by various autocrine and paracrine cytokines, including signal molecules that target (a) cell growth and death. Stem cell treatment stimulates neurogenesis and inhibits apoptosis, which is regulated by the crosstalk between apoptosis and autophagy-(b) Aβ and tau pathology. Aberrant Aβ plaques and neurofibrillary tau tangles are mitigated subsequent to stem cell intervention-(c) inflammation. Neuroinflammation in the lesion is relieved, which may be related to the microglial M1/M2 polarization-(d) immunoregulation. The transplanted stem cells modulate immune cells and shape the pathophysiological roles of immune-related genes such as TREM2, CR1, and CD33-(e) synaptogenesis. The functional reconstruction of synaptic connections can be promoted by stem cell therapy through multi-level signaling, such as autophagy, microglial activity, and remyelination. The regulation of new balance mechanism provides perspective and challenge for the treatment of Alzheimer's disease.
Collapse
|
6
|
Qin C, Li Y, Wang K. Functional Mechanism of Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Animal Models with Alzheimer's Disease: Inhibition of Neuroinflammation. J Inflamm Res 2021; 14:4761-4775. [PMID: 34566422 PMCID: PMC8456430 DOI: 10.2147/jir.s327538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022] Open
Abstract
The transplantation of bone marrow-derived mesenchymal stem cells (BMMSCs) alleviates neuropathology and improves cognitive deficits in animal models with Alzheimer’s disease. However, the underlying mechanisms remain to be determined. Available data demonstrate transplanted BMMSCs can inhibit neuroinflammation, which may be related to microglial M1/M2 polarization and is regulated by the secretion of autocrine and paracrine cytokines. BMMSCs also mitigate Aβ plaques and Tau tangles in the brain, which may be associated with the recruitment of peripheral blood monocytes and the subsequent comprehensive effects. The therapeutic effects of stem cells involve potential mechanisms such as immunomodulation, apoptosis, and proliferation. BMMSC-mediated functional reconstruction through dynamic remodeling develops a novel balance. Herein, present review recapitulates the molecular basis of BMMSC-assisted biological processes and summarizes the possible mechanisms related to the interaction between BMMSCs and microglia. The transplanted BMMSCs can suppress neuroinflammation that plays a key role in the pathogenesis of Alzheimer’s disease.
Collapse
Affiliation(s)
- Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yongning Li
- Department of International Medical Service & Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Kewei Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, 100021, People's Republic of China
| |
Collapse
|
7
|
Yu Z, Ling Z, Lu L, Zhao J, Chen X, Xu P, Zou X. Regulatory Roles of Bone in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:610581. [PMID: 33408628 PMCID: PMC7779400 DOI: 10.3389/fnagi.2020.610581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis and neurodegenerative diseases are two kinds of common disorders of the elderly, which often co-occur. Previous studies have shown the skeletal and central nervous systems are closely related to pathophysiology. As the main structural scaffold of the body, the bone is also a reservoir for stem cells, a primary lymphoid organ, and an important endocrine organ. It can interact with the brain through various bone-derived cells, mostly the mesenchymal and hematopoietic stem cells (HSCs). The bone marrow is also a place for generating immune cells, which could greatly influence brain functions. Finally, the proteins secreted by bones (osteokines) also play important roles in the growth and function of the brain. This article reviews the latest research studying the impact of bone-derived cells, bone-controlled immune system, and bone-secreted proteins on the brain, and evaluates how these factors are implicated in the progress of neurodegenerative diseases and their potential use in the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Astrocytes: News about Brain Health and Diseases. Biomedicines 2020; 8:biomedicines8100394. [PMID: 33036256 PMCID: PMC7600952 DOI: 10.3390/biomedicines8100394] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Astrocytes, the most numerous glial cells in the brains of humans and other mammalian animals, have been studied since their discovery over 100 years ago. For many decades, however, astrocytes were believed to operate as a glue, providing only mechanical and metabolic support to adjacent neurons. Starting from a "revolution" initiated about 25 years ago, numerous astrocyte functions have been reconsidered, some previously unknown, others attributed to neurons or other cell types. The knowledge of astrocytes has been continuously growing during the last few years. Based on these considerations, in the present review, different from single or general overviews, focused on six astrocyte functions, chosen due in their relevance in both brain physiology and pathology. Astrocytes, previously believed to be homogeneous, are now recognized to be heterogeneous, composed by types distinct in structure, distribution, and function; their cooperation with microglia is known to govern local neuroinflammation and brain restoration upon traumatic injuries; and astrocyte senescence is relevant for the development of both health and diseases. Knowledge regarding the role of astrocytes in tauopathies and Alzheimer's disease has grow considerably. The multiple properties emphasized here, relevant for the present state of astrocytes, will be further developed by ongoing and future studies.
Collapse
|
9
|
El-Kehdy H, Najar M, De Kock J, Agha DM, Rogiers V, Merimi M, Lagneaux L, Sokal EM, Najimi M. Inflammation Differentially Modulates the Biological Features of Adult Derived Human Liver Stem/Progenitor Cells. Cells 2020; 9:cells9071640. [PMID: 32650454 PMCID: PMC7408415 DOI: 10.3390/cells9071640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
The progression of mesenchymal stem cell-based therapy from concept to cure closely depends on the optimization of conditions that allow a better survival and favor the cells to achieve efficient liver regeneration. We have previously demonstrated that adult-derived human liver stem/progenitor cells (ADHLSC) display significant features that support their clinical development. The current work aims at studying the impact of a sustained pro-inflammatory environment on the principal biological features of ADHLSC in vitro. METHODS: ADHLSC from passages 4–7 were exposed to a cocktail of inflammatory cytokines for 24 h and 9 days and subsequently analyzed for their viability, expression, and secretion profiles by using flow cytometry, RT-qPCR, and antibody array assay. The impact of inflammation on the hepatocytic differentiation potential of ADHLSC was also evaluated. RESULTS: ADHLSC treated with a pro-inflammatory cocktail displayed significant decrease of cell yield at both times of treatment while cell mortality was observed at 9 days post-priming. After 24 h, no significant changes in the immuno-phenotype of ADHLSC expression profile could be noticed while after 9 days, the expression profile of relevant markers has changed both in the basal conditions and after inflammation treatment. Inflammation cocktail enhanced the release of IL-6, IL-8, CCL5, monocyte-chemo-attractant protein-2 and 3, CXCL1/GRO, and CXCL5/ENA78. Furthermore, while IP-10 secretion was increased after 24 h priming, granulocyte macrophage colony-stimulating factor enhanced secretion was noticed after 9 days treatment. Finally, priming of ADHLSC did not affect their potential to differentiate into hepatocyte-like cells. CONCLUSION: These results indicate that ADHLSCs are highly sensitive to inflammation and respond to such signals by adjusting their gene and protein expression. Accordingly, monitoring the inflammatory status of patients at the time of cell transplantation, will certainly help in enhancing ADHLSC safety and efficiency.
Collapse
Affiliation(s)
- Hoda El-Kehdy
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (H.E.-K.); (E.M.S.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada;
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.D.K.); (V.R.)
| | - Douaa Moussa Agha
- Laboratory of Experimental Hematology (HEMEXP), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium; (D.M.A.); (M.M.)
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.D.K.); (V.R.)
| | - Makram Merimi
- Laboratory of Experimental Hematology (HEMEXP), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium; (D.M.A.); (M.M.)
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy (LCCT), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (H.E.-K.); (E.M.S.)
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium; (H.E.-K.); (E.M.S.)
- Correspondence:
| |
Collapse
|
10
|
Huang L, You J, Yao Y, Xie M. Interleukin-13 Gene Modification Enhances Grafted Mesenchymal Stem Cells Survival After Subretinal Transplantation. Cell Mol Neurobiol 2020; 40:725-735. [PMID: 31792777 PMCID: PMC11448798 DOI: 10.1007/s10571-019-00768-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) hold great potential for cell- and gene-based therapies for retinal degeneration. Limited survival is the main obstacle in achieving successful subretinal transplantation of MSCs. The present study sought to evaluate the effect of interleukin-13 (IL-13) gene modification on the phenotypic alteration of retinal microglia (RMG) and the survival of MSCs following subretinal grafting. In this study, LPS-activated RMG were cocultured with MSCs or IL-13-expressing MSCs (IL-13-MSCs) for 24 h, and activated phenotypes were detected in vitro. Western blotting was performed to quantify cytokine secretion by light-injured retinas following subretinal transplantation. The numbers of activated RMG and surviving grafted cells were analysed, and the integrity of the blood-retinal barrier (BRB) was examined in vivo. We found that, compared with normal MSCs, cocultured IL-13-MSCs suppressed the expression of pro-inflammatory factors and major histocompatibility complex II, promoted the expression of anti-inflammatory cytokines by activated RMG and simultaneously inhibited the proliferation of and phagocytosis by RMG. The subretinal transplantation of IL-13-MSCs increased the expression of neurotrophic factors, IL-13 and tight junction proteins in the host retina, decreased the number of phagocytic RMG and improved the survival of grafted cells. Furthermore, IL-13-MSCs alleviated BRB breakdown induced by subretinal injection. Our results demonstrate that IL-13-MSCs can polarize activated RMG to the neuroprotective M2 phenotype and enhance the survival of grafted MSCs against the damage stress induced by subretinal transplantation.
Collapse
Affiliation(s)
- Libin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China
| | - Junmei You
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China
| | - Yao Yao
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China
| | - Maosong Xie
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, 350005, Fuzhou, China.
| |
Collapse
|
11
|
Qin C, Lu Y, Wang K, Bai L, Shi G, Huang Y, Li Y. Transplantation of bone marrow mesenchymal stem cells improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer's disease: a meta-analytic review on potential mechanisms. Transl Neurodegener 2020; 9:20. [PMID: 32460886 PMCID: PMC7251864 DOI: 10.1186/s40035-020-00199-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative disorder. Therapeutically, a transplantation of bone marrow mesenchymal stem cells (BMMSCs) can play a beneficial role in animal models of Alzheimer's disease. However, the relevant mechanism remains to be fully elucidated. MAIN BODY Subsequent to the transplantation of BMMSCs, memory loss and cognitive impairment were significantly improved in animal models with Alzheimer's disease (AD). Potential mechanisms involved neurogenesis, apoptosis, angiogenesis, inflammation, immunomodulation, etc. The above mechanisms might play different roles at certain stages. It was revealed that the transplantation of BMMSCs could alter some gene levels. Moreover, the differential expression of representative genes was responsible for neuropathological phenotypes in Alzheimer's disease, which could be used to construct gene-specific patterns. CONCLUSIONS Multiple signal pathways involve therapeutic mechanisms by which the transplantation of BMMSCs improves cognitive and behavioral deficits in AD models. Gene expression profile can be utilized to establish statistical regression model for the evaluation of therapeutic effect. The transplantation of autologous BMMSCs maybe a prospective therapy for patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China.
| | - Yalan Lu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China
| | - Kewei Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China
| | - Lin Bai
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China
| | - Guiying Shi
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China
| | - Yiying Huang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China
| | - Yongning Li
- Department of International Medical Service & Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan 1, Dong Cheng District, Beijing, 100730, China
| |
Collapse
|
12
|
Mehrabadi S, Motevaseli E, Sadr SS, Moradbeygi K. Hypoxic-conditioned medium from adipose tissue mesenchymal stem cells improved neuroinflammation through alternation of toll like receptor (TLR) 2 and TLR4 expression in model of Alzheimer's disease rats. Behav Brain Res 2019; 379:112362. [PMID: 31739000 DOI: 10.1016/j.bbr.2019.112362] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Microglia have a pivotal role to initiate immune responses in AD brains through toll-like receptors and induce neuroinflammation. Adipose tissue mesenchymal stem cells (ATSCs) secret many neurotrophic and anti-inflammatory factors called conditioned medium (CM). Many studies have demonstrated that CM of mesenchymal stem cells facilitate regeneration and attenuates inflammation in many disorders. To this purpose, the effect of ATSCs-conditioned medium (ATSC-CM) on brain inflammation and the role of toll-like receptors were investigated in this study. Seventy-two rats were randomly divided into 6 groups: control, sham, sham+ATSC-CM: 200μl ATSC-CM once a day intraperitoneally for 8 days, AD group injected the Aβ1-40 intra-hippocampal, AD+ASC-CM, which was injected Aβ1-40 intra-hippocampal and 200μl ATSC-CM once a day intraperitoneally for 8 days and AD+ rivastigmine: was injected Aβ1-40 intra-hippocampal and received rivastigmine (0.6 mg/kg) orally once a day for 2 weeks. Memory and learning were measured by Morris water maze and novel object recognition tests. For detection of beta-amyloid plaque, Congo red staining was used, and neuronal survival was assessed by Nissl staining. Expression of TLR2 and TLR4 was measured by real-time PCR, and finally, to assess inflammation markers (IL-1β and TNF-α) in the hippocampus, ELISA kits were used. In treatment group spatial and recognition memory significantly was improved. ATSC-CM administration decreased beta amyloid plaques and enhanced neuronal survival in AD brain rats. In addition, TLR2 and TLR4 expression decreased in treatment group. Results also showed that ATSC-CM reduced IL-1β and TNF-α as inflammation markers. ATSC-CM improved memory deficit, decreased beta amyloids formation, increased neuron survival, and attenuated inflammation by reducing the expression of TLRs.
Collapse
Affiliation(s)
- Shima Mehrabadi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Khadijeh Moradbeygi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Nursing, Abadan Faculty of Medical Sciences, Abadan, Iran
| |
Collapse
|
13
|
Diene LD, Costa-Ferro ZSM, Barbosa S, Milanesi BB, Lazzari GZ, Neves LT, Paz LV, Neves PFR, Battisti V, Martins LA, Gehlen G, Mestriner RG, Da Costa JC, Xavier LL. Selective brain neuronal and glial losses without changes in GFAP immunoreactivity: Young versus mature adult Wistar rats. Mech Ageing Dev 2019; 182:111128. [PMID: 31404554 DOI: 10.1016/j.mad.2019.111128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
Normal ageing results in brain selective neuronal and glial losses. In the present study we analyze neuronal and glial changes in Wistar rats at two different ages, 45 days (young) and 420 days (mature adult), using Nissl staining and glial fibrillary acidic protein (GFAP) immunohistochemistry associated to the Sholl analysis. Comparing mature adults with young rats we noted the former present a decrease in neuronal density in the cerebral cortex, corpus callosum, pyriform cortex, L.D.D.M., L.D.V.L., central medial thalamic nucleus and zona incerta. A decrease in glial density was found in the dorsomedial and ventromedial hypothalamic nuclei. Additionally, the neuron/glia ratio was reduced in the central medial thalamic nucleus and increased in the habenula. No changes were found in the neuronal and glial densities or neuron/glia ratio in the other studied regions. The number of astrocytic primary processes and the number of intersections counted in the Sholl analysis presented no significant difference in any of the studied regions. Overall, neither GFAP positive astrocytic density nor GFAP immunoreactivity showed alteration.
Collapse
Affiliation(s)
- Leonardo D Diene
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Silvia Barbosa
- Laboratório de Histofisiologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Bueno Milanesi
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriele Zenato Lazzari
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisiê Valéria Paz
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Fernanda Ribas Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Battisti
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas A Martins
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jaderson C Da Costa
- Instituto do Cérebro do Rio Grande do Sul (InsCer/RS), Porto Alegre, RS, Brazil
| | - Léder L Xavier
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Bursch F, Rath KJ, Sarikidi A, Böselt S, Kefalakes E, Osmanovic A, Thau-Habermann N, Klöß S, Köhl U, Petri S. Analysis of the therapeutic potential of different administration routes and frequencies of human mesenchymal stromal cells in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. J Tissue Eng Regen Med 2019; 13:649-663. [PMID: 30811816 DOI: 10.1002/term.2846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Cellular therapy represents a novel option for the treatment of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Its major aim is the generation of a protective environment for degenerating motor neurons. Mesenchymal stromal cells secrete different growth factors and have antiapoptotic and immunomodulatory properties. They can easily and safely be isolated from human bone marrow and are therefore considered promising therapeutic candidates. In the present study, we compared intraventricular application of human mesenchymal stromal cells (hMSCs) versus single and repeated intraspinal injections in the mutant SOD1G93A transgenic ALS mouse model. We observed significant reduction of lifespan of animals treated by intraventricular hMSC injection compared with the vehicle treated control group, accompanied by changes in weight, general condition, and behavioural assessments. A potential explanation for these rather surprising deleterious effects lies in increased microgliosis detected in the hMSC treated animals. Repeated intraspinal injection at two time points resulted in a slight but not significant increase in survival and significant improvement of motor performance although no hMSC-induced changes of motor neuron numbers, astrogliosis, and microgliosis were detected. Quantitative real time polymerase chain reaction showed reduced expression of endothelial growth factor in animals having received hMSCs twice compared with the vehicle treated control group. hMSCs were detectable at the injection site at Day 20 after injection into the spinal cord but no longer at Day 70. Intraspinal injection of hMSCs may therefore be a more promising option for the treatment of ALS than intraventricular injection and repeated injections might be necessary to obtain substantial therapeutic benefit.
Collapse
Affiliation(s)
- Franziska Bursch
- Department of Neurology, Hannover Medical School, Hannover, Germany.,University of Veterinary Medicine, Centre for Systems Neuroscience (ZSN), Hannover, Germany
| | - Klaus Jan Rath
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Anastasia Sarikidi
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Sebastian Böselt
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Ekaterini Kefalakes
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Alma Osmanovic
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Stephan Klöß
- Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany.,GMP Development Unit, Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Ulrike Köhl
- Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany.,GMP Development Unit, Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany.,University of Veterinary Medicine, Centre for Systems Neuroscience (ZSN), Hannover, Germany.,Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Qu XH, Wang WS, Liu SM, Wu LF, Xie C, Yang XY, He Y, Wu XM. A Study on Acute Ischemia-Reperfusion Models in Rats Treated by Bone Mesenchymal Stem Cells Grafting via Arteries and Veins. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xin-Hui Qu
- Department of Neurology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University
| | - Wan-Song Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University
| | - Shi-Min Liu
- Department of Neurology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University
| | - Ling-Feng Wu
- Department of Neurology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University
| | - Chen Xie
- Department of Neurology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University
| | | | - Yan He
- Medical College of Nanchang University
| | - Xiao-Mu Wu
- Department of Neurology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University
| |
Collapse
|
16
|
Nejati M, Tameh AA, Atlasi MA. Role of toll‐like receptors 2 and 4 in the neuroprotective effects of bone marrow–derived mesenchymal stem cells in an experimental model of ischemic stroke. J Cell Biochem 2018. [DOI: 10.1002/jcb.28083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences Kashan Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences Kashan Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences Kashan Iran
| |
Collapse
|
17
|
Stucky EC, Erndt-Marino J, Schloss RS, Yarmush ML, Shreiber DI. Prostaglandin E 2 Produced by Alginate-Encapsulated Mesenchymal Stromal Cells Modulates the Astrocyte Inflammatory Response. NANO LIFE 2017; 7:1750005. [PMID: 29682085 PMCID: PMC5903452 DOI: 10.1142/s1793984417500052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astroglia are well known for their role in propagating secondary injury following brain trauma. Modulation of this injury cascade, including inflammation, is essential to repair and recovery. Mesenchymal stromal cells (MSCs) have been demonstrated as trophic mediators in several models of secondary CNS injury, however, there has been varied success with the use of direct implantation due to a failure to persist at the injury site. To achieve sustained therapeutic benefit, we have encapsulated MSCs in alginate microspheres and evaluated the ability of these encapsulated MSCs to attenuate neuro-inflammation. In this study, astroglial cultures were administered lipopolysaccharide (LPS) to induce inflammation and immediately co-cultured with encapsulated or monolayer human MSCs. Cultures were assayed for the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) produced by astroglia, MSC-produced prostaglandin E2, and expression of neurotrophin-associated genes. We found that encapsulated MSCs significantly reduced TNF-α produced by LPS-stimulated astrocytes, more effectively than monolayer MSCs, and this enhanced benefit commences earlier than that of monolayer MSCs. Furthermore, in support of previous findings, encapsulated MSCs constitutively produced high levels of PGE2, while monolayer MSCs required the presence of inflammatory stimuli to induce PGE2 production. The early, constitutive presence of PGE2 significantly reduced astrocyte-produced TNF-α, while delayed administration had no effect. Finally, MSC-produced PGE2 was not only capable of modulating inflammation, but appears to have an additional role in stimulating astrocyte neurotrophin production. Overall, these results support the enhanced benefit of encapsulated MSC treatment, both in modulating the inflammatory response and providing neuroprotection.
Collapse
Affiliation(s)
- Elizabeth C Stucky
- Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Joshua Erndt-Marino
- Department of Biomedical Engineering, The College of New Jersey, 2000 Pennington Road, Ewing, New Jersey 08628, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
18
|
John CM, Phillips NJ, Stein DC, Jarvis GA. Innate immune response to lipooligosaccharide: pivotal regulator of the pathobiology of invasive Neisseria meningitidis infections. Pathog Dis 2017; 75:3569603. [PMID: 28423169 DOI: 10.1093/femspd/ftx030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/11/2017] [Indexed: 01/05/2023] Open
Abstract
Infections due to Neisseria meningitidis afflict more than one million people worldwide annually and cause death or disability in many survivors. The clinical course of invasive infections has been well studied, but our understanding of the cause of differences in patient outcomes has been limited because these are dependent on multiple factors including the response of the host, characteristics of the bacteria and interactions between the host and the bacteria. The meningococcus is a highly inflammatory organism, and the lipooligosaccharide (LOS) on the outer membrane is the most potent inflammatory molecule it expresses due to the interactions of the lipid A moiety of LOS with receptors of the innate immune system. We previously reported that increased phosphorylation of hexaacylated neisserial lipid A is correlated with greater inflammatory potential. Here we postulate that variability in lipid A phosphorylation can tip the balance of innate immune responses towards homeostatic tolerance or proinflammatory signaling that affects adaptive immune responses, causing disease with meningitis only, or septicemia with or without meningitis, respectively. Furthermore, we propose that studies of the relationship between bacterial virulence and gene expression should consider whether genetic variation could affect properties of biosynthetic enzymes resulting in LOS structural differences that alter disease pathobiology.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Nancy J Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Daniel C Stein
- University of Maryland, Department of Cell Biology and Molecular Genetics, College Park, MD 20742 USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Drommelschmidt K, Serdar M, Bendix I, Herz J, Bertling F, Prager S, Keller M, Ludwig AK, Duhan V, Radtke S, de Miroschedji K, Horn PA, van de Looij Y, Giebel B, Felderhoff-Müser U. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun 2017; 60:220-232. [PMID: 27847282 DOI: 10.1016/j.bbi.2016.11.011] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/04/2016] [Accepted: 11/12/2016] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Preterm brain injury is a major cause of disability in later life, and may result in motor, cognitive and behavioural impairment for which no treatment is currently available. The aetiology is considered as multifactorial, and one underlying key player is inflammation leading to white and grey matter injury. Extracellular vesicles secreted by mesenchymal stem/stromal cells (MSC-EVs) have shown therapeutic potential in regenerative medicine. Here, we investigated the effects of MSC-EV treatment on brain microstructure and maturation, inflammatory processes and long-time outcome in a rodent model of inflammation-induced brain injury. METHODS 3-Day-old Wistar rats (P3) were intraperitoneally injected with 0.25mg/kg lipopolysaccharide or saline and treated with two repetitive doses of 1×108 cell equivalents of MSC-EVs per kg bodyweight. Cellular degeneration and reactive gliosis at P5 and myelination at P11 were evaluated by immunohistochemistry and western blot. Long-term cognitive and motor function was assessed by behavioural testing. Diffusion tensor imaging at P125 evaluated long-term microstructural white matter alterations. RESULTS MSC-EV treatment significantly ameliorated inflammation-induced neuronal cellular degeneration reduced microgliosis and prevented reactive astrogliosis. Short-term myelination deficits and long-term microstructural abnormalities of the white matter were restored by MSC-EV administration. Morphological effects of MSC-EV treatment resulted in improved long-lasting cognitive functions INTERPRETATION: MSC-EVs ameliorate inflammation-induced cellular damage in a rat model of preterm brain injury. MSC-EVs may serve as a novel therapeutic option by prevention of neuronal cell death, restoration of white matter microstructure, reduction of gliosis and long-term functional improvement.
Collapse
Affiliation(s)
- Karla Drommelschmidt
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Meray Serdar
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frederik Bertling
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Prager
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Keller
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna-Kristin Ludwig
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vikas Duhan
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Radtke
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, WA 98109, USA
| | - Kyra de Miroschedji
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yohan van de Looij
- Division of Child Growth and Development, Department of Paediatrics, University of Geneva, Geneva, Switzerland; Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bernd Giebel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ursula Felderhoff-Müser
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
20
|
de Senna PN, Bagatini PB, Galland F, Bobermin L, do Nascimento PS, Nardin P, Tramontina AC, Gonçalves CA, Achaval M, Xavier LL. Physical exercise reverses spatial memory deficit and induces hippocampal astrocyte plasticity in diabetic rats. Brain Res 2017; 1655:242-251. [PMID: 27984020 DOI: 10.1016/j.brainres.2016.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/11/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022]
|
21
|
Iizumi T, Takahashi S, Mashima K, Minami K, Izawa Y, Abe T, Hishiki T, Suematsu M, Kajimura M, Suzuki N. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J Neuroinflammation 2016; 13:99. [PMID: 27143001 PMCID: PMC4855896 DOI: 10.1186/s12974-016-0564-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) plays a pivotal role in the pathophysiology of stroke-induced inflammation. Both astroglia and microglia express TLR4, and endogenous ligands produced in the ischemic brain induce inflammatory responses. Reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines produced by TLR4 activation play harmful roles in neuronal damage after stroke. Although astroglia exhibit pro-inflammatory responses upon TLR4 stimulation by lipopolysaccharide (LPS), they may also play cytoprotective roles via the activation of the pentose phosphate pathway (PPP), reducing oxidative stress by glutathione peroxidase. We investigated the mechanisms by which astroglia reduce oxidative stress via the activation of PPP, using TLR4 stimulation and hypoxia in concert with microglia. METHODS In vitro experiments were performed using cells prepared from Sprague-Dawley rats. Coexisting microglia in the astroglial culture were chemically eliminated using L-leucine methyl ester (LME). Cells were exposed to LPS (0.01 μg/mL) or hypoxia (1 % O2) for 12-15 h. PPP activity was measured using [1-(14)C]glucose and [6-(14)C]glucose. ROS and NO production were measured using 2',7'-dichlorodihydrofluorescein diacetate and diaminofluorescein-FM diacetate, respectively. The involvement of nuclear factor-erythroid-2-related factor 2 (Nrf2), a cardinal transcriptional factor under stress conditions that regulates glucose 6-phosphate dehydrogenase, the rate-limiting enzyme of PPP, was evaluated using immunohistochemistry. RESULTS Cultured astroglia exposed to LPS elicited 20 % increases in PPP flux, and these actions of astroglia appeared to involve Nrf2. However, the chemical depletion of coexisting microglia eliminated both increases in PPP and astroglial nuclear translocation of Nrf2. LPS induced ROS and NO production in the astroglial culture containing microglia but not in the microglia-depleted astroglial culture. LPS enhanced astroglial ROS production after glutathione depletion. U0126, an upstream inhibitor of mitogen-activated protein kinase, eliminated LPS-induced NO production, whereas ROS production was unaffected. U0126 also eliminated LPS-induced PPP activation in astroglial-microglial culture, indicating that microglia-derived NO mediated astroglial PPP activation. Hypoxia induced astroglial PPP activation independent of the microglia-NO pathway. Elimination of ROS and NO production by sulforaphane, a natural Nrf2 activator, confirmed the astroglial protective mechanism. CONCLUSIONS Astroglia in concert with microglia may play a cytoprotective role for countering oxidative stress in stroke.
Collapse
Affiliation(s)
- Takuya Iizumi
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Shinichi Takahashi
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan.
| | - Kyoko Mashima
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Kazushi Minami
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Yoshikane Izawa
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Takato Abe
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka-shi, 545-8585, Osaka , Japan
| | - Takako Hishiki
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, 160-8582, Tokyo, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, 160-8582, Tokyo, Japan.,JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Shinjuku-ku, 160-8582, Tokyo , Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, 160-8582, Tokyo, Japan.,JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Shinjuku-ku, 160-8582, Tokyo , Japan
| | - Mayumi Kajimura
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, 160-8582, Tokyo, Japan.,JST Exploratory Research for Advanced Technology (ERATO) Suematsu Gas Biology Project, Shinjuku-ku, 160-8582, Tokyo , Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| |
Collapse
|
22
|
Alhasan L, Qi A, Rezk AR, Yeo LY, Chan PPY. Assessment of the potential of a high frequency acoustomicrofluidic nebulisation platform for inhaled stem cell therapy. Integr Biol (Camb) 2016; 8:12-20. [DOI: 10.1039/c5ib00206k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study demonstrates the use of a novel high frequency acoustic nebulisation platform as an effective aerosolisation technique for inhaled mesenchymal stem cell (MSC) therapy.
Collapse
Affiliation(s)
- Layla Alhasan
- Department of Biotechnology & Biological Science
- RMIT University
- Melbourne
- Australia
- Micro/Nanophysics Research Laboratory
| | - Aisha Qi
- Micro/Nanophysics Research Laboratory
- RMIT University
- Melbourne
- Australia
| | - Amgad R. Rezk
- Micro/Nanophysics Research Laboratory
- RMIT University
- Melbourne
- Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory
- RMIT University
- Melbourne
- Australia
| | - Peggy P. Y. Chan
- Micro/Nanophysics Research Laboratory
- RMIT University
- Melbourne
- Australia
- Department of Biomedical Engineering
| |
Collapse
|
23
|
Ahmed HH, Metwally FM, Khalil WKB, Aglan HA. Bone marrow derived mesenchymal stem cells: A unique cytotherapy for rescuing degenerated dopaminergic neurons. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Stucky EC, Schloss RS, Yarmush ML, Shreiber DI. Alginate micro-encapsulation of mesenchymal stromal cells enhances modulation of the neuro-inflammatory response. Cytotherapy 2015; 17:1353-64. [PMID: 26210574 PMCID: PMC5928499 DOI: 10.1016/j.jcyt.2015.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS Modulation of inflammation after brain trauma is a key therapeutic goal aimed at limiting the consequences of the subsequent injury cascade. Mesenchymal stromal cells (MSCs) have been demonstrated to dynamically regulate the inflammatory environment in several tissue systems, including the central nervous system. There has been limited success, however, with the use of direct implantation of cells in the brain caused by low viability and engraftment at the injury site. To circumvent this, we encapsulated MSCs in alginate microspheres and evaluated the ability of these encapsulated MSCs to attenuate inflammation in rat organotypic hippocampal slice cultures (OHSC). METHODS OHSC were administered lipopolysaccharide to induce inflammation and immediately co-cultured with encapsulated or monolayer human MSCs. After 24 h, culture media was assayed for the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) produced by OHSC, as well as MSC-produced trophic mediators. RESULTS Encapsulated MSCs reduced TNF-α more effectively than did monolayer MSCs. Additionally, there was a strong correlation between increased prostaglandin E2 (PGE2) and reduction of TNF-α. In contrast to monolayer MSCs, inflammatory signals were not required to stimulate PGE2 production by encapsulated MSCs. Further encapsulation-stimulated changes were revealed in a multiplex panel analyzing 27 MSC-produced cytokines and growth factors, from which additional mediators with strong correlations to TNF-α levels were identified. CONCLUSIONS These results suggest that alginate encapsulation of MSCs may not only provide an improved delivery vehicle for transplantation but may also enhance MSC therapeutic benefit for treating neuro-inflammation.
Collapse
Affiliation(s)
- Elizabeth C Stucky
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Martin L Yarmush
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
25
|
Huang W, Lv B, Zeng H, Shi D, Liu Y, Chen F, Li F, Liu X, Zhu R, Yu L, Jiang X. Paracrine Factors Secreted by MSCs Promote Astrocyte Survival Associated With GFAP Downregulation After Ischemic Stroke via p38 MAPK and JNK. J Cell Physiol 2015; 230:2461-75. [DOI: 10.1002/jcp.24981] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Weiyi Huang
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Bingke Lv
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Huijun Zeng
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Dandan Shi
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Yi Liu
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Fanfan Chen
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Feng Li
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Xinghui Liu
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Rong Zhu
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Lei Yu
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Xiaodan Jiang
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| |
Collapse
|
26
|
Salem AM, Ahmed HH, Atta HM, Ghazy MA, Aglan HA. Potential of bone marrow mesenchymal stem cells in management of Alzheimer's disease in female rats. Cell Biol Int 2014; 38:1367-83. [PMID: 25044885 DOI: 10.1002/cbin.10331] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 05/17/2014] [Indexed: 07/27/2024]
Abstract
Alzheimer's disease (AD) has been called the disease of the century with significant clinical and socioeconomic impacts. Pharmacological treatment has limited efficacy and only provides symptomatic relief without long-term cure. Accordingly, there is an urgent need to develop novel and effective medications for AD. Stem cell-based therapy is a promising approach to handling neurodegenerative diseases. Therefore, the current study aimed to explore the possible therapeutic role of single intravenous injection of bone marrow derived mesenchymal stem cells (BM-MSCs) after 4 months in management of AD in the experimental model. The work also extended to compare the therapeutic potential of BM-MSCs with 2 conventional therapies of AD; rivastigmine and cerebrolysin administered daily. BM-MSCs were able to home at the injured brains and produced significant increases in the number of positive cells for choline acetyltransferase (ChAT) and survivin expression, as well as selective AD indicator-1 (seladin-1) and nestin gene expression. Histopathological examination indicated that BM-MSCs could remove beta-amyloid plaques from hippocampus. Significant improvement in these biomarkers was similar to or better sometimes than the reference drugs, clearly showing the potential therapeutic role of BM-MSCs against AD through their anti-apoptotic, neurogenic and immunomodulatory properties.
Collapse
Affiliation(s)
- Ahmed M Salem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | | | | | | |
Collapse
|
27
|
Tang G, Liu Y, Zhang Z, Lu Y, Wang Y, Huang J, Li Y, Chen X, Gu X, Wang Y, Yang GY. Mesenchymal Stem Cells Maintain Blood-Brain Barrier Integrity by Inhibiting Aquaporin-4 Upregulation After Cerebral Ischemia. Stem Cells 2014; 32:3150-62. [DOI: 10.1002/stem.1808] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/07/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Guanghui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yanqun Liu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
- Department of Neurology, Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai People's Republic of China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yifan Lu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yang Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
- Department of Neurology, Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai People's Republic of China
| | - Jun Huang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yaning Li
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Xiaoyan Chen
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Xiang Gu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai People's Republic of China
- Department of Neurology, Ruijin Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai People's Republic of China
| |
Collapse
|
28
|
Li J, Li D, Ju X, Shi Q, Wang D, Wei F. Umbilical cord-derived mesenchymal stem cells retain immunomodulatory and anti-oxidative activities after neural induction. Neural Regen Res 2014; 7:2663-72. [PMID: 25337112 PMCID: PMC4200734 DOI: 10.3969/j.issn.1673-5374.2012.34.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/16/2012] [Indexed: 01/14/2023] Open
Abstract
The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilical cord and induced to differentiate with basic fibroblast growth factor, nerve growth factor, epidermal growth factor, brain-derived neurotrophic factor and forskolin. The mesenchymal stem cells became rounded with long processes and expressed the neural markers, Tuj1, neurofilament 200, microtubule-associated protein-2 and neuron-specific enolase. Nestin expression was significantly reduced after neural induction. The expression of immunoregulatory and anti-oxidative genes was largely unchanged prior to and after neural induction in mesenchymal stem cells. There was no significant difference in the effects of control and induced mesenchymal stem cells on lymphocyte proliferation in co-culture experiments. However, the expression of human leukocyte antigen-G decreased significantly in induced neuron-like cells. These results suggest that growth factor-based methods enable the differentiation of mesenchymal stem cell toward immature neuronal-like cells, which retain their immunomodulatory and anti-oxidative activities.
Collapse
Affiliation(s)
- Jianjun Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Xiuli Ju
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Dakun Wang
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Fengcai Wei
- Department of Stomatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
29
|
Qin D, Long T, Deng J, Zhang Y. Urine-derived stem cells for potential use in bladder repair. Stem Cell Res Ther 2014; 5:69. [PMID: 25157812 PMCID: PMC4055102 DOI: 10.1186/scrt458] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Engineered bladder tissues, created with autologous bladder cells seeded on biodegradable scaffolds, are being developed for use in patients who need cystoplasty. However, in individuals with organ damage from congenital disorders, infection, irradiation, or cancer, abnormal cells obtained by biopsy from the compromised tissue could potentially contaminate the engineered tissue. Thus, an alternative cell source for construction of the neo-organ would be useful. Although other types of stem cells have been investigated, autologous mesenchymal stem cells (MSCs) are most suitable to use in bladder regeneration. These cells are often used as a cell source for bladder repair in three ways - secreting paracrine factors, recruiting resident cells, and trans-differentiation, inducing MSCs to differentiate into bladder smooth muscle cells and urothelial cells. Adult stem cell populations have been demonstrated in bone marrow, fat, muscle, hair follicles, and amniotic fluid. These cells remain an area of intense study, as their potential for therapy may be applicable to bladder disorders. Recently, we have found stem cells in the urine and the cells are highly expandable, and have self-renewal capacity and paracrine properties. As a novel cell source, urine-derived stem cells (USCs) provide advantages for cell therapy and tissue engineering applications in bladder tissue repair because they originate from the urinary tract system. Importantly, USCs can be obtained via a noninvasive, simple, and low-cost approach and induced with high efficiency to differentiate into bladder cells.
Collapse
|
30
|
Liu YL, Zhou Y, Sun L, Wen JT, Teng SJ, Yang L, Du DS. Protective effects of Gingko biloba extract 761 on myocardial infarction via improving the viability of implanted mesenchymal stem cells in the rat heart. Mol Med Rep 2014; 9:1112-20. [PMID: 24549494 DOI: 10.3892/mmr.2014.1959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/27/2014] [Indexed: 11/05/2022] Open
Abstract
When introduced into the infarcted heart, bone marrow‑derived mesenchymal stem cells (MSCs) prevent the heart from deleterious remodeling and improve its recovery. The aim of the present study was to investigate the effects of Ginkgo biloba extract (EGb) 761 on the infarcted myocardium microenvironment following MSC transplantation. The established rat myocardial infarction (MI) model, with implanted PKH‑26 marked MSCs (1x105 cells), were randomly divided into two groups: The control group (injected with normal saline) and the EGb 761 treatment group (injected with 100 mg/kg/day EGb 761). The following indices for cardiac function, including the extent of inflammation, oxidative stress, MSC apoptosis and MSC differentiation were measured 1, 2 and 7 days after treatment. The anti‑inflammatory effect of EGb 761 was observed by histological examination. Compared with the respective control group, the malondialdehyde content significantly decreased and the superoxide dismutase, catalase and glutathione peroxidase activity significantly increased in the EGb761‑treated groups. In addition, the apoptotic index gradually decreased (P<0.05) with the extension of MI time in the EGb761-treated groups compared to the respective control groups, suggesting that EGb761 exhbits anti-oxidative effects. In addition, the level of the Fas protein was positively correlated with the implanted MSC apoptotic ratio. Following 7 days of MSC transplantation with EGb 761 treatment, the expression of cTnI in PKH26‑labeled MSCs was observed in the transplanted myocardium. Cardiac function, including the ejection fraction, left ventricular end‑systolic pressure and dp/dtmax significantly increased, and the left ventricular end diastolic diameters, left ventricular end‑diastolic volumes and left ventricular end‑diastolic pressure significantly decreased (P<0.05, vs. the control group). The results demonstrated that EGb 761 is important in improving cardiac function and the infarcted myocardium microenvironment. The present study indicated that the protective effects of EGb 761 on the infarcted myocardium may be mediated by improving the viability and the differentiation of the implanted MSCs into cardiomyocytes.
Collapse
Affiliation(s)
- Yan-Li Liu
- Department of Laboratory Medicine, Lianyungang Hospital Affiliated Bengbu Medical College, Lianyungang, Jiangsu 222006, P.R. China
| | - Yan Zhou
- Department of Laboratory Medicine, Lianyungang Hospital Affiliated Bengbu Medical College, Lianyungang, Jiangsu 222006, P.R. China
| | - Lin Sun
- Department of Laboratory Medicine, Lianyungang Women and Children's Health Care Hospital, Lianyungang, Jiangsu 222001, P.R. China
| | - Jiang-Tao Wen
- Department of Laboratory Medicine, Lianyungang Hospital Affiliated Bengbu Medical College, Lianyungang, Jiangsu 222006, P.R. China
| | - Shi-Jie Teng
- Department of Laboratory Medicine, Lianyungang Hospital Affiliated Bengbu Medical College, Lianyungang, Jiangsu 222006, P.R. China
| | - Lin Yang
- Department of Laboratory Medicine, Lianyungang Hospital Affiliated Bengbu Medical College, Lianyungang, Jiangsu 222006, P.R. China
| | - Dong-Shu Du
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, P.R. China
| |
Collapse
|
31
|
Sun H, Bénardais K, Stanslowsky N, Thau-Habermann N, Hensel N, Huang D, Claus P, Dengler R, Stangel M, Petri S. Therapeutic potential of mesenchymal stromal cells and MSC conditioned medium in Amyotrophic Lateral Sclerosis (ALS)--in vitro evidence from primary motor neuron cultures, NSC-34 cells, astrocytes and microglia. PLoS One 2013; 8:e72926. [PMID: 24069165 PMCID: PMC3771979 DOI: 10.1371/journal.pone.0072926] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/15/2013] [Indexed: 12/13/2022] Open
Abstract
Administration of mesenchymal stromal cells (MSC) improves functional outcome in the SOD1G93A mouse model of the degenerative motor neuron disorder amyotrophic lateral sclerosis (ALS) as well as in models of other neurological disorders. We have now investigated the effect of the interaction between MSC and motor neurons (derived from both non-transgenic and mutant SOD1G93A transgenic mice), NSC-34 cells and glial cells (astrocytes, microglia) (derived again from both non-transgenic and mutant SOD1G93A ALS transgenic mice) in vitro. In primary motor neurons, NSC-34 cells and astrocytes, MSC conditioned medium (MSC CM) attenuated staurosporine (STS) - induced apoptosis in a concentration-dependent manner. Studying MSC CM-induced expression of neurotrophic factors in astrocytes and NSC-34 cells, we found that glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) gene expression in astrocytes were significantly enhanced by MSC CM, with differential responses of non-transgenic and mutant astrocytes. Expression of Vascular Endothelial Growth Factor (VEGF) in NSC-34 cells was significantly upregulated upon MSC CM-treatment. MSC CM significantly reduced the expression of the cytokines TNFα and IL-6 and iNOS both in transgenic and non-transgenic astrocytes. Gene expression of the neuroprotective chemokine Fractalkine (CX3CL1) was also upregulated in mutant SOD1G93A transgenic astrocytes by MSC CM treatment. Correspondingly, MSC CM increased the respective receptor, CX3CR1, in mutant SOD1G93A transgenic microglia. Our data demonstrate that MSC modulate motor neuronal and glial response to apoptosis and inflammation. MSC therefore represent an interesting candidate for further preclinical and clinical evaluation in ALS.
Collapse
Affiliation(s)
- Hui Sun
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Karelle Bénardais
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Nancy Stanslowsky
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Nadine Thau-Habermann
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Niko Hensel
- Center for Systems Neuroscience, Hannover, Germany
- Department of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - DongYa Huang
- Department of Neurology, East Hospital, Tongji University, Shanghai, China
| | - Peter Claus
- Center for Systems Neuroscience, Hannover, Germany
- Department of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover, Germany
- * E-mail:
| |
Collapse
|
32
|
Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 2013; 10:106. [PMID: 23971414 PMCID: PMC3765323 DOI: 10.1186/1742-2094-10-106] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022] Open
Abstract
Background Previous studies have shown beneficial effects of mesenchymal stem cell (MSC) transplantation in central nervous system (CNS) injuries, including traumatic brain injury (TBI). Potential repair mechanisms involve transdifferentiation to replace damaged neural cells and production of growth factors by MSCs. However, few studies have simultaneously focused on the effects of MSCs on immune cells and inflammation-associated cytokines in CNS injury, especially in an experimental TBI model. In this study, we investigated the anti-inflammatory and immunomodulatory properties of MSCs in TBI-induced neuroinflammation by systemic transplantation of MSCs into a rat TBI model. Methods/results MSCs were transplanted intravenously into rats 2 h after TBI. Modified neurologic severity score (mNSS) tests were performed to measure behavioral outcomes. The effect of MSC treatment on neuroinflammation was analyzed by immunohistochemical analysis of astrocytes, microglia/macrophages, neutrophils and T lymphocytes and by measuring cytokine levels [interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-10, IL-17, tumor necrosis factor-α, interferon-γ, RANTES, macrophage chemotactic protein-1, macrophage inflammatory protein 2 and transforming growth factor-β1] in brain homogenates. The immunosuppression-related factors TNF-α stimulated gene/protein 6 (TSG-6) and nuclear factor-κB (NF-κB) were examined by reverse transcription-polymerase chain reaction and Western blotting. Intravenous MSC transplantation after TBI was associated with a lower density of microglia/macrophages and peripheral infiltrating leukocytes at the injury site, reduced levels of proinflammatory cytokines and increased anti-inflammatory cytokines, possibly mediated by enhanced expression of TSG-6, which may suppress activation of the NF-κB signaling pathway. Conclusions The results of this study suggest that MSCs have the ability to modulate inflammation-associated immune cells and cytokines in TBI-induced cerebral inflammatory responses. This study thus offers a new insight into the mechanisms responsible for the immunomodulatory effect of MSC transplantation, with implications for functional neurological recovery after TBI.
Collapse
Affiliation(s)
- Run Zhang
- The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
De Vocht N, Praet J, Reekmans K, Le Blon D, Hoornaert C, Daans J, Berneman Z, Van der Linden A, Ponsaerts P. Tackling the physiological barriers for successful mesenchymal stem cell transplantation into the central nervous system. Stem Cell Res Ther 2013; 4:101. [PMID: 23998480 PMCID: PMC3854758 DOI: 10.1186/scrt312] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past decade a lot of research has been performed towards the therapeutic use of mesenchymal stem cells (MSCs) in neurodegenerative and neuroinflammatory diseases. MSCs have shown to be beneficial in different preclinical studies of central nervous system (CNS) disorders due to their immunomodulatory properties and their capacity to secrete various growth factors. Nevertheless, most of the transplanted cells die within the first hours after transplantation and induce a neuroinflammatory response. In order to increase the efficacy of MSC transplantation, it is thus imperative to completely characterise the mechanisms mediating neuroinflammation and cell death following MSC transplantation into the CNS. Consequently, different components of these cell death- and neuroinflammation-inducing pathways can be targeted in an attempt to improve the therapeutic potential of MSCs for CNS disorders.
Collapse
|
34
|
Rahmat Z, Jose S, Ramasamy R, Vidyadaran S. Reciprocal interactions of mouse bone marrow-derived mesenchymal stem cells and BV2 microglia after lipopolysaccharide stimulation. Stem Cell Res Ther 2013; 4:12. [PMID: 23356521 PMCID: PMC3706938 DOI: 10.1186/scrt160] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/21/2013] [Indexed: 12/19/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are immunosuppressive, but we lack an understanding of how these adult stem cells are in turn affected by immune cells and the surrounding tissue environment. As MSCs have stromal functions and exhibit great plasticity, the influence of an inflamed microenvironment on their responses is important to determine. MSCs downregulate microglial inflammatory responses, and here we describe the mutual effects of coculturing mouse bone marrow MSCs with BV2 microglia in a lipopolysaccharide (LPS) inflammatory paradigm. Methods Mouse MSCs were cultured from femoral and tibial bone marrow aspirates and characterized. MSCs were cocultured with BV2 microglia at four seeding-density ratios (1:0.2, 1:0.1, 1:0.02, and 1:0.01 (BV2/MSC)), and stimulated with 1 μg/ml LPS. In certain assays, MSCs were separated from BV2 cells with a cell-culture insert to determine the influence of soluble factors on downstream responses. Inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and chemokine (C-C motif) ligand 2 (CCL2) were measured in cocultures, and MSC and BV2 chemotactic ability determined by migration assays. Results We demonstrated MSCs to increase expression of NO and IL-6 and decrease TNF-α in LPS-treated cocultures. These effects are differentially mediated by soluble factors and cell-to-cell contact. In response to an LPS stimulus, MSCs display distinct behaviors, including expressing IL-6 and very high levels of the chemokine CCL2. Microglia increase their migration almost fourfold in the presence of LPS, and interestingly, MSCs provide an equal impetus for microglia locomotion. MSCs do not migrate toward LPS but migrate toward microglia, with their chemotaxis increasing when microglia are activated. Similarly, MSCs do not produce NO when exposed to LPS, but secrete large amounts when exposed to soluble factors from activated microglia. This demonstrates that certain phenotypic changes of MSCs are governed by inflammatory microglia, and not by the inflammatory stimulus. Nonetheless, LPS appears to "prime" the NO-secretory effects of MSCs, as prior treatment with LPS triggers a bigger NO response from MSCs after exposure to microglial soluble factors. Conclusions These effects demonstrate the multifaceted and reciprocal interactions of MSCs and microglia within an inflammatory milieu.
Collapse
|
35
|
Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. Brain Struct Funct 2013; 219:293-302. [PMID: 23288255 DOI: 10.1007/s00429-012-0500-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022]
Abstract
Physical exercise has an important influence on brain plasticity, which affects the neuron-glia interaction. Astrocytes are susceptible to plasticity, and induce and stabilize synapses, regulate the concentration of various molecules, and support neuronal energy metabolism. The aim of our study was to investigate whether physical exercise is capable of altering the morphology, density and expression of glial fibrillary acidic protein (GFAP) in astrocytes from the CA1 region of rat hippocampus. Thirteen male rats were divided in two groups: sedentary (n = 6) and exercise (n = 7). The animals in the exercise group were submitted to a protocol of daily physical exercise on a treadmill for four consecutive weeks. GFAP immunoreactivity was evaluated using optical densitometry and the morphological analyses were an adaptation of Sholl's concentric circles method. Our results show that physical exercise is capable of increasing the density of GFAP-positive astrocytes as well as the regional and cellular GFAP expression. In addition, physical exercise altered astrocytic morphology as shown by the increase observed in the degree of ramification in the lateral quadrants and in the length of the longest astrocytic processes in the central quadrants. Our data demonstrate important changes in astrocytes promoted by physical exercise, supporting the idea that these cells are involved in regulating neural activity and plasticity.
Collapse
|