1
|
Arve-Butler S, Moorman CD. A comprehensive overview of tolerogenic vaccine adjuvants and their modes of action. Front Immunol 2024; 15:1494499. [PMID: 39759532 PMCID: PMC11695319 DOI: 10.3389/fimmu.2024.1494499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Tolerogenic vaccines represent a therapeutic approach to induce antigen-specific immune tolerance to disease-relevant antigens. As general immunosuppression comes with significant side effects, including heightened risk of infections and reduced anti-tumor immunity, antigen-specific tolerance by vaccination would be game changing in the treatment of immunological conditions such as autoimmunity, anti-drug antibody responses, transplantation rejection, and hypersensitivity. Tolerogenic vaccines induce antigen-specific tolerance by promoting tolerogenic antigen presenting cells, regulatory T cells, and regulatory B cells, or by suppressing or depleting antigen-specific pathogenic T and B cells. The design of tolerogenic vaccines vary greatly, but they all deliver a disease-relevant antigen with or without a tolerogenic adjuvant. Tolerogenic adjuvants are molecules which mediate anti-inflammatory or immunoregulatory effects and enhance vaccine efficacy by modulating the immune environment to favor a tolerogenic immune response to the vaccine antigen. Tolerogenic adjuvants act through several mechanisms, including immunosuppression, modulation of cytokine signaling, vitamin signaling, and modulation of immunological synapse signaling. This review seeks to provide a comprehensive examination of tolerogenic adjuvants currently utilized in tolerogenic vaccines, describing their mechanism of action and examples of their use in human clinical trials and animal models of disease.
Collapse
Affiliation(s)
- Sabine Arve-Butler
- Amgen R&D Postdoctoral Fellows Program, Amgen Inc, South San Francisco, CA, United States
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | | |
Collapse
|
2
|
Rahiman N, Zamani P, Arabi L, Alavizadeh SH, Nikpoor A, Mashreghi M, Badiee A, Jaafari MR. Novel liposomal glatiramer acetate: Preparation and immunomodulatory evaluation in murine model of multiple sclerosis. Int J Pharm 2023; 648:123620. [PMID: 37981250 DOI: 10.1016/j.ijpharm.2023.123620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
The frequent administration rate required for Glatiramer acetate (GA), a first-line therapy for Multiple sclerosis (MS), poses patient compliance issues. Only a small portion of the subcutaneously administered GA is available for phagocytosis by macrophages, as most of it is hydrolyzed at its administration site or excreted renally. To unravel these hurdles, we have prepared liposomal formulations of GA through thin film-hydration method plus extrusion. The clinical and histopathological efficacy of GA-loaded liposomes were assessed in prophylactic and therapeutic manners on murine model of MS (experimental autoimmune encephalomyelitis (EAE)). The selected GA liposomal formulation showed favorable size (275 nm on average), high loading efficiency, and high macrophage localization. Moreover, administration of GA-liposomes in mice robustly suppressed the inflammatory responses and decreased the inflammatory and demyelinated lesion regions in CNS compared to the free GA with subsequent reduction of the EAE clinical score. Our study indicated that liposomal GA could be served as a reliable nanomedicine-based platform to hopefully curb MS-related aberrant autoreactive immune responses with higher efficacy, longer duration of action, fewer administration frequencies, and higher delivery rate to macrophages. This platform has the potential to be introduced as a vaccine for MS after clinical translation and merits further investigations.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aminreza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Martin SJ, Schneider R. Multiple sclerosis and exercise-A disease-modifying intervention of mice or men? Front Neurol 2023; 14:1190208. [PMID: 37885474 PMCID: PMC10598461 DOI: 10.3389/fneur.2023.1190208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Research suggests that physical exercise can promote an anti-inflammatory and neuroprotective state. If so, increasing or optimizing exercise could be considered a 'disease-modifying intervention' in neuroinflammatory diseases, such as multiple sclerosis (MS). Exercise intervention studies conducted in animal models of MS are promising. Various aerobic and strength training regimes have been shown to delay disease onset and to reduce both the clinical and pathological disease severity in mice. However, fundamental differences between the physiology of animals and humans, the disease states studied, and the timing of exercise intervention are significant. In animal models of MS, most exercise interventions begin before disease initiation and before any clinical sign of disease. In contrast, studies in humans recruit participants on average nearly a decade after diagnosis and often once disability is established. If, as is thought to be the case for disease-modifying treatments, the immunomodulatory effect of exercise decreases with advancing disease duration, current studies may therefore fail to detect the true disease-modifying potential. Clinical studies in early disease cohorts are needed to determine the role of exercise as a disease-modifying intervention for people with MS.
Collapse
Affiliation(s)
- Sarah-Jane Martin
- BARLO MS Center, St. Michael's Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Infection & Immunity, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Raphael Schneider
- BARLO MS Center, St. Michael's Hospital, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Keeler GD, Gaddie CD, Sagadevan AS, Senior KG, Côté I, Rechdan M, Min D, Mahan D, Poma B, Hoffman BE. Induction of antigen-specific tolerance by hepatic AAV immunotherapy regardless of T cell epitope usage or mouse strain background. Mol Ther Methods Clin Dev 2022; 28:177-189. [PMID: 36700122 PMCID: PMC9849872 DOI: 10.1016/j.omtm.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
In vivo induction of antigen (Ag)-specific regulatory T cells (Treg) is considered the holy grail of therapeutic strategies for restoring tolerance in autoimmunity. Unfortunately, in the autoimmune disease multiple sclerosis, an effective and durable therapy targeting the diverse repertoire of emerging Ags without compromising the patient's natural immunity has remained elusive. To address this deficiency, we have developed an Ag-specific adeno-associated virus (AAV) immunotherapy that will restore tolerance in a Treg-dependent manner. Using multiple strains of mice with different genetic and immunological backgrounds, we demonstrate that a liver directed AAV vector expressing a single transgene can prevent experimental autoimmune encephalomyelitis from developing and effectively mitigate pre-existing or established disease that was induced by one or more auto-reactive myelin oligodendrocyte glycoprotein-derived peptides. Overall, the results suggests that AAV can efficiently restore Ag-specific immune tolerance to an immunogenic protein that is neither restricted by the major histocompatibility complex haplotype, nor by the specific antigenic epitope(s) presented. These findings may pave the way for developing a comprehensive Ag-specific immunotherapy that does not require prior knowledge of the specific immunogenic epitopes and that may prove to be universally applicable to all MS patients, and adaptable for other autoimmune diseases.
Collapse
Affiliation(s)
- Geoffrey D. Keeler
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Cristina D. Gaddie
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Addelynn S. Sagadevan
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA,Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kevin G. Senior
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Isabelle Côté
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Michaela Rechdan
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daniel Min
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - David Mahan
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bianca Poma
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brad E. Hoffman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA,Genetics Institute, University of Florida, Gainesville, FL 32610, USA,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA,Corresponding author: Brad E. Hoffman, PhD, University of Florida, 2033 Mowry Road Office-207, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Mahadik R, Kiptoo P, Tolbert T, Siahaan TJ. Immune Modulation by Antigenic Peptides and Antigenic Peptide Conjugates for Treatment of Multiple Sclerosis. MEDICAL RESEARCH ARCHIVES 2022; 10:10.18103/mra.v10i5.2804. [PMID: 36381196 PMCID: PMC9648198 DOI: 10.18103/mra.v10i5.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The immune system defends our body by fighting infection from pathogens utilizing both the innate and adaptive immune responses. The innate immune response is generated rapidly as the first line of defense. It is followed by the adaptive immune response that selectively targets infected cells. The adaptive immune response is generated more slowly, but selectively, by targeting a wide range of foreign particles (i.e., viruses or bacteria) or molecules that enter the body, known as antigens. Autoimmune diseases are the results of immune system glitches, where the body's adaptive system recognizes self-antigens as foreign. Thus, the host immune system attacks the self-tissues or organs with a high level of inflammation and causes debilitation in patients. Many current treatments for autoimmune diseases (i.e., multiple sclerosis (MS), rheumatoid arthritis (RA)) have been effective but lead to adverse side effects due to general immune system suppression, which makes patients vulnerable to opportunistic infections. To counter these negative effects, many different avenues of antigen specific treatments are being developed to selectively target the autoreactive immune cells for a specific self-antigen or set of self-antigens while not compromising the general immune system. These approaches include soluble antigenic peptides, bifunctional peptide inhibitors (BPI) including IDAC and Fc-BPI, polymer conjugates, and peptide-drug conjugates. Here, various antigen-specific methods of potential treatments, their efficacy, and limitations will be discussed along with the potential mechanisms of action.
Collapse
Affiliation(s)
- Rucha Mahadik
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | | | - Tom Tolbert
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| |
Collapse
|
6
|
Derdelinckx J, Cras P, Berneman ZN, Cools N. Antigen-Specific Treatment Modalities in MS: The Past, the Present, and the Future. Front Immunol 2021; 12:624685. [PMID: 33679769 PMCID: PMC7933447 DOI: 10.3389/fimmu.2021.624685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Antigen-specific therapy for multiple sclerosis may lead to a more effective therapy by induction of tolerance to a wide range of myelin-derived antigens without hampering the normal surveillance and effector function of the immune system. Numerous attempts to restore tolerance toward myelin-derived antigens have been made over the past decades, both in animal models of multiple sclerosis and in clinical trials for multiple sclerosis patients. In this review, we will give an overview of the current approaches for antigen-specific therapy that are in clinical development for multiple sclerosis as well provide an insight into the challenges for future antigen-specific treatment strategies for multiple sclerosis.
Collapse
Affiliation(s)
- Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Division of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Patrick Cras
- Division of Neurology, Antwerp University Hospital, Edegem, Belgium.,Born Bunge Institute, Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
7
|
Recent Advances in Antigen-Specific Immunotherapies for the Treatment of Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060333. [PMID: 32486045 PMCID: PMC7348736 DOI: 10.3390/brainsci10060333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system and is considered to be the leading non-traumatic cause of neurological disability in young adults. Current treatments for MS comprise long-term immunosuppressant drugs and disease-modifying therapies (DMTs) designed to alter its progress with the enhanced risk of severe side effects. The Holy Grail for the treatment of MS is to specifically suppress the disease while at the same time allow the immune system to be functionally active against infectious diseases and malignancy. This could be achieved via the development of immunotherapies designed to specifically suppress immune responses to self-antigens (e.g., myelin antigens). The present study attempts to highlight the various antigen-specific immunotherapies developed so far for the treatment of multiple sclerosis (e.g., vaccination with myelin-derived peptides/proteins, plasmid DNA encoding myelin epitopes, tolerogenic dendritic cells pulsed with encephalitogenic epitopes of myelin proteins, attenuated autologous T cells specific for myelin antigens, T cell receptor peptides, carriers loaded/conjugated with myelin immunodominant peptides, etc), focusing on the outcome of their recent preclinical and clinical evaluation, and to shed light on the mechanisms involved in the immunopathogenesis and treatment of multiple sclerosis.
Collapse
|
8
|
White DR, Khedri Z, Kiptoo P, Siahaan TJ, Tolbert TJ. Synthesis of a Bifunctional Peptide Inhibitor-IgG1 Fc Fusion That Suppresses Experimental Autoimmune Encephalomyelitis. Bioconjug Chem 2017; 28:1867-1877. [PMID: 28581731 PMCID: PMC5659714 DOI: 10.1021/acs.bioconjchem.7b00175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that is estimated to affect over 2.3 million people worldwide. The exact cause for this disease is unknown but involves immune system attack and destruction of the myelin protein surrounding the neurons in the central nervous system. One promising class of compounds that selectively prevent the activation of immune cells involved in the pathway leading to myelin destruction are bifunctional peptide inhibitors (BPIs). Treatment with BPIs reduces neurodegenerative symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this work, as an effort to further improve the bioactivity of BPIs, BPI peptides were conjugated to the N- and C-termini of the fragment crystallizable (Fc) region of the human IgG1 antibody. Initially, the two peptides were conjugated to IgG1 Fc using recombinant DNA technology. However, expression in yeast resulted in low yields and one of the peptides being heavily proteolyzed. To circumvent this problem, the poorly expressed peptide was instead produced by solid phase peptide synthesis and conjugated enzymatically using a sortase-mediated ligation. The sortase-mediated method showed near-complete conjugation yield as observed by SDS-PAGE and mass spectrometry in small-scale reactions. This method was scaled up to obtain sufficient quantities for testing the BPI-Fc fusion in mice induced with EAE. Compared to the PBS-treated control, mice treated with the BPI-Fc fusion showed significantly reduced disease symptoms, did not experience weight loss, and showed reduced de-myelination. These results demonstrate that the BPI peptides were highly active at suppressing EAE when conjugated to the large Fc scaffold in this manner.
Collapse
Affiliation(s)
- Derek R. White
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Zahra Khedri
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Ajinomoto Althea Inc., San Diego, California 92121, United States
| | - Paul Kiptoo
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Sekisui XenoTech, LLC, Kansas City, Kansas 66103, United States
| | - Teruna J. Siahaan
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Thomas J. Tolbert
- The Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
9
|
Hartwell BL, Pickens CJ, Leon M, Berkland C. Multivalent Soluble Antigen Arrays Exhibit High Avidity Binding and Modulation of B Cell Receptor-Mediated Signaling to Drive Efficacy against Experimental Autoimmune Encephalomyelitis. Biomacromolecules 2017; 18:1893-1907. [PMID: 28474886 DOI: 10.1021/acs.biomac.7b00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A pressing need exists for antigen-specific immunotherapies (ASIT) that induce selective tolerance in autoimmune disease while avoiding deleterious global immunosuppression. Multivalent soluble antigen arrays (SAgAPLP:LABL), consisting of a hyaluronic acid (HA) linear polymer backbone cografted with multiple copies of autoantigen (PLP) and cell adhesion inhibitor (LABL) peptides, are designed to induce tolerance to a specific multiple sclerosis (MS) autoantigen. Previous studies established that hydrolyzable SAgAPLP:LABL, employing a degradable linker to codeliver PLP and LABL, was therapeutic in experimental autoimmune encephalomyelitis (EAE) in vivo and exhibited antigen-specific binding with B cells, targeted the B cell receptor (BCR), and dampened BCR-mediated signaling in vitro. Our results pointed to sustained BCR engagement as the SAgAPLP:LABL therapeutic mechanism, so we developed a new version of the SAgA molecule using nonhydrolyzable conjugation chemistry, hypothesizing it would enhance and maintain the molecule's action at the cell surface to improve efficacy. "Click SAgA" (cSAgAPLP:LABL) uses hydrolytically stable covalent conjugation chemistry (Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC)) rather than a hydrolyzable oxime bond to attach PLP and LABL to HA. We explored cSAgAPLP:LABL B cell engagement and modulation of BCR-mediated signaling in vitro through flow cytometry binding and calcium flux signaling assays. Indeed, cSAgAPLP:LABL exhibited higher avidity B cell binding and greater dampening of BCR-mediated signaling than hydrolyzable SAgAPLP:LABL. Furthermore, cSAgAPLP:LABL exhibited significantly enhanced in vivo efficacy compared to hydrolyzable SAgAPLP:LABL, achieving equivalent efficacy at one-quarter of the dose. These results indicate that nonhydrolyzable conjugation increased the avidity of cSAgAPLP:LABL to drive in vivo efficacy through modulated BCR-mediated signaling.
Collapse
Affiliation(s)
- Brittany L Hartwell
- Bioengineering Graduate Program, University of Kansas 1520 West 15th Street, Lawrence, Kansas 66045, United States
| | - Chad J Pickens
- Department of Pharmaceutical Chemistry, University of Kansas 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Martin Leon
- Department of Chemistry, University of Kansas 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Cory Berkland
- Bioengineering Graduate Program, University of Kansas 1520 West 15th Street, Lawrence, Kansas 66045, United States.,Department of Pharmaceutical Chemistry, University of Kansas 2095 Constant Avenue, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, University of Kansas 1530 West 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
10
|
Zamanzadeh Z, Ataei M, Nabavi SM, Ahangari G, Sadeghi M, Sanati MH. In Silico Perspectives on the Prediction of the PLP's Epitopes involved in Multiple Sclerosis. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:10-21. [PMID: 28959348 PMCID: PMC5582249 DOI: 10.15171/ijb.1356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 05/29/2016] [Accepted: 03/13/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS). The main cause of the MS is yet to be revealed, but the most probable theory is based on the molecular mimicry that concludes some infections in the activation of T cells against brain auto-antigens that initiate the disease cascade. OBJECTIVES The Purpose of this research is the prediction of the auto-antigen potency of the myelin proteolipid protein (PLP) in multiple sclerosis. MATERIALS AND METHODS As there wasn't any tertiary structure of PLP available in the Protein Data Bank (PDB) and in order to characterize the structural properties of the protein, we modeled this protein using prediction servers. Meta prediction method, as a new perspective in silico, was performed to fi nd PLPs epitopes. For this purpose, several T cell epitope prediction web servers were used to predict PLPs epitopes against Human Leukocyte Antigens (HLA). The overlap regions, as were predicted by most web servers were selected as immunogenic epitopes and were subjected to the BLASTP against microorganisms. RESULTS Three common regions, AA58-74, AA161-177, and AA238-254 were detected as immunodominant regions through meta-prediction. Investigating peptides with more than 50% similarity to that of candidate epitope AA58-74 in bacteria showed a similar peptide in bacteria (mainly consistent with that of clostridium and mycobacterium) and spike protein of Alphacoronavirus 1, Canine coronavirus, and Feline coronavirus. These results suggest that cross reaction of the immune system to PLP may have originated from a bacteria or viral infection, and therefore molecular mimicry might have an important role in the progression of MS. CONCLUSIONS Through reliable and accurate prediction of the consensus epitopes, it is not necessary to synthesize all PLP fragments and examine their immunogenicity experimentally (in vitro). In this study, the best encephalitogenic antigens were predicted based on bioinformatics tools that may provide reliable results for researches in a shorter time and at a lower cost.
Collapse
Affiliation(s)
- Zahra Zamanzadeh
- Department of medical biotechnology. Institute of Medical Genetic, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, 14965/161 Iran
| | - Mitra Ataei
- Department of medical biotechnology. Institute of Medical Genetic, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, 14965/161 Iran
| | - Seyed Massood Nabavi
- Department of Neurology, Faculty of Public Health, Shahed University, Tehran, 18155/159, Iran
| | - Ghasem Ahangari
- Department of medical biotechnology. Institute of Medical Genetic, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, 14965/161 Iran
| | - Mehdi Sadeghi
- Department of medical biotechnology. Institute of Medical Genetic, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, 14965/161 Iran
| | - Mohammad Hosein Sanati
- Department of medical biotechnology. Institute of Medical Genetic, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, 14965/161 Iran
| |
Collapse
|
11
|
Moral MEG, Siahaan TJ. Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases. Curr Top Med Chem 2017; 17:3425-3443. [PMID: 29357802 PMCID: PMC5835217 DOI: 10.2174/1568026618666180118154514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/29/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022]
Abstract
Overexpressed cell-surface receptors are hallmarks of many disease states and are often used as markers for targeting diseased cells over healthy counterparts. Cell adhesion peptides, which are often derived from interacting regions of these receptor-ligand proteins, mimic surfaces of intact proteins and, thus, have been studied as targeting agents for various payloads to certain cell targets for cancers and autoimmune diseases. Because many cytotoxic agents in the free form are often harmful to healthy cells, the use of cell adhesion peptides in targeting their delivery to diseased cells has been studied to potentially reduce required effective doses and associated harmful side-effects. In this review, multiple cell adhesion peptides from extracellular matrix and ICAM proteins were used to selectively direct drug payloads, signal-inhibitor peptides, and diagnostic molecules, to diseased cells over normal counterparts. RGD constructs have been used to improve the selectivity and efficacy of diagnostic and drug-peptide conjugates against cancer cells. From this precedent, novel conjugates of antigenic and cell adhesion peptides, called Bifunctional Peptide Inhibitors (BPIs), have been designed to selectively regulate immune cells and suppress harmful inflammatory responses in autoimmune diseases. Similar peptide conjugations with imaging agents have delivered promising diagnostic methods in animal models of rheumatoid arthritis. BPIs have also been shown to generate immune tolerance and suppress autoimmune diseases in animal models of type-1 diabetes, rheumatoid arthritis, and multiple sclerosis. Collectively, these studies show the potential of cell adhesion peptides in improving the delivery of drugs and diagnostic agents to diseased cells in clinical settings.
Collapse
Affiliation(s)
- Mario E G Moral
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Laboratory, 2095 Constant Ave., Lawrence, Kansas 66047, United States
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Laboratory, 2095 Constant Ave., Lawrence, Kansas 66047, United States
| |
Collapse
|
12
|
Badawi AH, Kiptoo P, Siahaan TJ. Immune Tolerance Induction against Experimental Autoimmune Encephalomyelitis (EAE) Using A New PLP-B7AP Conjugate that Simultaneously Targets B7/CD28 Costimulatory Signal and TCR/MHC-II Signal. JOURNAL OF MULTIPLE SCLEROSIS 2015; 2:1000131. [PMID: 26140285 PMCID: PMC4484621 DOI: 10.4172/2376-0389.1000131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most of the current therapies used in the treatment of multiple sclerosis (MS) are either ineffective or have adverse side effects. As such, there is a need to develop better therapies that specifically target myelin-specific aberrant immune cells involved in CNS inflammation without compromising the general immune system. In the present study, we developed a new bifunctional peptide inhibitor (BPI) that is effective and specific. Our BPI (PLP-B7AP) is composed of an antigenic peptide from myelin proteolipid protein (PLP139-151) and a B7 antisense peptide (B7AP) derived from CD28 receptor. The main hypothesis is that PLP-B7AP simultaneously targets MHC-II and B7-costimulatory molecules on the surface of antigen presenting cells (APC) and possibly alters the differentiation of naïve T cells from inflammatory to regulatory phenotypes. Results showed that PLP-B7AP was very effective in suppressing experimental autoimmune encephalomyelitis (EAE) compared to various controls in a mouse model. PLP-B7AP was effective when administered both before and after disease induction. Secreted cytokines from splenocytes isolated during periods of high disease severity and remission indicated that PLP-B7AP treatment induced an increased production of anti-inflammatory cytokines and inhibited the production of pro-inflammatory cytokines. Further, analysis of cortical brain tissue sections showed that PLP-B7AP treated mice had significantly lower demyelination compared to the control group. All these taken together indicate that the T cell receptor (TCR) and the CD28 receptor can be targeted simultaneously to improve efficacy and specificity of potential MS therapeutics.
Collapse
Affiliation(s)
- Ahmed H Badawi
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
- KU Medical Center, The University of Kansas, Kansas City, KS 66160, USA
| | - Paul Kiptoo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
13
|
Gokhale AS, Satyanarayanajois S. Peptides and peptidomimetics as immunomodulators. Immunotherapy 2015; 6:755-74. [PMID: 25186605 DOI: 10.2217/imt.14.37] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peptides and peptidomimetics can function as immunomodulating agents by either blocking the immune response or stimulating the immune response to generate tolerance. Knowledge of B- or T-cell epitopes along with conformational constraints is important in the design of peptide-based immunomodulating agents. Work on the conformational aspects of peptides, synthesis and modified amino acid side chains have contributed to the development of a new generation of therapeutic agents for autoimmune diseases and cancer. The design of peptides/peptidomimetics for immunomodulation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus and HIV infection is reviewed. In cancer therapy, peptide epitopes are used in such a way that the body is trained to recognize and fight the cancer cells locally as well as systemically.
Collapse
Affiliation(s)
- Ameya S Gokhale
- Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | | |
Collapse
|
14
|
Büyüktimkin B, Kiptoo P, Siahaan TJ. Bifunctional Peptide Inhibitors Suppress Interleukin-6 Proliferation and Ameliorates Murine Collagen-Induced Arthritis. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2014; 5:1000273. [PMID: 26251760 PMCID: PMC4524745 DOI: 10.4172/2155-9899.1000273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The objective of this study is to evaluate the efficacy and potential mechanism of action of type-II collagen bifunctional peptide inhibitor (CII-BPI) molecules in suppressing rheumatoid arthritis in the collagen-induced arthritis (CIA) mouse model. CII-BPI molecules (CII-BPI-1, CII-BPI-2, and CII-BPI-3) were formed through conjugation between an antigenic peptide derived from type-II collagen and a cell adhesion peptide LABL (CD11a237-246) from the I-domain of LFA-1 via a linker molecule. The hypothesis is that the CII-BPI molecules simultaneously bind to MHC-II and ICAM-1 on the surface of APC and block maturation of the immunological synapse. As a result, the differentiation of naïve T cells is altered from inflammatory to regulatory and/or suppressor T cells. The efficacies of CII-BPI molecules were evaluated upon intravenous injections in CIA mice. Results showed that CII-BPI-1 and CIIBPI-2 suppressed the joint inflammations in CIA mice in a dose-dependent manner and were more potent than the respective antigenic peptides alone. CII-BPI-3 was not as efficacious as CII-BPI-1 and CII-BPI-2. Significantly less joint damage was observed in CII-BPI-2 and CII-2 treated mice than in the control. The production of IL-6 was significantly lower at the peak of disease in mice treated with CII-BPI-2 compared to those treated with CII-2 and control. In conclusion, this is the first proof-of-concept study showing that BPI molecules can be used to suppress RA and may be a potential therapeutic strategy for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Paul Kiptoo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
15
|
Thati S, Kuehl C, Hartwell B, Sestak J, Siahaan T, Forrest ML, Berkland C. Routes of administration and dose optimization of soluble antigen arrays in mice with experimental autoimmune encephalomyelitis. J Pharm Sci 2014; 104:714-21. [PMID: 25447242 DOI: 10.1002/jps.24272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 01/26/2023]
Abstract
Soluble antigen arrays (SAgAs) were developed for treating mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. SAgAs are composed of hyaluronan with grafted EAE antigen and LABL peptide (a ligand of ICAM-1). SAgA dose was tested by varying injection volume, SAgA concentration, and administration schedule. Routes of administration were explored to determine the efficacy of SAgAs when injected intramuscularly, subcutaneously, intraperitoneally, intravenously, or instilled into lungs. Injections proximal to the central nervous system (CNS) were compared with distal injection sites. Intravenous dosing was included to determine if SAgA efficiency results from systemic exposure. Pulmonary instillation (p.i.) was included as reports suggest T cells are licensed in the lungs before moving to the CNS. Decreasing the volume of injection or SAgA dose reduced treatment efficacy. Treating mice with a single injection on day 4, 7, and 10 also reduced efficacy compared with injecting on all three days. Surprisingly, changing the injection site did not lead to a significant difference in efficacy. Intravenous administration showed efficacy similar to other routes, suggesting SAgAs act systemically. When SAgAs were delivered via p.i., however, EAE mice failed to develop any symptoms, suggesting a unique lung mechanism to ameliorate EAE in mice.
Collapse
Affiliation(s)
- Sharadvi Thati
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, 66047
| | | | | | | | | | | | | |
Collapse
|