1
|
Łukowicz K, Grygier B, Basta-Kaim A. Emerging role of neural stem/progenitor cell secretome in brain inflammatory response modulation. Pharmacol Rep 2025:10.1007/s43440-025-00733-6. [PMID: 40387992 DOI: 10.1007/s43440-025-00733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
Adult stem cells residing in the body's tissues are responsible for the regeneration and replacement of old cells by new ones, thanks to their ability to differentiate. Scientific research increasingly focuses on the regeneration processes associated with these cells and the ability to modulate the microenvironment in which they are located. The modulatory effect can occur through direct interactions of stem cells with other cells or through their paracrine activity by releasing biologically active substances. For the nervous system, neural stem/progenitor cells are located in the subgranular zone in the hippocampal dentate gyrus and the subventricular zone around the lateral ventricles. This type of cell, in addition to giving rise to new neurons depending on the physiological state of the body, is also involved in the modulation of the niche in which they are found. This process plays a particular role in inflammation associated with many neurodegenerative diseases, which is connected with increased activity of the immune system cells. In this review article, we wanted to present the biologically active factors found in the neural stem/progenitor cells' secretome, which are key factors that can contribute physiologically to the silencing of inflammatory processes.
Collapse
Affiliation(s)
- Krzysztof Łukowicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland.
| | - Beata Grygier
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., Kraków, 31-343, Poland.
| |
Collapse
|
2
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
3
|
Han X, Zhang M, Yan L, Fu Y, Kou H, Shang C, Wang J, Liu H, Jiang C, Wang J, Cheng T. Role of dendritic cells in spinal cord injury. CNS Neurosci Ther 2024; 30:e14593. [PMID: 38528832 PMCID: PMC10964036 DOI: 10.1111/cns.14593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Inflammation can worsen spinal cord injury (SCI), with dendritic cells (DCs) playing a crucial role in the inflammatory response. They mediate T lymphocyte differentiation, activate microglia, and release cytokines like NT-3. Moreover, DCs can promote neural stem cell survival and guide them toward neuron differentiation, positively impacting SCI outcomes. OBJECTIVE This review aims to summarize the role of DCs in SCI-related inflammation and identify potential therapeutic targets for treating SCI. METHODS Literature in PubMed and Web of Science was reviewed using critical terms related to DCs and SCI. RESULTS The study indicates that DCs can activate microglia and astrocytes, promote T-cell differentiation, increase neurotrophin release at the injury site, and subsequently reduce secondary brain injury and enhance functional recovery in the spinal cord. CONCLUSIONS This review highlights the repair mechanisms of DCs and their potential therapeutic potential for SCI.
Collapse
Affiliation(s)
- Xiaonan Han
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Mingkang Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Liyan Yan
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yikun Fu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hongwei Kou
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chunfeng Shang
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Hongjian Liu
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Chao Jiang
- Department of NeurologyThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jian Wang
- Department of Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Tian Cheng
- Department of OrthopaedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
4
|
Ni W, Ramalingam M, Li Y, Park JH, Dashnyam K, Lee JH, Bloise N, Fassina L, Visai L, De Angelis MGC, Pedraz JL, Kim HW, Hu J. Immunomodulatory and Anti-inflammatory effect of Neural Stem/Progenitor Cells in the Central Nervous System. Stem Cell Rev Rep 2023; 19:866-885. [PMID: 36650367 DOI: 10.1007/s12015-022-10501-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Neuroinflammation is a critical event that responds to disturbed homeostasis and governs various neurological diseases in the central nervous system (CNS). The excessive inflammatory microenvironment in the CNS can adversely affect endogenous neural stem cells, thereby impeding neural self-repair. Therapies with neural stem/progenitor cells (NSPCs) have shown significant inhibitory effects on inflammation, which is mainly achieved through intercellular contact and paracrine signalings. The intercellular contact between NSPCs and immune cells, the activated CNS- resident microglia, and astrocyte plays a critical role in the therapeutic NSPCs homing and immunomodulatory effects. Moreover, the paracrine effect mainly regulates infiltrating innate and adaptive immune cells, activated microglia, and astrocyte through the secretion of bioactive molecules and extracellular vesicles. However, the molecular mechanism involved in the immunomodulatory effect of NSPCs is not well discussed. This article provides a systematic analysis of the immunomodulatory mechanism of NSPCs, discusses efficient ways to enhance its immunomodulatory ability, and gives suggestions on clinical therapy.
Collapse
Affiliation(s)
- Wei Ni
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea. .,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea. .,School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Yumeng Li
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100, Pavia, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100, Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100, Pavia, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | | | - Jose Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain.,Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, 28029, Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea. .,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
Prodjinotho UF, Gres V, Henkel F, Lacorcia M, Dandl R, Haslbeck M, Schmidt V, Winkler AS, Sikasunge C, Jakobsson PJ, Henneke P, Esser-von Bieren J, Prazeres da Costa C. Helminthic dehydrogenase drives PGE 2 and IL-10 production in monocytes to potentiate Treg induction. EMBO Rep 2022; 23:e54096. [PMID: 35357743 PMCID: PMC9066053 DOI: 10.15252/embr.202154096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Immunoregulation of inflammatory, infection‐triggered processes in the brain constitutes a central mechanism to control devastating disease manifestations such as epilepsy. Observational studies implicate the viability of Taenia solium cysts as key factor determining severity of neurocysticercosis (NCC), the most common cause of epilepsy, especially in children, in Sub‐Saharan Africa. Viable, in contrast to decaying, cysts mostly remain clinically silent by yet unknown mechanisms, potentially involving Tregs in controlling inflammation. Here, we show that glutamate dehydrogenase from viable cysts instructs tolerogenic monocytes to release IL‐10 and the lipid mediator PGE2. These act in concert, converting naive CD4+ T cells into CD127−CD25hiFoxP3+CTLA‐4+ Tregs, through the G protein‐coupled receptors EP2 and EP4 and the IL‐10 receptor. Moreover, while viable cyst products strongly upregulate IL‐10 and PGE2 transcription in microglia, intravesicular fluid, released during cyst decay, induces pro‐inflammatory microglia and TGF‐β as potential drivers of epilepsy. Inhibition of PGE2 synthesis and IL‐10 signaling prevents Treg induction by viable cyst products. Harnessing the PGE2‐IL‐10 axis and targeting TGF‐ß signaling may offer an important therapeutic strategy in inflammatory epilepsy and NCC.
Collapse
Affiliation(s)
- Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Vitka Gres
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fiona Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Matthew Lacorcia
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Ramona Dandl
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Veronika Schmidt
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Andrea Sylvia Winkler
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Chummy Sikasunge
- Department of Paraclinicals, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,German Center for Infection and Research (DZIF), Munich, Germany
| |
Collapse
|
6
|
Wei N, Sun Z, Yu J, Jia Y, Zheng P, Tang H, Chen J. Immunological Responses to Transgene-Modified Neural Stem Cells After Transplantation. Front Immunol 2021; 12:697203. [PMID: 34248998 PMCID: PMC8262771 DOI: 10.3389/fimmu.2021.697203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Neural stem cell (NSC) therapy is a promising therapeutic strategy for stroke. Researchers have frequently carried out genetic modification or gene editing of stem cells to improve survival or therapeutic function. However, NSC transplantation carries the risk of immune rejection, and genetic modification or gene-editing might further increase this risk. For instance, recent studies have reported on manipulating the stem cell genome and transplantation via the insertion of an exogenous gene derived from magnetotactic bacteria. However, whether transgene-modified stem cells are capable of inducing immunological reactions has not been explored. Although NSCs rarely express the major histocompatibility complex (MHC), they can still cause some immunological issues. To investigate whether transgene-modified NSCs aggravate immunological responses, we detected the changes in peripheral immune organs and intracerebral astrocytes, glial cells, and MHC-I and MHC-II molecules after the injection of GFP-labeled or mms6-GFP-labeled NSCs in a rat model. Xenogeneic human embryonic kidney (HEK-293T) cells were grafted as a positive control group. Our results indicated that xenogeneic cell transplantation resulted in a strong peripheral splenic response, increased astrocytes, enhanced microglial responses, and upregulation of MHC-I and MHC-II expression on the third day of transplantation. But they decreased obviously except Iba-1 positive cells and MHC-II expression. When injection of both mms6-GFP-labeled NSCs and GFP-labeled NSCs also induced similar responses as HEK-293T cells on the third days, but MHC-I and MHC-II expression decreased 3 weeks after transplantation. In addition, mms6 transgene-modified NSCs did not produce peripheral splenic response responses as well as astrocytes, microglial cells, MHC-I and MHC-II positive cells responses when compared with non-modified NSCs. The present study provides preliminary evidence that transgenic modification does not aggravate immunological responses in NSC transplantation.
Collapse
Affiliation(s)
- Naili Wei
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Guangdong, China
| | - Zhenxing Sun
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jimei Yu
- Department of Nursing, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yanfei Jia
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Peiqi Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Guangdong, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Hailiang Tang, ; Jian Chen,
| | - Jian Chen
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Guangdong, China
- *Correspondence: Hailiang Tang, ; Jian Chen,
| |
Collapse
|
7
|
Xie C, Li X, Zhou X, Li Z, Zhang Y, Zhao L, Hao Y, Zhang GX, Guan Y. TGFβ1 transduction enhances immunomodulatory capacity of neural stem cells in experimental autoimmune encephalomyelitis. Brain Behav Immun 2018; 69:283-295. [PMID: 29203425 DOI: 10.1016/j.bbi.2017.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 11/07/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022] Open
Abstract
Bone marrow-derived neural stem cells (BM-NSCs) have therapeutic effect on EAE, an animal model of multiple sclerosis. However, the beneficial effect is suboptimal due to the limited immunomodulatory capacity of these cells. In this study, we engineered BM-NSCs with inducible TGFβ1, a potent immunosuppressive cytokine, to enhance their anti-inflammatory capacity. We found that i.v. injected TGFβ1-BM-NSCs more effectively suppressed clinical severity, inflammation and demyelination of the central nervous system of EAE mice. Transduction of TGFβ1 resulted in a higher percentage of Tregs and lower percentage of Th1 and Th17 cells in the periphery, with increased production of IL-10, and reduced production of IFN-γ, IL-17 and GM-CSF. Moreover, myelin-specific splenic proliferation was also inhibited more profoundly by TGFβ1-BM-NSCs. We also found that TGFβ1-BM-NSCs have the capacity to switch microglia from M1 to M2 phenotype. On the other hand, transduction of TGFβ1 did not affect proliferative ability and differentiating potential of BM-NSCs in vitro and in vivo. Together, these findings demonstrate that transduction of TGFβ1 significantly enhanced the immunomodulatory capacity of BM-NSCs for EAE treatment, through inducing Tregs and an M2 phenotype of macrophages/microglia, while retaining their capacity for neural cell differentiation. Thus, our study provides an easily accessible, inducible and effective therapy for CNS inflammatory demyelination.
Collapse
Affiliation(s)
- Chong Xie
- Department of Neurology, RenJi Hospital, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Xing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, 710062 Xi'an, China
| | - Xiajun Zhou
- Department of Neurology, RenJi Hospital, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Zezhi Li
- Department of Neurology, RenJi Hospital, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Yuan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, 710062 Xi'an, China
| | - Li Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, 710062 Xi'an, China
| | - Yong Hao
- Department of Neurology, RenJi Hospital, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, PA19107 Philadelphia, USA.
| | - Yangtai Guan
- Department of Neurology, RenJi Hospital, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China.
| |
Collapse
|
8
|
Zhang H, Shao B, Zhuge Q, Wang P, Zheng C, Huang W, Yang C, Wang B, Su DM, Jin K. Cross-talk between human neural stem/progenitor cells and peripheral blood mononuclear cells in an allogeneic co-culture model. PLoS One 2015; 10:e0117432. [PMID: 25658950 PMCID: PMC4319716 DOI: 10.1371/journal.pone.0117432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/22/2014] [Indexed: 12/18/2022] Open
Abstract
Transplantation of human neural stem/progenitor cells (hNSCs) as a regenerative cell replacement therapy holds great promise. However, the underlying mechanisms remain unclear. We, here, focused on the interaction between hNSCs and allogeneic peripheral blood mononuclear cells (PBMCs) in a co-culture model. We found that hNSCs significantly decrease the CD3+ and CD8+ T cells, reduce the gamma delta T cells and increase the regulatory T cells, along with reduced pro-inflammatory cytokines and increased anti-inflammatory cytokines after co-culture. We also found that PBMCs, in turn, significantly promote the proliferation and differentiation of hNSCs. Our data suggest that hNSCs cross-talk with immune cells.
Collapse
Affiliation(s)
- Hongxia Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
| | - Bei Shao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
- * E-mail: (BS); (KJ)
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
| | - Peng Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
| | - Chengcai Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
| | - Weilong Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
| | - Chenqi Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Dong-Ming Su
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
| | - Kunlin Jin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 35000, China
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America
- * E-mail: (BS); (KJ)
| |
Collapse
|
9
|
PGE2/EP4 signaling in peripheral immune cells promotes development of experimental autoimmune encephalomyelitis. Biochem Pharmacol 2013; 87:625-35. [PMID: 24355567 DOI: 10.1016/j.bcp.2013.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/16/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a T cell-mediated inflammatory autoimmune disease model of multiple sclerosis (MS). The inflammatory process is initiated by activation and proliferation of T cells and monocytes and by their subsequent migration into the central nervous system (CNS), where they induce demyelination and neurodegeneration. Prostaglandin E2 (PGE2) - synthesized by cyclooxygenase 2 (COX-2) - has both pro- and anti-inflammatory potential, which is translated via four different EP receptors. We hypothesized that PGE2 synthesized in the preclinical phase by peripheral immune cells exerts pro-inflammatory properties in the EAE model. To investigate this, we used a bone marrow transplantation model, which enables PGE2 synthesis or EP receptor expression to be blocked specifically in peripheral murine immune cells. Our results reveal that deletion of COX-2 or its EP4 receptor in bone marrow-derived cells leads to a significant delay in the onset of EAE. This effect is due to an impaired preclinical inflammatory process indicated by a reduced level of the T cell activating interleukin-6 (IL-6), reduced numbers of T cells and of the T cell secreted interleukin-17 (IL-17) in the blood of mice lacking COX-2 or EP4 in peripheral immune cells. Moreover, mice lacking COX-2 or EP4 in bone marrow-derived cells show a reduced expression of matrix metalloproteinase 9 (MMP9), which results in decreased infiltration of monocytes and T cells into the CNS. In conclusion, our data demonstrate that PGE2 synthesized by monocytes in the early preclinical phase promotes the development of EAE in an EP4 receptor dependent manner.
Collapse
|