1
|
Wu GF. The cerebrospinal fluid immune cell landscape in animal models of multiple sclerosis. Front Mol Neurosci 2023; 16:1143498. [PMID: 37122618 PMCID: PMC10130411 DOI: 10.3389/fnmol.2023.1143498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 05/02/2023] Open
Abstract
The fluid compartment surrounding the central nervous system (CNS) is a unique source of immune cells capable of reflecting the pathophysiology of neurologic diseases. While human clinical and experimental studies often employ cerebrospinal fluid (CSF) analysis, assessment of CSF in animal models of disease are wholly uncommon, particularly in examining the cellular component. Barriers to routine assessment of CSF in animal models of multiple sclerosis (MS) include limited sample volume, blood contamination, and lack of feasible longitudinal approaches. The few studies characterizing CSF immune cells in animal models of MS are largely outdated, but recent work employing transcriptomics have been used to explore new concepts in CNS inflammation and MS. Absence of extensive CSF data from rodent and other systems has curbed the overall impact of experimental models of MS. Future approaches, including examination of CSF myeloid subsets, single cell transcriptomics incorporating antigen receptor sequencing, and use of diverse animal models, may serve to overcome current limitations and provide critical insights into the pathogenesis of, and therapeutic developments for, MS.
Collapse
Affiliation(s)
- Gregory F. Wu
- Departments of Neurology and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Neurology Service, VA St. Louis Health Care System, St. Louis, MO, United States
| |
Collapse
|
2
|
Hassani A, Khan G. What do animal models tell us about the role of EBV in the pathogenesis of multiple sclerosis? Front Immunol 2022; 13:1036155. [PMID: 36466898 PMCID: PMC9712437 DOI: 10.3389/fimmu.2022.1036155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/02/2022] [Indexed: 02/20/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS), marked primarily by demyelination, inflammation, and neurodegeneration. While the prevalence and incidence rates of MS are on the rise, the etiology of the disease remains enigmatic. Nevertheless, it is widely acknowledged that MS develops in persons who are both genetically predisposed and exposed to a certain set of environmental factors. One of the most plausible environmental culprits is Epstein-Barr virus (EBV), a common herpesvirus asymptomatically carried by more than 90% of the adult population. How EBV induces MS pathogenesis remains unknown. A comprehensive understanding of the biology of EBV infection and how it contributes to dysfunction of the immune system and CNS, requires an appreciation of the viral dynamics within the host. Here, we aim to outline the different animal models, including nonhuman primates (NHP), rodents, and rabbits, that have been used to elucidate the link between EBV and MS. This review particularly focuses on how the disruption in virus-immune interaction plays a role in viral pathogenesis and promotes neuroinflammation. We also summarize the effects of virus titers, age of animals, and route of inoculation on the neuroinvasiveness and neuropathogenic potential of the virus. Reviewing the rich data generated from these animal models could provide directions for future studies aimed to understand the mechanism(s) by which EBV induces MS pathology and insights for the development of prophylactic and therapeutic interventions that could ameliorate the disease.
Collapse
Affiliation(s)
- Asma Hassani
- Dept of Neurology, Division of Movement Disorders, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Giovannoni G, Vanderdonckt P, Hartung HP, Lassmann H, Comi G. EBV and multiple sclerosis: Setting the research agenda. Mult Scler Relat Disord 2022; 67:104158. [PMID: 36116382 DOI: 10.1016/j.msard.2022.104158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | | - Hans-Peter Hartung
- Hans-Peter Hartung, Klinik für Neurologie, Heinrich-Heine Universität Düsseldorf, Germany
| | - Hans Lassmann
- Hans Lassmann, Center for Brain Research, Medical University of Vienna, A-1090 Wien, Austria
| | - Giancarlo Comi
- Giancarlo Comi, Multiple Sclerosis Centres of Gallarate, and Casa di Cura del Policlinico, Milan, Italy
| |
Collapse
|
4
|
Byrnes SJ, Angelovich TA, Busman-Sahay K, Cochrane CR, Roche M, Estes JD, Churchill MJ. Non-Human Primate Models of HIV Brain Infection and Cognitive Disorders. Viruses 2022; 14:v14091997. [PMID: 36146803 PMCID: PMC9500831 DOI: 10.3390/v14091997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Human Immunodeficiency virus (HIV)-associated neurocognitive disorders are a major burden for people living with HIV whose viremia is stably suppressed with antiretroviral therapy. The pathogenesis of disease is likely multifaceted, with contributions from viral reservoirs including the brain, chronic and systemic inflammation, and traditional risk factors including drug use. Elucidating the effects of each element on disease pathogenesis is near impossible in human clinical or ex vivo studies, facilitating the need for robust and accurate non-human primate models. In this review, we describe the major non-human primate models of neuroHIV infection, their use to study the acute, chronic, and virally suppressed infection of the brain, and novel therapies targeting brain reservoirs and inflammation.
Collapse
Affiliation(s)
- Sarah J. Byrnes
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Thomas A. Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC 3004, Australia
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
| | - Catherine R. Cochrane
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jacob D. Estes
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97006, USA
- Oregon National Primate Research Centre, Oregon Health & Science University, Portland, OR 97006, USA
| | - Melissa J. Churchill
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC 3004, Australia
- Departments of Microbiology and Medicine, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
5
|
Tagge IJ, Kohama SG, Sherman LS, Bourdette DN, Woltjer R, Wang P, Wong SW, Rooney WD. MRI characteristics of Japanese macaque encephalomyelitis: Comparison to human diseases. J Neuroimaging 2021; 31:480-492. [PMID: 33930224 PMCID: PMC8722403 DOI: 10.1111/jon.12868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE To describe MRI findings in Japanese macaque encephalomyelitis (JME) with emphasis on lesion characteristics, lesion evolution, normal-appearing brain tissue, and similarities to human demyelinating disease. METHODS MRI data were obtained from 114 Japanese macaques, 30 presenting neurological signs of JME. All animals were screened for presence of T2 -weighted white matter signal hyperintensities; animals with behavioral signs of JME were additionally screened for contrast-enhancing lesions. Whole-brain quantitative T1 maps were collected, and histogram analysis was performed with regression across age to evaluate microstructural changes in normal appearing brain tissue in JME and neurologically normal animals. Quantitative estimates of blood-brain-barrier (BBB) permeability to gadolinium-based-contrast agent (GBCA) were obtained in acute, GBCA-enhancing lesions. Longitudinal imaging data were acquired for 15 JME animals. RESULTS One hundred and seventy-three focal GBCA-enhancing lesions were identified in 30 animals demonstrating behavioral signs of neurological dysfunction. JME GBCA-enhancing lesions were typically focal and ovoid, demonstrating highest BBB GBCA permeability in the lesion core, similar to acute, focal multiple sclerosis lesions. New GBCA-enhancing lesions arose rapidly from normal-appearing tissue, and BBB permeability remained elevated for weeks. T1 values in normal-appearing tissue were significantly associated with age, but not with sex or disease. CONCLUSIONS Intense, focal neuroinflammation is a key MRI finding in JME. Several features of JME compare directly to human inflammatory demyelinating diseases. Investigation of JME combined with the development and validation of noninvasive imaging biomarkers offers substantial potential to improve diagnostic specificity and contribute to the understanding of human demyelinating diseases.
Collapse
Affiliation(s)
- Ian J. Tagge
- Advanced Imaging Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon, 97239, United States
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, United States
| | - Larry S. Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, United States
| | - Dennis N. Bourdette
- Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon, 97239, United States
| | - Randall Woltjer
- Department of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon, 97239, United States
| | - Paul Wang
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon, 97239, United States
| | - Scott W. Wong
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, United States
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR 97006, United States
| | - William D. Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon, 97239, United States
- Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon, 97239, United States
| |
Collapse
|
6
|
Bates FA, Duncan EH, Simmons M, Robinson T, Samineni S, Strbo N, Villasante E, Bergmann-Leitner E, Wijayalath W. Exposure-related, global alterations in innate and adaptive immunity; a consideration for re-use of non-human primates in research. PeerJ 2021; 9:e10955. [PMID: 33732548 PMCID: PMC7950202 DOI: 10.7717/peerj.10955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Non-human primates (NHPs) play an important role in biomedical research, where they are often being re-used in multiple research studies over the course of their life-time. Researchers employ various study-specific screening criteria to reduce potential variables associated with subsequent re-use of NHPs. However, criteria set for NHP re-assignments largely neglect the impact of previous exposures on overall biology. Since the immune system is a key determinant of overall biological outcome, an altered biological state could be predicted by monitoring global changes in the immune profile. We postulate that every different exposure or a condition can generate a unique global immune profile in NHPs. Methods Changes in the global immune profile were evaluated in three different groups of rhesus macaques previously enrolled in dengue or malaria vaccine studies over six months after their last exposure. Naïve animals served as the baseline. Fresh blood samples were stained with various immune cell surface markers and analyzed by multi-color flow-cytometry to study immune cell dynamics in the peripheral blood. Serum cytokine profile in the pre-exposed animals were analyzed by mesoscale assay using a customized U-PLEX NHP biomarker panel of 12 cytokines/chemokines. Results Pre-exposed macaques showed altered dynamics in circulating cytokines and certain innate and adaptive immune cell subsets such as monocytes, HLA-DR+NKT cells, B cells and T cells. Some of these changes were transient, while some lasted for more than six months. Each group seemed to develop a global immune profile unique to their particular exposure. Conclusion Our data strongly suggest that re-used NHPs should be evaluated for long-term, overall immunological changes and randomly assigned to new studies to avoid study bias.
Collapse
Affiliation(s)
- François A Bates
- Veterinary Services Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Elizabeth H Duncan
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Monika Simmons
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Tanisha Robinson
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, MD, United States of America
| | - Sridhar Samineni
- Veterinary Services Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America.,SoBran, Inc, Falls Church, VA, United States of America
| | - Natasa Strbo
- Department of Microbiology and Immunology, Miller School of Medicine University of Miami, Miami, FL, United States of America
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Elke Bergmann-Leitner
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Wathsala Wijayalath
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America.,CAMRIS International, Bethesda, MD, United States of America
| |
Collapse
|
7
|
Govindan AN, Fitzpatrick KS, Manoharan M, Tagge I, Kohama SG, Ferguson B, Peterson SM, Wong GS, Rooney WD, Park B, Axthelm MK, Bourdette DN, Sherman LS, Wong SW. Myelin-specific T cells in animals with Japanese macaque encephalomyelitis. Ann Clin Transl Neurol 2021; 8:456-470. [PMID: 33440071 PMCID: PMC7886046 DOI: 10.1002/acn3.51303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/24/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022] Open
Abstract
Objective To determine whether animals with Japanese macaque encephalomyelitis (JME), a spontaneous demyelinating disease similar to multiple sclerosis (MS), harbor myelin‐specific T cells in their central nervous system (CNS) and periphery. Methods Mononuclear cells (MNCs) from CNS lesions, cervical lymph nodes (LNs) and peripheral blood of Japanese macaques (JMs) with JME, and cervical LN and blood MNCs from healthy controls or animals with non‐JME conditions were analyzed for the presence of myelin‐specific T cells and changes in interleukin 17 (IL‐17) and interferon gamma (IFNγ) expression. Results Demyelinating JME lesions contained CD4+ T cells and CD8+ T cells specific to myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and/or proteolipid protein (PLP). CD8+ T‐cell responses were absent in JME peripheral blood, and in age‐ and sex‐matched controls. However, CD4+ Th1 and Th17 responses were detected in JME peripheral blood versus controls. Cervical LN MNCs from eight of nine JME animals had CD3+ T cells specific for MOG, MBP, and PLP that were not detected in controls. Mapping myelin epitopes revealed a heterogeneity in responses among JME animals. Comparison of myelin antigen sequences with those of JM rhadinovirus (JMRV), which is found in JME lesions, identified six viral open reading frames (ORFs) with similarities to myelin antigen sequences. Overlapping peptides to these JMRV ORFs did not induce IFNγ responses. Interpretations JME possesses an immune‐mediated component that involves both CD4+ and CD8+ T cells specific for myelin antigens. JME may shed new light on inflammatory demyelinating disease pathogenesis linked to gamma‐herpesvirus infection.
Collapse
Affiliation(s)
- Aparna N Govindan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kristin S Fitzpatrick
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Minsha Manoharan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Ian Tagge
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.,Montreal Neurological Institute, McGill University, Montreal, QC, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Samuel M Peterson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Grayson S Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Byung Park
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Dennis N Bourdette
- Department of Neurology, Multiple Sclerosis Clinic, Oregon Health & Science University, Portland, OR, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA.,Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, USA
| |
Collapse
|
8
|
Titus HE, Chen Y, Podojil JR, Robinson AP, Balabanov R, Popko B, Miller SD. Pre-clinical and Clinical Implications of "Inside-Out" vs. "Outside-In" Paradigms in Multiple Sclerosis Etiopathogenesis. Front Cell Neurosci 2020; 14:599717. [PMID: 33192332 PMCID: PMC7654287 DOI: 10.3389/fncel.2020.599717] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated neurological disorder, characterized by central nervous system (CNS) inflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Although autoimmunity, inflammatory demyelination and neurodegeneration underlie MS, the initiating event has yet to be clarified. Effective disease modifying therapies need to both regulate the immune system and promote restoration of neuronal function, including remyelination. The challenge in developing an effective long-lived therapy for MS requires that three disease-associated targets be addressed: (1) self-tolerance must be re-established to specifically inhibit the underlying myelin-directed autoimmune pathogenic mechanisms; (2) neurons must be protected from inflammatory injury and degeneration; (3) myelin repair must be engendered by stimulating oligodendrocyte progenitors to remyelinate CNS neuronal axons. The combined use of chronic and relapsing remitting experimental autoimmune encephalomyelitis (C-EAE, R-EAE) (“outside-in”) as well as progressive diphtheria toxin A chain (DTA) and cuprizone autoimmune encephalitis (CAE) (“inside-out”) mouse models allow for the investigation and specific targeting of all three of these MS-associated disease parameters. The “outside-in” EAE models initiated by myelin-specific autoreactive CD4+ T cells allow for the evaluation of both myelin-specific tolerance in the absence or presence of neuroprotective and/or remyelinating agents. The “inside-out” mouse models of secondary inflammatory demyelination are triggered by toxin-induced oligodendrocyte loss or subtle myelin damage, which allows evaluation of novel therapeutics that could promote remyelination and neuroprotection in the CNS. Overall, utilizing these complementary pre-clinical MS models will open new avenues for developing therapeutic interventions, tackling MS from the “outside-in” and/or “inside-out”.
Collapse
Affiliation(s)
- Haley E Titus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanan Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States
| | - Andrew P Robinson
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
9
|
Abstract
The etiology and pathogenesis of MS is likely to involve multiple factors interacting with each other, and the role of infectious and viral agents is still under debate, however a consistent amount of studies suggests that some viruses are associated with the disease. The strongest documentation has come from the detection of viral nucleic acid or antigen or of an anti-viral antibody response in MS patients. A further step for the study of the mechanism viruses might be involved in can be made using in vitro and in vivo models. While in vitro models, based on glial and neural cell lines from various sources are widely used, in vivo animal models present challenges. Indeed neurotropic animal viruses are currently used to study demyelination in well-established models, but animal models of demyelination by human virus infection have only recently been developed, using animal gammaherpesviruses closely related to Epstein Barr virus (EBV), or using marmosets expressing the specific viral receptor for Human Herpesvirus 6 (HHV-6). The present review will illustrate the main potential mechanisms of MS pathogenesis possibly associated with viral infections and viruses currently used to study demyelination in animal models. Then the viruses most strongly linked with MS will be discussed, in the perspective that more than one virus might have a role, with varying degrees of interaction, contributing to MS heterogeneity.
Collapse
Affiliation(s)
- Donatella Donati
- Neurologia e Neurofisiologia Clinica, Azienda Ospedaliera Universitaria Senese I 53100 Siena, Italy
| |
Collapse
|
10
|
Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu J, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. NEUROLOGÍA (ENGLISH EDITION) 2020. [PMCID: PMC7148713 DOI: 10.1016/j.nrleng.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
12
|
Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. Neurologia 2017; 35:32-39. [PMID: 28863829 PMCID: PMC7115679 DOI: 10.1016/j.nrl.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/07/2022] Open
Abstract
Introducción El uso de modelos experimentales en animales permite aumentar el conocimiento sobre la patología del sistema nervioso central. Sin embargo, en la esclerosis múltiple, no existe un modelo que permita una visión general de la enfermedad, de forma que es necesario utilizar una variedad de modelos que abarquen los distintos cambios que se producen. Desarrollo Se revisan los distintos modelos experimentales que pueden ser utilizados en la investigación en la esclerosis múltiple, tanto in vitro como in vivo. En relación a los modelos in vitro se analizan los distintos cultivos celulares y sus potenciales modificaciones así como los modelos en rodajas. En los modelos in vivo, se analizan los modelos de base inmune-inflamatoria como la encefalitis alérgica experimental en los distintos animales, además de las enfermedades desmielinizantes por virus. Por otro lado, se analizan los modelos de desmielinización-remielinización incluyéndose las lesiones químicas por cuprizona, lisolecitina, bromuro de etidio, así como el modelo de zebrafish y los modelos transgénicos. Conclusiones Los modelos experimentales nos permiten acercarnos al conocimiento de los diversos mecanismos que ocurren en la esclerosis múltiple. La utilización de cada uno de ellos depende de los objetivos de investigación que planteen.
Collapse
Affiliation(s)
- L Torre-Fuentes
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - L Moreno-Jiménez
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - V Pytel
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Matías-Guiu
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - U Gómez-Pinedo
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J Matías-Guiu
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
13
|
Mentis AFA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM. Viruses and Multiple Sclerosis: From Mechanisms and Pathways to Translational Research Opportunities. Mol Neurobiol 2017; 54:3911-3923. [PMID: 28455696 DOI: 10.1007/s12035-017-0530-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/06/2017] [Indexed: 12/26/2022]
Abstract
Viruses are directly or indirectly implicated in multiple sclerosis (MS). Here, we review the evidence on the virus-related pathophysiology of MS, introduce common experimental models, and explore the ways in which viruses cause demyelination. By emphasizing knowledge gaps, we highlight future research directions for effective MS diagnostics and therapies: (i) identifying biomarkers for at-risk individuals, (ii) searching for direct evidence of specific causative viruses, (iii) establishing the contribution of host genetic factors and viruses, and (iv) investigating the contribution of immune regulation at extra-CNS sites. Research in these areas is likely to be facilitated by the application of high-throughput technologies, the development of systems-based bioinformatic approaches, careful selection of experimental models, and the acquisition of high-quality clinical material for tissue-based research.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Department of Microbiology, University Hospital of Larissa, University of Thessaly, Larissa, Greece. .,The Johns Hopkins University, AAP, Baltimore, MD, USA.
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthimia Petinaki
- Department of Microbiology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| |
Collapse
|
14
|
Elhmouzi-Younes J, Palgen JL, Tchitchek N, Delandre S, Namet I, Bodinham CL, Pizzoferro K, Lewis DJ, Le Grand R, Cosma A, Beignon AS. In depth comparative phenotyping of blood innate myeloid leukocytes from healthy humans and macaques using mass cytometry. Cytometry A 2017; 91:969-982. [DOI: 10.1002/cyto.a.23107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/04/2017] [Accepted: 03/15/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Jamila Elhmouzi-Younes
- Immunology of viral infections and autoimmune diseases; CEA - Université Paris Sud 11 - INSERM U1184, 92265 Fontenay-aux-Roses; France
| | - Jean-Louis Palgen
- Immunology of viral infections and autoimmune diseases; CEA - Université Paris Sud 11 - INSERM U1184, 92265 Fontenay-aux-Roses; France
| | - Nicolas Tchitchek
- Immunology of viral infections and autoimmune diseases; CEA - Université Paris Sud 11 - INSERM U1184, 92265 Fontenay-aux-Roses; France
| | - Simon Delandre
- Immunology of viral infections and autoimmune diseases; CEA - Université Paris Sud 11 - INSERM U1184, 92265 Fontenay-aux-Roses; France
| | - Inana Namet
- Immunology of viral infections and autoimmune diseases; CEA - Université Paris Sud 11 - INSERM U1184, 92265 Fontenay-aux-Roses; France
| | | | | | - David J.M. Lewis
- Surrey Clinical Research Centre; University of Surrey; Guildford GU2 7XP UK
| | - Roger Le Grand
- Immunology of viral infections and autoimmune diseases; CEA - Université Paris Sud 11 - INSERM U1184, 92265 Fontenay-aux-Roses; France
| | - Antonio Cosma
- Immunology of viral infections and autoimmune diseases; CEA - Université Paris Sud 11 - INSERM U1184, 92265 Fontenay-aux-Roses; France
| | - Anne-Sophie Beignon
- Immunology of viral infections and autoimmune diseases; CEA - Université Paris Sud 11 - INSERM U1184, 92265 Fontenay-aux-Roses; France
| |
Collapse
|
15
|
Japanese Macaque Rhadinovirus Encodes a Viral MicroRNA Mimic of the miR-17 Family. J Virol 2016; 90:9350-63. [PMID: 27512057 DOI: 10.1128/jvi.01123-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Japanese macaque (JM) rhadinovirus (JMRV) is a novel, gamma-2 herpesvirus that was recently isolated from JM with inflammatory demyelinating encephalomyelitis (JME). JME is a spontaneous and chronic disease with clinical characteristics and immunohistopathology comparable to those of multiple sclerosis in humans. Little is known about the molecular biology of JMRV. Here, we sought to identify and characterize the small RNAs expressed during lytic JMRV infection using deep sequencing. Fifteen novel viral microRNAs (miRNAs) were identified in JMRV-infected fibroblasts, all of which were readily detectable by 24 h postinfection and accumulated to high levels by 72 h. Sequence comparisons to human Kaposi's sarcoma-associated herpesvirus (KSHV) miRNAs revealed several viral miRNA homologs. To functionally characterize JMRV miRNAs, we screened for their effects on nuclear factor kappa B (NF-κB) signaling in the presence of two proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). Multiple JMRV miRNAs suppressed cytokine-induced NF-κB activation. One of these miRNAs, miR-J8, has seed sequence homology to members of the cellular miR-17/20/106 and miR-373 families, which are key players in cell cycle regulation as well as inflammation. Using reporters, we show that miR-J8 can target 3' untranslated regions (UTRs) with miR-17-5p or miR-20a cognate sites. Our studies implicate JMRV miRNAs in the suppression of innate antiviral immune responses, which is an emerging feature of many viral miRNAs. IMPORTANCE Gammaherpesviruses are associated with multiple diseases linked to immunosuppression and inflammation, including AIDS-related cancers and autoimmune diseases. JMRV is a recently identified herpesvirus that has been linked to JME, an inflammatory demyelinating disease in Japanese macaques that mimics multiple sclerosis. There are few large-animal models for gammaherpesvirus-associated pathogenesis. Here, we provide the first experimental evidence of JMRV miRNAs in vitro and demonstrate that one of these viral miRNAs can mimic the activity of the cellular miR-17/20/106 family. Our work provides unique insight into the roles of viral miRNAs during rhadinovirus infection and provides an important step toward understanding viral miRNA function in a nonhuman primate model system.
Collapse
|