1
|
Morrison VE, Bix GJ. The meal Maketh the Microglia: Why studying microglial phagocytosis is critical to stroke research. Neurochem Int 2023; 164:105488. [PMID: 36707032 DOI: 10.1016/j.neuint.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Affiliation(s)
- Vivianne E Morrison
- Tulane University School of Medicine Center for Clinical Neuroscience Research Center, United States
| | - Gregory J Bix
- Tulane University School of Medicine Center for Clinical Neuroscience Research Center, United States.
| |
Collapse
|
2
|
Morini R, Bizzotto M, Perrucci F, Filipello F, Matteoli M. Strategies and Tools for Studying Microglial-Mediated Synapse Elimination and Refinement. Front Immunol 2021; 12:640937. [PMID: 33708226 PMCID: PMC7940197 DOI: 10.3389/fimmu.2021.640937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023] Open
Abstract
The role of microglia in controlling synapse homeostasis is becoming increasingly recognized by the scientific community. In particular, the microglia-mediated elimination of supernumerary synapses during development lays the basis for the correct formation of neuronal circuits in adulthood, while the possible reactivation of this process in pathological conditions, such as schizophrenia or Alzheimer's Disease, provides a promising target for future therapeutic strategies. The methodological approaches to investigate microglial synaptic engulfment include different in vitro and in vivo settings. Basic in vitro assays, employing isolated microglia and microbeads, apoptotic membranes, liposomes or synaptosomes allow the quantification of the microglia phagocytic abilities, while co-cultures of microglia and neurons, deriving from either WT or genetically modified mice models, provide a relatively manageable setting to investigate the involvement of specific molecular pathways. Further detailed analysis in mice brain is then mandatory to validate the in vitro assays as representative for the in vivo situation. The present review aims to dissect the main technical approaches to investigate microglia-mediated phagocytosis of neuronal and synaptic substrates in critical developmental time windows.
Collapse
Affiliation(s)
- Raffaella Morini
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Matteo Bizzotto
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Fabio Perrucci
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Fabia Filipello
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Consiglio Nazionale Delle Ricerche (CNR), Institute of Neuroscience - URT Humanitas, Rozzano, Italy
| |
Collapse
|
3
|
Coquenlorge S, Van Landeghem L, Jaulin J, Cenac N, Vergnolle N, Duchalais E, Neunlist M, Rolli-Derkinderen M. The arachidonic acid metabolite 11β-ProstaglandinF2α controls intestinal epithelial healing: deficiency in patients with Crohn's disease. Sci Rep 2016; 6:25203. [PMID: 27140063 PMCID: PMC4853710 DOI: 10.1038/srep25203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
In healthy gut enteric glial cells (EGC) are essential to intestinal epithelial barrier (IEB) functions. In Crohn's Disease (CD), both EGC phenotype and IEB functions are altered, but putative involvement of EGC in CD pathogenesis remains unknown and study of human EGC are lacking. EGC isolated from CD and control patients showed similar expression of glial markers and EGC-derived soluble factors (IL6, TGF-β, proEGF, GSH) but CD EGC failed to increase IEB resistance and healing. Lipid profiling showed that CD EGC produced decreased amounts of 15-HETE, 18-HEPE, 15dPGJ2 and 11βPGF2α as compared to healthy EGC. They also had reduced expression of the L-PGDS and AKR1C3 enzymes. Produced by healthy EGC, the 11βPGF2 activated PPARγ receptor of intestinal epithelial cells to induce cell spreading and IEB wound repair. In addition to this novel healing mechanism our data show that CD EGC presented impaired ability to promote IEB functions through defect in L-PGDS-AKR1C3-11βPGF2α dependent pathway.
Collapse
Affiliation(s)
- Sabrina Coquenlorge
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Laurianne Van Landeghem
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Julie Jaulin
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Nicolas Cenac
- Centre de Pathophysiologie, CHU Purpan, Toulouse, France
- INSERM UMR-1043 CNRS UMR-5282, Toulouse, France
| | - Nathalie Vergnolle
- Centre de Pathophysiologie, CHU Purpan, Toulouse, France
- INSERM UMR-1043 CNRS UMR-5282, Toulouse, France
| | - Emilie Duchalais
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Michel Neunlist
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| | - Malvyne Rolli-Derkinderen
- INSERM, UMR913, Nantes, F-44093, France
- Université Nantes, Nantes, F-44093, France
- Institut des Maladies de l’Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, F-44093, France
- Centre de Recherche en Nutrition Humaine, Nantes, F-44093, France
| |
Collapse
|
4
|
Slone EA, Pope MR, Fleming SD. Phospholipid scramblase 1 is required for β2-glycoprotein I binding in hypoxia and reoxygenation-induced endothelial inflammation. J Leukoc Biol 2015. [PMID: 26216936 DOI: 10.1189/jlb.3a1014-480r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple pathologic conditions, including hemorrhage, tumor angiogenesis, and ischemia-reperfusion events, will result in hypoxia and subsequent reperfusion. Previous studies have analyzed the lipid changes within whole tissues and indicated that ischemia-reperfusion altered tissue and cellular phospholipids. Using an in vitro cell culture model of hypoxia and reoxygenation, we examined the endothelial lipid changes. We hypothesized that phospholipid scramblase 1, a protein that regulates bilayer asymmetry, is involved in altering the phospholipids of endothelial cells during hypoxia, a component of ischemia, leading to β2-glycoprotein I and IgM binding and subsequent lipid-mediated, inflammatory responses. We have completed the first comprehensive study of steady-state phospholipid scramblase 1 mRNA levels, protein expression, and activity under conditions of hypoxia and reoxygenation. Phospholipid scramblase 1 regulates phosphatidylserine exposure in response to oxygen stress, leading to β2-glycoprotein I and IgM binding and lipid-mediated, inflammatory responses.
Collapse
Affiliation(s)
| | - Michael R Pope
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|