1
|
Bi Z, Zhang Q, Gao H, Ge H, Zhan J, Yang M, Bu B. The JAK1/3 Inhibitor Tofacitinib Regulates Th Cell Profiles and Humoral Immune Responses in Myasthenia Gravis. Muscle Nerve 2025; 71:474-486. [PMID: 39821232 DOI: 10.1002/mus.28348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
INTRODUCTION/AIMS Tofacitinib, a first-generation Janus kinase (JAK) 1/3 inhibitor, is commonly used for treating ulcerative colitis and rheumatoid arthritis. However, its role in myasthenia gravis (MG) remains unclear. This study aimed to evaluate the immunomodulatory effects of tofacitinib on experimental autoimmune myasthenia gravis (EAMG) and peripheral blood mononuclear cells (PBMCs) from patients with MG. METHODS Flow cytometry, enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR), and Western blot were used to evaluate the effects of tofacitinib on T helper (Th) cell profiles, humoral immune responses, and the JAK-signal transducer and activator of transcription (STAT) pathway proteins. RESULTS In vivo, tofacitinib significantly ameliorated EAMG severity in rats, reducing the proportions of Th1, Th17 and memory B cells, and anti-acetylcholine receptor (AChR) antibodies levels, while increasing the proportions of regulatory T (Treg) cells. In vitro, tofacitinib administration resulted in a significant decrease in the proportions of Th1 and IgG-secreting B cell, and a significant upregulation of Treg cells in mononuclear cells (MNCs) from EAMG rats, which was consistent with findings in PBMCs from MG patients. Further analysis revealed that tofacitinib inhibited CD4+ T cell differentiation into Th1 by decreasing phosphorylated STAT1 levels, while promoting Treg differentiation via increased phosphorylated STAT5 levels in MNCs from EAMG rats. DISCUSSION Tofacitinib modulates Th cell profiles and humoral immune responses by targeting the JAK-STAT pathway, suggesting its potential as a therapeutic candidate for MG. Further clinical studies are warranted to evaluate the efficacy and safety of tofacitinib in MG patients.
Collapse
Affiliation(s)
- Zhuajin Bi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Huajie Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Huizhen Ge
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayang Zhan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Yamamoto Y, Matsui N, Uzawa A, Ozawa Y, Kanai T, Oda F, Kondo H, Ohigashi I, Takizawa H, Kondo K, Sugano M, Kitaichi T, Hata H, Kaji R, Kuwabara S, Yamamura T, Izumi Y. Intrathymic Plasmablasts Are Affected in Patients With Myasthenia Gravis With Active Disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1087. [PMID: 34561276 PMCID: PMC8474506 DOI: 10.1212/nxi.0000000000001087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 08/04/2021] [Indexed: 12/31/2022]
Abstract
Background and Objectives To investigate intrathymic B lymphopoiesis in patients with myasthenia gravis (MG) and explore thymus pathology associated with clinical impact. Methods Thymic lymphocytes from 15 young patients without MG, 22 adult patients without MG, 14 patients with MG without thymoma, and 11 patients with MG with thymoma were subjected to flow cytometry analysis of T follicular helper (Tfh), naive B, memory B, plasmablasts, CD19+B220high thymic B cells, B-cell activating factor receptor, and C-X-C chemokine receptor 5 (CXCR5). Peripheral blood mononuclear cells of 16 healthy subjects and 21 untreated patients with MG were also analyzed. Immunologic values were compared, and correlations between relevant values and clinical parameters were evaluated. Results The frequencies of circulating and intrathymic plasmablasts were significantly higher in patients with MG than controls. On the other hand, the frequency of CD19+B220high thymic B cells was not increased in MG thymus. We observed a significant increase in CXCR5 expression on plasmablasts in MG thymus and an increased frequency of intrathymic plasmablasts that was correlated with preoperative disease activity. The frequency of intrathymic Tfh cells was significantly lower in patients who received immunosuppressive (IS) therapy than those without IS therapy. However, there was no significant difference in the frequency of intrathymic plasmablasts irrespective of IS therapy. Discussion Our findings confirmed a correlation between increased frequency of intrathymic plasmablasts and disease activity before thymectomy. We postulate that activated intrathymic plasmablasts endow pathogenic capacity in MG.
Collapse
Affiliation(s)
- Yohei Yamamoto
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Naoko Matsui
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan.
| | - Akiyuki Uzawa
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Yukiko Ozawa
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Tetsuya Kanai
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Fumiko Oda
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Hiroyuki Kondo
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Izumi Ohigashi
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Hiromitsu Takizawa
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Kazuya Kondo
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mikio Sugano
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Takashi Kitaichi
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Hiroki Hata
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ryuji Kaji
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Satoshi Kuwabara
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Takashi Yamamura
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Yuishin Izumi
- From the Department of Neurology (Y.Y., N.M., Y.I.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (A.U., Y.O., T. Kanai, F.O., S.K.), Graduate School of Medicine, Chiba University; Division of Experimental Immunology (H.K., I.O.), Institute of Advanced Medical Sciences, Tokushima University; Department of Thoracic, Endocrine Surgery and Oncology (H.T.), Tokushima University Graduate School of Biomedical Sciences; Department of Oncological Medical Services (K.K.), Tokushima University Graduate School of Biomedical Sciences; Department of Cardiovascular Surgery (M.S., T. Kitaichi, H.H.), Tokushima University Graduate School of Biomedical Sciences; Department of Neurology (R.K.), National Hospital Organization Utano Hospital, Kyoto; and Department of Immunology (T.Y.), National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
6
|
Cavalcante P, Marcuzzo S, Franzi S, Galbardi B, Maggi L, Motta T, Ghislandi R, Buzzi A, Spinelli L, Novellino L, Baggi F, Antozzi C, Conforti F, De Pas TM, Barberis M, Bernasconi P, Mantegazza R. Epstein-Barr virus in tumor-infiltrating B cells of myasthenia gravis thymoma: an innocent bystander or an autoimmunity mediator? Oncotarget 2017; 8:95432-95449. [PMID: 29221139 PMCID: PMC5707033 DOI: 10.18632/oncotarget.20731] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
The thymus plays a key role in myasthenia gravis (MG), a B cell-mediated autoimmune disorder affecting neuromuscular junction. Most MG patients have thymic abnormalities, including hyperplasia and thymoma, a neoplasm of thymic epithelial cells. Epstein-Barr virus (EBV) is associated with autoimmune diseases and tumors. Recently, we showed EBV persistence and reactivation in hyperplastic MG thymuses, suggesting that EBV might contribute to intra-thymic B cell dysregulation in MG patients. Here, we investigated EBV involvement in thymoma-associated MG, by searching for EBV markers in MG (n=26) and non-MG (n=14) thymomas. EBV DNA and EBV-encoded small nuclear RNA (EBER) 1 transcript were detected in 14/26 (53.8%) and 22/26 (84.6%) MG thymomas, and only in 3 of 14 (21.4%) non-MG thymomas. Latent EBNA2 and late gp350/220 lytic transcripts were undetectable in all, but one, thymomas, and early lytic BZLF1 transcript was absent in all samples, suggesting that early infection events and EBV reactivation were very rare in thymomas. EBER1 and 2-positive cells were detected in MG, but not in non-MG, thymomas, as well as cells expressing EBV latency proteins (EBNA1, LMP1, LMP2A), that were mainly of B cell phenotype, indicating EBV association with MG rather than with thymoma. Toll-like receptor (TLR) 3 transcriptional levels were higher in MG than non-MG thymomas and positively correlated with EBER1 levels, suggesting a role for EBERs in TLR3 activation. Our findings show that EBV is commonly present in thymoma-infiltrating B cells of myasthenic patients, indicating a contribution of EBV to B cell-mediated autoreactivity in MG associated with thymic tumor.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Sara Franzi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Barbara Galbardi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Lorenzo Maggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Teresio Motta
- Department of Pathological Anatomy, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Raffaella Ghislandi
- Department of Pathological Anatomy, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Antonella Buzzi
- Department of Pathological Anatomy, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Luisella Spinelli
- Department of General Surgery, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Lorenzo Novellino
- Department of General Surgery, ASST - Bergamo Est Ospedale Bolognini Seriate, 24068 Seriate Bergamo, Italy
| | - Fulvio Baggi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Carlo Antozzi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Fabio Conforti
- Unit of Sarcomas and Thymomas, European Institute of Oncology, 20136 Milan, Italy
| | | | - Massimo Barberis
- Histopathology and Molecular Diagnostics Unit, European Institute of Oncology, 20136 Milan, Italy
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| |
Collapse
|
8
|
Yi JS, Guidon A, Sparks S, Osborne R, Juel VC, Massey JM, Sanders DB, Weinhold KJ, Guptill JT. Characterization of CD4 and CD8 T cell responses in MuSK myasthenia gravis. J Autoimmun 2013; 52:130-8. [PMID: 24378287 DOI: 10.1016/j.jaut.2013.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/08/2013] [Indexed: 01/22/2023]
Abstract
Muscle specific tyrosine kinase myasthenia gravis (MuSK MG) is a form of autoimmune MG that predominantly affects women and has unique clinical features, including prominent bulbar weakness, muscle atrophy, and excellent response to therapeutic plasma exchange. Patients with MuSK MG have predominantly IgG4 autoantibodies directed against MuSK on the postsynaptic muscle membrane. Lymphocyte functionality has not been reported in this condition. The goal of this study was to characterize T cell responses in patients with MuSK MG. Intracellular production of IFN-gamma, TNF-alpha, IL-2, IL-17, and IL-21 by CD4+ and CD8+ T cells was measured by polychromatic flow cytometry in peripheral blood samples from 11 Musk MG patients and 10 healthy controls. Only one MuSK MG patient was not receiving immunosuppressive therapy. Regulatory T cells (Treg) were also included in our analysis to determine if changes in T cell function were due to altered Treg frequencies. CD8+ T cells from MuSK MG patients had higher frequencies of polyfunctional responses than controls, and CD4+ T cells had higher IL-2, TNF-alpha, and IL-17. MuSK MG patients had a higher percentage of CD4+ T cells producing combinations of IFN-gamma/IL-2/TNF-gamma, TNF-alpha/IL-2, and IFN-gamma/TNF-alpha. Interestingly, Treg numbers and CD39 expression were not different from control values. MuSK MG patients had increased frequencies of Th1 and Th17 cytokines and were primed for polyfunctional proinflammatory responses that cannot be explained by a defect in CD39 expression or Treg number.
Collapse
Affiliation(s)
- J S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, 204 SORF (Bldg. 41), 915 S. LaSalle Street, Box 2926, Durham, NC 27710, USA
| | - A Guidon
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, DUMC Box 3403, Durham, NC 27710, USA
| | - S Sparks
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, 204 SORF (Bldg. 41), 915 S. LaSalle Street, Box 2926, Durham, NC 27710, USA
| | - R Osborne
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, 204 SORF (Bldg. 41), 915 S. LaSalle Street, Box 2926, Durham, NC 27710, USA
| | - V C Juel
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, DUMC Box 3403, Durham, NC 27710, USA
| | - J M Massey
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, DUMC Box 3403, Durham, NC 27710, USA
| | - D B Sanders
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, DUMC Box 3403, Durham, NC 27710, USA
| | - K J Weinhold
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, 204 SORF (Bldg. 41), 915 S. LaSalle Street, Box 2926, Durham, NC 27710, USA
| | - J T Guptill
- Neuromuscular Division, Department of Neurology, Duke University Medical Center, DUMC Box 3403, Durham, NC 27710, USA.
| |
Collapse
|