1
|
Seok JW, Lee J, Kim M, Kim MJ, Shin HY, Kim SW. Plasma Myokine Profiles in Patients With AChR- and MuSK-Ab-Positive Myasthenia Gravis. J Clin Neurol 2023; 19:469-477. [PMID: 37455510 PMCID: PMC10471556 DOI: 10.3988/jcn.2022.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Myokines include cytokines secreted by muscle fibers, which are the final targets of myasthenia gravis (MG). This pilot study investigated whether myokine plasma concentrations are altered in patients with MG and assessed the association between the concentration of each myokine and disease severity. METHODS We compared the plasma concentrations of 15 myokines in 63 patients with acetylcholine receptor antibody (Ab)-positive MG and 14 with muscle-specific tyrosine kinase Ab-positive MG (MuSK MG) with those in 15 healthy controls. Plasma myokine concentrations were measured using a Luminex multiplex assay kit with magnetic beads that contained Abs for 15 myokines. Correlations between myokine concentration and clinical scale results were analyzed. RESULTS The concentration of fractalkine in plasma was higher in MG (median [interquartile range]=419.6 [38.7-732.5] pg/mL) than in controls (158.5 [0.0-313.2] pg/mL, p=0.034). The leukemia inhibitory factor concentration was also found to be higher in MuSK MG (29.9 [8.7-40.1] pg/mL) than in healthy controls (7.6 [0.0-15.6] pg/mL, p=0.013). Fatty-acid-binding protein 3 (FABP3) concentrations in plasma were positively associated with clinical parameters for MG severity, including scores on the Quantitative Myasthenia Gravis score (p=0.008), Myasthenia Gravis Activities of Daily Living (p=0.003), and Myasthenia Gravis Composite (p=0.024) scales. FABP3 concentration in plasma tended to decrease after treatment in patients without additional relapse but increased in those with further relapse. CONCLUSIONS The plasma myokine profile was significantly altered in patients with MG. FABP3 concentration may be useful in assessing disease severity and predicting the treatment response.
Collapse
Affiliation(s)
- Jo Woon Seok
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Korea
| | - Jinny Lee
- Yonsei University College of Medicine, Seoul, Korea
| | - MinGi Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Min Ju Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Iwasa K, Furukawa Y, Yoshikawa H, Yamada M, Ono K. CD59 Expression in Skeletal Muscles and Its Role in Myasthenia Gravis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2023; 10:10/1/e200057. [DOI: 10.1212/nxi.0000000000200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Background and ObjectivesComplement regulatory proteins at the neuromuscular junction (NMJ) could offer protection against complement-mediated damage in myasthenia gravis (MG). However, there is limited information on their expression at the human NMJ. Thus, this study aimed at investigating the expression of the cluster of differentiation 59 (CD59) at the NMJ of human muscle specimens and demonstrating the overexpression ofCD59mRNA and protein in the muscles of patients with MG.MethodsIn this observational study, muscle specimens from 16 patients with MG (9 and 7 patients with and without thymoma, respectively) and 6 nonmyopathy control patients were examined. Immunohistochemical stains, Western blot analysis, and quantitative real-time reverse transcription PCR were used to evaluate the CD59 expression.ResultsA strong localized expression of CD59 was observed at the NMJ in both patients with and without MG. Moreover, the CD59/glyceraldehyde-3-phosphate dehydrogenase protein ratio in patients with MG was significantly higher than that in the nonmyopathy controls (MG; n = 16, median 0.16, interquartile range (IQR) 0.08–0.26 and nonmyopathy controls; n = 6, median 0.03, IQR 0.02–0.11,p= 0.01). The proportion ofCD59mRNA expression relative toAChRmRNA expression (ΔCtCD59/AChR) was associated with the quantitative MG score, MG activities of daily living score, and MG of Foundation of America Clinical Classification (r= 0.663,p= 0.01;r= 0.638,p= 0.014; andr= 0.715,p= 0.003, respectively).DiscussionCD59, which acts as a complement regulator, may protect the NMJ from complement attack. Our findings could provide a basis for further research that investigates the underlying pathogenesis in MG and the immunomodulating interactions of the muscle cells.
Collapse
|
3
|
Ke L, Li Q, Song J, Jiao W, Ji A, Chen T, Pan H, Song Y. The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review). Exp Ther Med 2021; 22:702. [PMID: 34007311 PMCID: PMC8120506 DOI: 10.3892/etm.2021.10134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disease that is characterized by muscle weakness and fatigue. Traditional treatments for MG target the neuromuscular junction (NMJ) or the immune system. However, the efficacy of such treatments is limited, and novel therapeutic options for MG are urgently required. In the current review, a new therapeutic strategy is proposed based on the mitochondrial biogenesis and energy metabolism pathway, as stimulating mitochondrial biogenesis and the energy metabolism might alleviate myasthenia gravis. A number of cellular sensors of the energy metabolism were investigated, including AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). AMPK and SIRT1 are sensors that regulate cellular energy homeostasis and maintain energy metabolism by balancing anabolism and catabolism. Peroxisome proliferator-activated receptor γ coactivator 1α and its downstream transcription factors nuclear respiratory factors 1, nuclear respiratory factors 2, and transcription factor A are key sensors of mitochondrial biogenesis, which can restore mitochondrial DNA and produce new mitochondria. These processes help to control muscle contraction and relieve the symptoms of MG, including muscle weakness caused by dysfunctional NMJ transmission. Therefore, the present review provides evidence for the therapeutic potential of targeting mitochondrial biogenesis for the treatment of MG.
Collapse
Affiliation(s)
- Lingling Ke
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jingwei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wei Jiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Aidong Ji
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
4
|
Takamori M. Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Front Mol Neurosci 2020; 13:86. [PMID: 32547365 PMCID: PMC7272578 DOI: 10.3389/fnmol.2020.00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Myasthenia gravis (MG) is a disease of the postsynaptic neuromuscular junction (NMJ) where nicotinic acetylcholine (ACh) receptors (AChRs) are targeted by autoantibodies. Search for other pathogenic antigens has detected the antibodies against muscle-specific tyrosine kinase (MuSK) and low-density lipoprotein-related protein 4 (Lrp4), both causing pre- and post-synaptic impairments. Agrin is also suspected as a fourth pathogen. In a complex NMJ organization centering on MuSK: (1) the Wnt non-canonical pathway through the Wnt-Lrp4-MuSK cysteine-rich domain (CRD)-Dishevelled (Dvl, scaffold protein) signaling acts to form AChR prepatterning with axonal guidance; (2) the neural agrin-Lrp4-MuSK (Ig1/2 domains) signaling acts to form rapsyn-anchored AChR clusters at the innervated stage of muscle; (3) adaptor protein Dok-7 acts on MuSK activation for AChR clustering from “inside” and also on cytoskeleton to stabilize AChR clusters by the downstream effector Sorbs1/2; (4) the trans-synaptic retrograde signaling contributes to the presynaptic organization via: (i) Wnt-MuSK CRD-Dvl-β catenin-Slit 2 pathway; (ii) Lrp4; and (iii) laminins. The presynaptic Ca2+ homeostasis conditioning ACh release is modified by autoreceptors such as M1-type muscarinic AChR and A2A adenosine receptors. The post-synaptic structure is stabilized by: (i) laminin-network including the muscle-derived agrin; (ii) the extracellular matrix proteins (including collagen Q/perlecan and biglycan which link to MuSK Ig1 domain and CRD); and (iii) the dystrophin-associated glycoprotein complex. The study on MuSK ectodomains (Ig1/2 domains and CRD) recognized by antibodies suggested that the MuSK antibodies were pathologically heterogeneous due to their binding to multiple functional domains. Focussing one of the matrix proteins, biglycan which functions in the manner similar to collagen Q, our antibody assay showed the negative result in MG patients. However, the synaptic stability may be impaired by antibodies against MuSK ectodomains because of the linkage of biglycan with MuSK Ig1 domain and CRD. The pathogenic diversity of MG is discussed based on NMJ signaling molecules.
Collapse
|
5
|
Vilquin JT, Bayer AC, Le Panse R, Berrih-Aknin S. The Muscle Is Not a Passive Target in Myasthenia Gravis. Front Neurol 2020; 10:1343. [PMID: 31920954 PMCID: PMC6930907 DOI: 10.3389/fneur.2019.01343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease mediated by pathogenic antibodies (Ab) directed against components of the neuromuscular junction (NMJ), mainly the acetylcholine receptor (AChR). The etiological mechanisms are not totally elucidated, but they include a combination of genetic predisposition, triggering event(s), and hormonal components. MG disease is associated with defective immune regulation, chronic cell activation, inflammation, and the thymus is frequently abnormal. MG is characterized by muscle fatigability that is very invalidating and can be life-threatening when respiratory muscles are affected. MG is not cured, and symptomatic treatments with acetylcholinesterase inhibitors and immunosuppressors are life-long medications associated with severe side effects (especially glucocorticoids). While the muscle is the ultimate target of the autoimmune attack, its place and role are not thoroughly described, and this mini-review will focus on the cascade of pathophysiologic mechanisms taking place at the NMJ and its consequences on the muscle biology, function, and regeneration in myasthenic patients, at the histological, cellular, and molecular levels. The fine structure of the synaptic cleft is damaged by the Ab binding that is coupled to focal complement-dependent lysis in the case of MG with anti-AChR antibodies. Cellular and molecular reactions taking place in the muscle involve several cell types as well as soluble factors. Finally, the regenerative capacities of the MG muscle tissue may be altered. Altogether, the studies reported in this review demonstrate that the muscle is not a passive target in MG, but interacts dynamically with its environment in several ways, activating mechanisms of compensation that limit the pathogenic mechanisms of the autoantibodies.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| | | | - Rozen Le Panse
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| |
Collapse
|
6
|
Roos A, Hathazi D, Schara U. Immunofluorescence-Based Analysis of Caveolin-3 in the Diagnostic Management of Neuromuscular Diseases. Methods Mol Biol 2020; 2169:197-216. [PMID: 32548831 DOI: 10.1007/978-1-0716-0732-9_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunohistochemistry- and/or immunofluorescence-based analysis of muscular proteins represents a standard procedure in the diagnostic management of patients suffering from neuromuscular diseases such as "Caveolinopathies" which are caused by mutations in the CAV3 gene encoding for caveolin-3. Human caveolin-3 is a 151 amino acid sized transmembrane protein localized within caveolae, predominantly expressed in cardiac and skeletal muscle cells and involved in a diversity of cellular functions crucial for muscle cell homeostasis. Loss of caveolin-3 protein abundance is indicative for the presence of pathogenic mutations within the corresponding gene and thus for the diagnosis of "Caveolinopathies." Moreover, description of abnormal immunoreactivity findings for the caveolin-3 protein is increasing in the context of other neuromuscular diseases suggesting that profound knowledge of abnormal caveolin-3-expression and/or distribution findings can be decisive also for the diagnosis of other neurological diseases as well as for a better understanding of the biology of the protein. Here, we summarize the current knowledge about the caveolin-3, report on a protocol for immunofluorescence-based analysis of the protein in the diagnostic workup of neuromuscular patients-also considering problems encountered-and confirm as well as summarize already published abnormal histological findings in muscular pathologies beyond "Caveolinopathies."
Collapse
Affiliation(s)
- Andreas Roos
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ulrike Schara
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|