1
|
Zhang W, Sun M, Liu N, Li X, Sun J, Wang M. Curcumin ameliorates astrocyte inflammation through AXL in cuprizone-induced mice. Toxicol Appl Pharmacol 2025; 494:117170. [PMID: 39586379 DOI: 10.1016/j.taap.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Curcumin has gained global attention owning to its anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. Curcumin has recently been shown to have well-documented effects on neuroinflammation in multiple sclerosis (MS). Astrocytes, the most widely distributed glial cells in the brain, have a significant influence on the regulation of neuroinflammation in MS. However, it is unknown how curcumin exerts neuroprotective effects in astrocytes. To elucidate the mechanism underlying the effects of curcumin on astrocytes, we explored the effect of curcumin on cuprizone (CPZ)-induced mice in vivo and on primary astrocytes in vitro. In this study, we observed that curcumin significantly ameliorated myelin loss and reduced astrocyte activation in the corpus callosum (CC) region in mice induced with CPZ, and in primary astrocytes stimulated with lipopolysaccharide (LPS). Meanwhile, our research indicated that curcumin may exert neuroprotective effects in CPZ-induced mice by downregulating astrocyte-mediated inflammation by AXL. This study provides new insights into possible targeted therapies for MS.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Mengjiao Sun
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China.
| |
Collapse
|
2
|
Xu Z, Zhu J, Ma Z, Zhen D, Gao Z. Combined Bulk and Single-Cell Transcriptomic Analysis to Reveal the Potential Influences of Intestinal Inflammatory Disease on Multiple Sclerosis. Inflammation 2024:10.1007/s10753-024-02195-z. [PMID: 39680254 DOI: 10.1007/s10753-024-02195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Multiple sclerosis (MS) and inflammatory bowel disease (IBD) are both autoimmune disorders caused by dysregulated immune responses. Still, there is a growing awareness of the comorbidity between MS and IBD. However, the shared pathophysiological mechanisms between these two diseases are still lacking. RNA sequencing datasets (GSE126124, GSE9686, GSE36807, GSE21942) were analyzed to identify the shared differential expressed genes (DEGs) for IBD and experimental allergic encephalomyelitis (EAE). Other datasets (GSE17048, GSE75214, and GSE16879) were downloaded for further verification and analysis. Shared pathways and regulatory networks were explored based on these DEGs. The single-cell transcriptome of central nervous system (CNS) immune cells sequenced from EAE brains and the public datasets of IBD (PRJCA003980) were analyzed for the immune characteristics of the shared DEGs. Mass cytometry by time-of-flight (CyTOF) of peripheral blood mononuclear cells (PBMCs) was performed for the systematic immune response in the EAE model. Machine learning algorithms were also used to identify the diagnostic biomarkers of MS. We identified 74 common DEGs from the selected RNA sequencing datasets, and single-cell RNA data of the intestinal tissues of IBD patients showed that 56 of 74 DEGs were highly enriched in IL1B+ macrophages. These 56 DEGs, defined as inflammation-related DEGs (IRGs), were also highly expressed in pro-inflammatory macrophages of EAE mice and MS patients. The abundance of systematic CD14+ monocytes was validated by CyTOF data. These IRGs were highly enriched in immune response, NOD-like receptor signaling pathway, IL-18 signaling pathway, and other related pathways. In addition, 'AddModuleScore_UCell' analysis further validated that these IRGs (such as IL1B, S100A8, and other inflammatory factors) are highly expressed mainly in pro-inflammatory macrophages, which play an essential role in pro-inflammatory activation in IBD and multiple sclerosis, such as IL-17 signaling pathway, NF-kappa B signaling pathway, and TNF signaling pathway. Finally, suppressors of cytokine signaling 3(SOCS3) and formyl peptide receptor 2(FPR2) were identified as potential biomarkers by machine learning. Two genes were highly expressed in pro-inflammatory macrophages of IBD and MS disease compared to control, and other datasets and experiments further revealed that SOCS3 and FPR2 were highly expressed in IBD and EAE samples. These shared IRGs, which encode inflammatory cytokines, exhibit high expression levels in inflammatory macrophages in IBD and may play a significant role in the inflammatory cytokine storm in MS patients. Two potential biomarkers, SOCS3 and FPR2, were screened out with great diagnostic value for MS and IBD.
Collapse
Affiliation(s)
- Zhu Xu
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China.
- Guizhou Medical University, Guizhou, China.
| | - Junyu Zhu
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| | - Zhuo Ma
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| | - Dan Zhen
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| | - Zindan Gao
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guizhou, China
- Guizhou Medical University, Guizhou, China
| |
Collapse
|
3
|
Zahoor I, Pan G, Cerghet M, Elbayoumi T, Mao-Draayer Y, Giri S, Palaniyandi SS. Current understanding of cardiovascular autonomic dysfunction in multiple sclerosis. Heliyon 2024; 10:e35753. [PMID: 39170118 PMCID: PMC11337049 DOI: 10.1016/j.heliyon.2024.e35753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Autoimmune diseases, including multiple sclerosis (MS), are proven to increase the likelihood of developing cardiovascular disease (CVD) due to a robust systemic immune response and inflammation. MS can lead to cardiovascular abnormalities that are related to autonomic nervous system dysfunction by causing inflammatory lesions surrounding tracts of the autonomic nervous system in the brain and spinal cord. CVD in MS patients can affect an already damaged brain, thus worsening the disease course by causing brain atrophy and white matter disease. Currently, the true prevalence of cardiovascular dysfunction and associated death rates in patients with MS are mostly unknown and inconsistent. Treating vascular risk factors is recommended to improve the management of this disease. This review provides an updated summary of CVD prevalence in patients with MS, emphasizing the need for more preclinical studies using animal models to understand the pathogenesis of MS better. However, no distinct studies exist that explore the temporal effects and etiopathogenesis of immune/inflammatory cells on cardiac damage and dysfunction associated with MS, particularly in the cardiac myocardium. To this end, a thorough investigation into the clinical presentation and underlying mechanisms of CVD must be conducted in patients with MS and preclinical animal models. Additionally, clinicians should monitor for cardiovascular complications while prescribing medications to MS patients, as some MS drugs cause severe CVD.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, MI, USA
| | - Guodong Pan
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Health, Detroit, MI, USA
| | - Tamer Elbayoumi
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, AZ, USA
| | - Yang Mao-Draayer
- Multiple Sclerosis Center of Excellence, Autoimmunity Center of Excellence, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI, USA
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
- Department of Physiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
4
|
Arellano G, Acuña E, Loda E, Moore L, Tichauer JE, Castillo C, Vergara F, Burgos PI, Penaloza-MacMaster P, Miller SD, Naves R. Therapeutic role of interferon-γ in experimental autoimmune encephalomyelitis is mediated through a tolerogenic subset of splenic CD11b + myeloid cells. J Neuroinflammation 2024; 21:144. [PMID: 38822334 PMCID: PMC11143617 DOI: 10.1186/s12974-024-03126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/05/2024] [Indexed: 06/02/2024] Open
Abstract
Cumulative evidence has established that Interferon (IFN)-γ has both pathogenic and protective roles in Multiple Sclerosis and the animal model, Experimental Autoimmune Encephalomyelitis (EAE). However, the underlying mechanisms to the beneficial effects of IFN-γ are not well understood. In this study, we found that IFN-γ exerts therapeutic effects on chronic, relapsing-remitting, and chronic progressive EAE models. The frequency of regulatory T (Treg) cells in spinal cords from chronic EAE mice treated with IFN-γ was significantly increased with no effect on Th1 and Th17 cells. Consistently, depletion of FOXP3-expressing cells blocked the protective effects of IFN-γ, indicating that the therapeutic effect of IFN-γ depends on the presence of Treg cells. However, IFN-γ did not trigger direct in vitro differentiation of Treg cells. In vivo administration of blocking antibodies against either interleukin (IL)-10, transforming growth factor (TGF)-β or program death (PD)-1, revealed that the protective effects of IFN-γ in EAE were also dependent on TGF-β and PD-1, but not on IL-10, suggesting that IFN-γ might have an indirect role on Treg cells acting through antigen-presenting cells. Indeed, IFN-γ treatment increased the frequency of a subset of splenic CD11b+ myeloid cells expressing TGF-β-Latency Associated Peptide (LAP) and program death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)-1-dependent manner. Furthermore, splenic CD11b+ cells from EAE mice preconditioned in vitro with IFN-γ and myelin oligodendrocyte glycoprotein (MOG) peptide exhibited a tolerogenic phenotype with the capability to induce conversion of naïve CD4+ T cells mediated by secretion of TGF-β. Remarkably, adoptive transfer of splenic CD11b+ cells from IFN-γ-treated EAE mice into untreated recipient mice ameliorated clinical symptoms of EAE and limited central nervous system infiltration of mononuclear cells and effector helper T cells. These results reveal a novel cellular and molecular mechanism whereby IFN-γ promotes beneficial effects in EAE by endowing splenic CD11b+ myeloid cells with tolerogenic and therapeutic activities.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Interferon-gamma/metabolism
- Myeloid Cells/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Spleen/immunology
- Mice, Inbred C57BL
- CD11b Antigen/metabolism
- Female
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Myelin-Oligodendrocyte Glycoprotein/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Peptide Fragments/toxicity
- Peptide Fragments/pharmacology
- Transforming Growth Factor beta/metabolism
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/immunology
- Forkhead Transcription Factors/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Gabriel Arellano
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Eric Acuña
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Lindsay Moore
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Juan E Tichauer
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Castillo
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fabian Vergara
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula I Burgos
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US.
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US.
| | - Rodrigo Naves
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Dong X, Zhu LW, Zhang Z, Cao R, Liu P, Shu X, Cao X, Hu Y, Bao X, Xu L, Li C, Xu Y. LLDT-8 ameliorates experimental autoimmune encephalomyelitis by mediating macrophage functions in the priming stage. Eur J Pharmacol 2024; 962:176201. [PMID: 37984728 DOI: 10.1016/j.ejphar.2023.176201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease in the central nervous system caused by T cell activation mediated by peripheral macrophages, resulting in severe neurological deficits and disability. Due to the currently limited and expensive treatments for MS, we here introduce an economic Chinese medicine extract, (5R)-5-Hydroxytriptolide (LLDT-8), which shows low toxicity and high immunosuppressive activity. We used the widely accepted mouse model of MS, experimental autoimmune encephalomyelitis (EAE), to examine the immunosuppressive effect of LLDT-8 in vivo. Through the RNA-sequence analysis of peripheral macrophages in EAE mice, we discovered that LLDT-8 alleviates the symptoms of EAE by inhibiting the proinflammatory effect of macrophages, thereby blocking the activation and proliferation of T cells. In all, we found that LLDT-8 could be a potential treatment for MS.
Collapse
Affiliation(s)
- Xiaohong Dong
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Li-Wen Zhu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Runjing Cao
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yujie Hu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Lushan Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Chenggang Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China; Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
6
|
Pachner AR. The Neuroimmunology of Multiple Sclerosis: Fictions and Facts. Front Neurol 2022; 12:796378. [PMID: 35197914 PMCID: PMC8858985 DOI: 10.3389/fneur.2021.796378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
There have been tremendous advances in the neuroimmunology of multiple sclerosis over the past five decades, which have led to improved diagnosis and therapy in the clinic. However, further advances must take into account an understanding of some of the complex issues in the field, particularly an appreciation of "facts" and "fiction." Not surprisingly given the incredible complexity of both the nervous and immune systems, our understanding of the basic biology of the disease is very incomplete. This lack of understanding has led to many controversies in the field. This review identifies some of these controversies and facts/fictions with relation to the basic neuroimmunology of the disease (cells and molecules), and important clinical issues. Fortunately, the field is in a healthy transition from excessive reliance on animal models to a broader understanding of the disease in humans, which will likely lead to many improved treatments especially of the neurodegeneration in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Andrew R. Pachner
- Dartmouth–Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
7
|
Ibañez-Vega J, Vilchez C, Jimenez K, Guevara C, Burgos PI, Naves R. Cellular and molecular regulation of the programmed death-1/programmed death ligand system and its role in multiple sclerosis and other autoimmune diseases. J Autoimmun 2021; 123:102702. [PMID: 34311143 DOI: 10.1016/j.jaut.2021.102702] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 01/12/2023]
Abstract
Programmed Cell Death 1 (PD-1) receptor and its ligands (PD-Ls) are essential to maintain peripheral immune tolerance and to avoid tissue damage. Consequently, altered gene or protein expression of this system of co-inhibitory molecules has been involved in the development of cancer and autoimmunity. Substantial progress has been achieved in the study of the PD-1/PD-Ls system in terms of regulatory mechanisms and therapy. However, the role of the PD-1/PD-Ls pathway in neuroinflammation has been less explored despite being a potential target of treatment for neurodegenerative diseases. Multiple Sclerosis (MS) is the most prevalent, chronic, inflammatory, and autoimmune disease of the central nervous system that leads to demyelination and axonal damage in young adults. Recent studies have highlighted the key role of the PD-1/PD-Ls pathway in inducing a neuroprotective response and restraining T cell activation and neurodegeneration in MS. In this review, we outline the molecular and cellular mechanisms regulating gene expression, protein synthesis and traffic of PD-1/PD-Ls as well as relevant processes that control PD-1/PD-Ls engagement in the immunological synapse between antigen-presenting cells and T cells. Also, we highlight the most recent findings regarding the role of the PD-1/PD-Ls pathway in MS and its murine model, experimental autoimmune encephalomyelitis (EAE), including the contribution of PD-1 expressing follicular helper T (TFH) cells in the pathogenesis of these diseases. In addition, we compare and contrast results found in MS and EAE with evidence reported in other autoimmune diseases and their experimental models, and review PD-1/PD-Ls-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Jorge Ibañez-Vega
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Constanza Vilchez
- Faculty of Natural Sciences, Mathematics and Environment, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Karin Jimenez
- Faculty of Natural Sciences, Mathematics and Environment, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Carlos Guevara
- Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Paula I Burgos
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile, Chile.
| | - Rodrigo Naves
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Zahoor I, Rui B, Khan J, Datta I, Giri S. An emerging potential of metabolomics in multiple sclerosis: a comprehensive overview. Cell Mol Life Sci 2021; 78:3181-3203. [PMID: 33449145 PMCID: PMC8038957 DOI: 10.1007/s00018-020-03733-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the nervous system that primarily affects young adults. Although the exact etiology of the disease remains obscure, it is clear that alterations in the metabolome contribute to this process. As such, defining a reliable and disease-specific metabolome has tremendous potential as a diagnostic and therapeutic strategy for MS. Here, we provide an overview of studies aimed at identifying the role of metabolomics in MS. These offer new insights into disease pathophysiology and the contributions of metabolic pathways to this process, identify unique markers indicative of treatment responses, and demonstrate the therapeutic effects of drug-like metabolites in cellular and animal models of MS. By and large, the commonly perturbed pathways in MS and its preclinical model include lipid metabolism involving alpha-linoleic acid pathway, nucleotide metabolism, amino acid metabolism, tricarboxylic acid cycle, d-ornithine and d-arginine pathways with collective role in signaling and energy supply. The metabolomics studies suggest that metabolic profiling of MS patient samples may uncover biomarkers that will advance our understanding of disease pathogenesis and progression, reduce delays and mistakes in diagnosis, monitor the course of disease, and detect better drug targets, all of which will improve early therapeutic interventions and improve evaluation of response to these treatments.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA. .,Department of Neurology, Henry Ford Hospital, Education & Research Building, Room 4023, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| | - Bin Rui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Junaid Khan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA. .,Department of Neurology, Henry Ford Hospital, Education & Research Building, Room 4051, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
9
|
Suppression of the Peripheral Immune System Limits the Central Immune Response Following Cuprizone-Feeding: Relevance to Modelling Multiple Sclerosis. Cells 2019; 8:cells8111314. [PMID: 31653054 PMCID: PMC6912385 DOI: 10.3390/cells8111314] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cuprizone (CPZ) preferentially affects oligodendrocytes (OLG), resulting in demyelination. To investigate whether central oligodendrocytosis and gliosis triggered an adaptive immune response, the impact of combining a standard (0.2%) or low (0.1%) dose of ingested CPZ with disruption of the blood brain barrier (BBB), using pertussis toxin (PT), was assessed in mice. 0.2% CPZ(±PT) for 5 weeks produced oligodendrocytosis, demyelination and gliosis plus marked splenic atrophy (37%) and reduced levels of CD4 (44%) and CD8 (61%). Conversely, 0.1% CPZ(±PT) produced a similar oligodendrocytosis, demyelination and gliosis but a smaller reduction in splenic CD4 (11%) and CD8 (14%) levels and no splenic atrophy. Long-term feeding of 0.1% CPZ(±PT) for 12 weeks produced similar reductions in CD4 (27%) and CD8 (43%), as well as splenic atrophy (33%), as seen with 0.2% CPZ(±PT) for 5 weeks. Collectively, these results suggest that 0.1% CPZ for 5 weeks may be a more promising model to study the ‘inside-out’ theory of Multiple Sclerosis (MS). However, neither CD4 nor CD8 were detected in the brain in CPZ±PT groups, indicating that CPZ-mediated suppression of peripheral immune organs is a major impediment to studying the ‘inside-out’ role of the adaptive immune system in this model over long time periods. Notably, CPZ(±PT)-feeding induced changes in the brain proteome related to the suppression of immune function, cellular metabolism, synaptic function and cellular structure/organization, indicating that demyelinating conditions, such as MS, can be initiated in the absence of adaptive immune system involvement.
Collapse
|
10
|
DiSano KD, Linzey MR, Royce DB, Pachner AR, Gilli F. Differential neuro-immune patterns in two clinically relevant murine models of multiple sclerosis. J Neuroinflammation 2019; 16:109. [PMID: 31118079 PMCID: PMC6532235 DOI: 10.1186/s12974-019-1501-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/06/2019] [Indexed: 01/12/2023] Open
Abstract
Background The mechanisms driving multiple sclerosis (MS), the most common cause of non-traumatic disability in young adults, remain unknown despite extensive research. Especially puzzling are the underlying molecular processes behind the two major disease patterns of MS: relapsing-remitting and progressive. The relapsing-remitting course is exemplified by acute inflammatory attacks, whereas progressive MS is characterized by neurodegeneration on a background of mild-moderate inflammation. The molecular and cellular features differentiating the two patterns are still unclear, and the role of inflammation during progressive disease is a subject of active debate. Methods We performed a comprehensive analysis of the intrathecal inflammation in two clinically distinct mouse models of MS: the PLP139-151-induced relapsing experimental autoimmune encephalomyelitis (R-EAE) and the chronic progressive, Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Microarray technology was first used to examine global gene expression changes in the spinal cord. Inflammation in the spinal cord was further assessed by immunohistochemical image analysis and flow cytometry. Levels of serum and cerebrospinal fluid (CSF) immunoglobulin (Ig) isotypes and chemokines were quantitated using Luminex Multiplex technology, whereas a capture ELISA was used to measure serum and CSF albumin levels. Finally, an intrathecal Ig synthesis index was established with the ratio of CSF and serum test results corrected as a ratio of their albumin concentrations. Results Microarray analysis identified an enrichment of B cell- and Ig-related genes upregulated in TMEV-IDD mice. We also demonstrated an increased level of intrathecal Ig synthesis as well as a marked infiltration of late differentiated B cells, including antibody secreting cells (ASC), in the spinal cord of TMEV-IDD, but not R-EAE mice. An intact blood-brain barrier in TMEV-IDD mice along with higher CSF levels of CXCL13, CXCL12, and CCL19 provides evidence for an intrathecal synthesis of chemokines mediating B cell localization to the central nervous system (CNS). Conclusions Overall, these findings, showing increased concentrations of intrathecally produced Igs, substantial infiltration of ASC, and the presence of B cell supporting chemokines in the CNS of TMEV-IDD mice, but not R-EAE mice, suggest a potentially important role for Igs and ASC in the chronic progressive phase of demyelinating diseases. Electronic supplementary material The online version of this article (10.1186/s12974-019-1501-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krista D DiSano
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Michael R Linzey
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03756, USA.,Program in Experimental and Molecular Medicine, Dartmouth College, Hanover, NH, USA
| | - Darlene B Royce
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Andrew R Pachner
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
11
|
Gharibi S, Moghimi B, Haghmorad D, Mahmoudi MB, Shahvazian E, Yadegari M, Yazd EF, Tahoori MT. Altered expression patterns of complement factor H and miR‐146a genes in acute‐chronic phases in experimental autoimmune encephalomyelitis mouse. J Cell Physiol 2019; 234:19842-19851. [DOI: 10.1002/jcp.28583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Saba Gharibi
- Department of Genetics, Faculty of Medicine, International Campus Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Bahram Moghimi
- Department of Genetics, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Dariush Haghmorad
- Department of Pathology and Laboratory Medicine, School of Medicine Semnan University of Medical Sciences Semnan Iran
- Department of Immunology, School of Medicine Semnan University of Medical Sciences and Health Services Semnan Iran
| | - Mohammad Bagher Mahmoudi
- Department of Genetics, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Ensieh Shahvazian
- Department of Genetics, Faculty of Medicine, International Campus Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Maryam Yadegari
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences and Health Services Faculty of Medicine Yazd Iran
| | - Ehsan Farashahi Yazd
- Department of Genetics, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
- Genetic Engineering and Genome Editing Laboratory, Stem Cell Biology Research Center Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Mohammad Taher Tahoori
- Department of Immunology, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| |
Collapse
|
12
|
Rengasamy KR, Khan H, Gowrishankar S, Lagoa RJ, Mahomoodally FM, Khan Z, Suroowan S, Tewari D, Zengin G, Hassan ST, Pandian SK. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacol Ther 2019; 194:107-131. [PMID: 30268770 DOI: 10.1016/j.pharmthera.2018.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Ouyang S, Zeng Q, Tang N, Guo H, Tang R, Yin W, Wang A, Tang H, Zhou J, Xie H, Langdon WY, Yang H, Zhang J. Akt-1 and Akt-2 Differentially Regulate the Development of Experimental Autoimmune Encephalomyelitis by Controlling Proliferation of Thymus-Derived Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:1441-1452. [PMID: 30692211 DOI: 10.4049/jimmunol.1701204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/28/2018] [Indexed: 11/19/2022]
Abstract
Akt isoforms play key roles in multiple cellular processes; however, the roles of Akt-1 and Akt-2 isoforms in the development of T cell-mediated autoimmunity are poorly defined. In this study, we showed that Akt1-/- mice develop ameliorated experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, whereas Akt2-/- mice develop exacerbated EAE, compared with wild-type mice. At the cellular level, Akt-1 appears to inhibit proliferation of thymus-derived regulatory T cells (tTregs), which facilitates Ag-specific Th1/Th17 responses. In a sharp contrast to Akt-1, Akt-2 potentiates tTreg proliferation in vitro and in vivo and suppresses Ag-specific Th1/Th17 responses. Furthermore, treating mice with established EAE with a specific Akt-1 inhibitor suppressed disease progression. Our data demonstrate that Akt-1 and Akt-2 differentially regulate the susceptibility of mice to EAE by controlling tTreg proliferation. Our data also indicate that targeting Akt-1 is a potential therapeutic approach for multiple sclerosis in humans.
Collapse
Affiliation(s)
- Song Ouyang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Qiuming Zeng
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Na Tang
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Hui Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Rong Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Weifan Yin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Aimin Wang
- Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Hongyu Tang
- Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Jiru Zhou
- Department of Cardiothoracic Surgery, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China; and
| | - Hong Xie
- Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Wallace Y Langdon
- School of Biomedical Science, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China;
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; .,Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
14
|
Urinary and Plasma Metabolomics Identify the Distinct Metabolic Profile of Disease State in Chronic Mouse Model of Multiple Sclerosis. J Neuroimmune Pharmacol 2018; 14:241-250. [PMID: 30315511 DOI: 10.1007/s11481-018-9815-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
|
15
|
Haensgen H, Albornoz E, Opazo MC, Bugueño K, Jara Fernández EL, Binzberger R, Rivero-Castillo T, Venegas Salas LF, Simon F, Cabello-Verrugio C, Elorza AA, Kalergis AM, Bueno SM, Riedel CA. Gestational Hypothyroxinemia Affects Its Offspring With a Reduced Suppressive Capacity Impairing the Outcome of the Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:1257. [PMID: 29928277 PMCID: PMC5997919 DOI: 10.3389/fimmu.2018.01257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Hypothyroxinemia (Hpx) is a thyroid hormone deficiency (THD) condition highly frequent during pregnancy, which although asymptomatic for the mother, it can impair the cognitive function of the offspring. Previous studies have shown that maternal hypothyroidism increases the severity of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease model for multiple sclerosis (MS). Here, we analyzed the immune response after EAE induction in the adult offspring gestated in Hpx. Mice gestated in Hpx showed an early appearance of EAE symptoms and the increase of all parameters of the disease such as: the pathological score, spinal cord demyelination, and immune cell infiltration in comparison to the adult offspring gestated in euthyroidism. Isolated CD4+CD25+ T cells from spleen of the offspring gestated in Hpx that suffer EAE showed reduced capacity to suppress proliferation of effector T cells (TEff) after being stimulated with anti-CD3 and anti-CD28 antibodies. Moreover, adoptive transfer experiments of CD4+CD25+ T cells from the offspring gestated in Hpx suffering EAE to mice that were induced with EAE showed that the receptor mice suffer more intense EAE pathological score. Even though, no significant differences were detected in the frequency of Treg cells and IL-10 content in the blood, spleen, and brain between mice gestated in Hpx or euthyroidism, T cells CD4+CD25+ from spleen have reduced capacity to differentiate in vitro to Treg and to produce IL-10. Thus, our data support the notion that maternal Hpx can imprint the immune response of the offspring suffering EAE probably due to a reduced capacity to trigger suppression. Such “imprints” on the immune system could contribute to explaining as to why adult offspring gestated in Hpx suffer earlier and more intense EAE.
Collapse
Affiliation(s)
- Henny Haensgen
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eduardo Albornoz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - María C Opazo
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Katherinne Bugueño
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Evelyn Liliana Jara Fernández
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Tomás Rivero-Castillo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Luis F Venegas Salas
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A Elorza
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Centro de Investigaciones Biomédicas, Facultad de Ciencias de la Vida y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
16
|
Lou ZY, Cheng J, Wang XR, Zhao YF, Gan J, Zhou GY, Liu ZG, Xiao BG. The inhibition of CB 1 receptor accelerates the onset and development of EAE possibly by regulating microglia/macrophages polarization. J Neuroimmunol 2018; 317:37-44. [PMID: 29501084 DOI: 10.1016/j.jneuroim.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
Cannabinoid 1 receptor (CB1R) regulates the neuro-inflammatory and neurodegenerative damages of experimental autoimmune encephalomyelitis (EAE) and of multiple sclerosis (MS). The mechanism by which CB1R inhibition exerts inflammatory effects is still unclear. Here, we explored the cellular and molecular mechanisms of CB1R in the treatment of EAE by using a specific and selective CB1R antagonist SR141716A. Our study demonstrated that SR141716A accelerated the clinical onset and development of EAE, accompanied by body weight loss. SR141716A significantly up-regulated the expression of toll like receptor-4 (TLR-4) and nuclear factor-kappaB/p65 (NF-κB/p65) on microglia/macrophages of EAE mice as well as levels of inflammatory factors (TNF-α, IL-1β, IL-6) and chemokines (MCP-1, CX3CL1), accompanied by the shifts of cytokines from Th2 (IL-4, IL-10) to Th1 (IFN-γ)/Th17 (IL-17) in the spinal cords of EAE mice. Similar changes happened on splenic mononuclear cells (MNCs) except chemokine CX3CL1. Consistently, SR141716A promoted BV-2 microglia to release inflammatory factors (TNF-α, IL-1β, IL-6) while inhibited the production of IL-10 and chemokines (MCP-1, CX3CL1). Furthermore, when splenic CD4+ T cells co-cultured with SR141716A-administered BV-2 microglia, the levels of IL-4 and IL-10 were decreased while production of IL-17 and IFN-γ increased significantly. Our research indicated that inhibition of CB1R induced M1 phenotype-Th17 axis changed of microglia/macrophages through TLR-4 and NF-κB/p65 which accelerated the onset and development of EAE. Therefore, CB1R may be a promising target for the treatment of MS/EAE, but its complexity remains to be carefully considered and studied in further clinical application.
Collapse
Affiliation(s)
- Zhi-Yin Lou
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Cheng
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Rong Wang
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong-Fei Zhao
- Department of Neurology, JinShan Hospital, Fudan Univeristy, Shanghai, China
| | - Jing Gan
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guo-Yu Zhou
- Department of Geriatric, Qilu Hospital, Shandong University, Jinan, China
| | - Zhen-Guo Liu
- Department of Neurology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|