1
|
In GK, Ribeiro JR, Yin J, Xiu J, Bustos MA, Ito F, Chow F, Zada G, Hwang L, Salama AKS, Park SJ, Moser JC, Darabi S, Domingo-Musibay E, Ascierto ML, Margolin K, Lutzky J, Gibney GT, Atkins MB, Izar B, Hoon DSB, VanderWalde AM. Multi-omic profiling reveals discrepant immunogenic properties and a unique tumor microenvironment among melanoma brain metastases. NPJ Precis Oncol 2023; 7:120. [PMID: 37964004 PMCID: PMC10646102 DOI: 10.1038/s41698-023-00471-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Melanoma brain metastases (MBM) are clinically challenging to treat and exhibit variable responses to immune checkpoint therapies. Prior research suggests that MBM exhibit poor tumor immune responses and are enriched in oxidative phosphorylation. Here, we report results from a multi-omic analysis of a large, real-world melanoma cohort. MBM exhibited lower interferon-gamma (IFNγ) scores and T cell-inflamed scores compared to primary cutaneous melanoma (PCM) or extracranial metastases (ECM), which was independent of tumor mutational burden. Among MBM, there were fewer computationally inferred immune cell infiltrates, which correlated with lower TNF and IL12B mRNA levels. Ingenuity pathway analysis (IPA) revealed suppression of inflammatory responses and dendritic cell maturation pathways. MBM also demonstrated a higher frequency of pathogenic PTEN mutations and angiogenic signaling. Oxidative phosphorylation (OXPHOS) was enriched in MBM and negatively correlated with NK cell and B cell-associated transcriptomic signatures. Modulating metabolic or angiogenic pathways in MBM may improve responses to immunotherapy in this difficult-to-treat patient subset.
Collapse
Affiliation(s)
- Gino K In
- Division of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | | | - Jun Yin
- Caris Life Sciences, Phoenix, AZ, USA
| | | | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Fumito Ito
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frances Chow
- Department of Neurology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gabriel Zada
- Department of Neurological Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lindsay Hwang
- LAC+USC Medical Center, Los Angeles, CA, USA
- Department of Radiation Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - April K S Salama
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Soo J Park
- Division of Hematology/Oncology, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Justin C Moser
- HonorHealth Research and Innovation Institute, Scottsdale, AZ, USA
| | - Sourat Darabi
- Hoag Family Cancer Institute, Hoag Hospital, Newport Beach, CA, USA
| | - Evidio Domingo-Musibay
- Department of Medicine, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Maria L Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Department of Translational Immunology, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Kim Margolin
- Department of Medical Oncology, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Jose Lutzky
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, USA
| | - Geoffrey T Gibney
- Division of Hematology and Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, DC, USA
| | - Michael B Atkins
- Georgetown-Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Benjamin Izar
- Columbia University, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Ari M VanderWalde
- Caris Life Sciences, Irving, TX, USA
- West Cancer Center and Research Institute, 514 Chickasawba St., Blytheville, Arkansas, 72315, USA
| |
Collapse
|
2
|
Tang X, Wei C, Zhang R, You J, Chen X. CCL21/CCR7 axis regulates demyelination and vascular cognitive impairment in a mouse model for chronic cerebral hypoperfusion. Neurol Res 2023; 45:248-259. [PMID: 36215431 DOI: 10.1080/01616412.2022.2132456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES White matter lesions (WML) are usually accompanied by cognitive decline, which consist of axonal loss and demyelination. CC chemokine ligand 21 (CCL21) and its receptor C-C chemokine receptor 7 (CCR7) belong to the chemokine family, which are involved in many diseases. However, their function in the central nervous system (CNS) is still unexplored. This study aimed to explore the role of CCL21/CCR7 axis in the pathological process of chronic ischemia-induced WML. METHODS Bilateral common carotid artery stenosis (BCAS) was employed in C57BL/6 mice as the in vivo WML model. Microarray analysis was performed to detect the overall molecular changes induced in the endothelial cells by BCAS. Q-PCR, Western blotting, and immunofluorescence staining were performed to evaluate expression levels of the related molecules. The mice were injected with LV-CCL21-GFP virus in the corpus callosum to overexpress CCL21. WML degree was determined via MRI, and cognitive ability was assessed by Y-maze and novel object recognition tests. Myelin sheath integrity was evaluated via immunofluorescence staining. RESULTS CCL21 was significantly downregulated in endothelial cells after BCAS and CCL21 overexpression alleviated BCAS-induced cognitive deficits and demyelination. Furthermore, CCR7 was found to be mainly expressed in oligodendrocytes (OLs) after exposed to hypoxia and CCR7 silencing blocked the protective effects induced by CCL21 overexpression. Conclusions CCL21/CCR7 axis may play a key role in demyelination induced by BCAS. This might provide a novel therapeutic target for WML.
Collapse
Affiliation(s)
- Xuelian Tang
- These authors have contributed equally to this work and share the first authorship
| | - Cunsheng Wei
- These authors have contributed equally to this work and share the first authorship
| | - Rui Zhang
- Department of Neurology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jie You
- Department of Neurology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Xuemei Chen
- Department of Neurology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Lan YL, Wang H, Chen A, Zhang J. Update on the current knowledge of lymphatic drainage system and its emerging roles in glioma management. Immunology 2023; 168:233-247. [PMID: 35719015 DOI: 10.1111/imm.13517] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
The draining of brain interstitial fluid (ISF) to cerebrospinal fluid (CSF) and the subsequent draining of CSF to meningeal lymphatics is well-known. Nonetheless, its role in the development of glioma is a remarkable finding that has to be extensively understood. The glymphatic system (GS) collects CSF from the subarachnoid space and brain ISF through aquaporin-4 (AQP4) water channels. The glial limiting membrane and the perivascular astrocyte-end-feet membrane both have elevated levels of AQP4. CSF is thought to drain through the nerve sheaths of the olfactory and other cranial nerves as well as spinal meningeal lymphatics via dorsal or basal lymphatic vessels. Meningeal lymphatic vessels (MLVs) exist below the skull in the dorsal and basal regions. In this view, MLVs offer a pathway to drain macromolecules and traffic immunological cells from the CNS into cervical lymph nodes (CLNs), and thus can be used as a candidate curing strategy against glioma and other associated complications, such as neuro-inflammation. Taken together, the lymphatic drainage system could provide a route or approach for drug targeting of glioma and other neurological conditions. Nevertheless, its pathophysiological role in glioma remains elusive, which needs extensive research. The current review aims to explore the lymphatic drainage system, its role in glioma progression, and possible therapeutic techniques that target MLVs in the CNS.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjin Wang
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Aiqin Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Development of a Cancer-Associated Fibroblast-Related Prognostic Model in Breast Cancer via Bulk and Single-Cell RNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2955359. [PMID: 36510567 PMCID: PMC9735320 DOI: 10.1155/2022/2955359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022]
Abstract
Background The most numerous cells in the tumor microenvironment, cancer-associated fibroblasts (CAFs) play a crucial role in cancer development. Our objective was to develop a cancer-associated fibroblast breast cancer predictive model. Methods We acquire breast cancer (BC) scRNA-seq data from Gene Expression Omnibus (GEO), and "Seurat" was used for data processing, including quality control, filtering, principal component analysis, and t-SNE. Afterward, "singleR" software was used to annotate cells. Seurat's "FindAllMarkers" program is used to locate particular CAF markers. clusterProfiler was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The Cancer Genome Atlas (TCGA) database was utilized to provide univariate Cox regression, least absolute shrinkage operator (LASSO) analysis using bulk RNA-seq data. For model development, multivariate Cox regression studies are used. Utilizing pRRophetic and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms, chemosensitivity and immunotherapy response were predicted. The "rms" software was used to facilitate and simplify modeling. Results Integrating the scRNA-seq (GSE176078) dataset yielded 28 cell clusters. In addition, well-known cell types helped identify 12 cell types. We found 193 marker genes that are elevated in CAFs. In addition, a five-gene predictive model associated to CAF was created in the training set. In the training set, the validation set, and the external validation set, greater risk scores were associated with a worse prognosis. And individuals with a higher risk score were more susceptible to immunotherapy and conventional chemotherapy medicines. Conclusion In conclusion, we establish a strong prognostic model comprised of 5 genes related with CAF that might serve as a potent prognostic indicator and aid clinicians in making more rational medication choices.
Collapse
|
5
|
Wei R, Zhang H, Cao J, Qin D, Deng W, Li S. Type 1 T Helper Cell-Based Molecular Subtypes and Signature Are Associated with Clinical Outcome in Pancreatic Ductal Adenocarcinoma. Front Cell Dev Biol 2022; 10:839893. [PMID: 35433680 PMCID: PMC9011157 DOI: 10.3389/fcell.2022.839893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Lymph node metastasis in pancreatic ductal adenocarcinoma (PDAC) is shown to be related with poor prognosis. To construct an immune-related gene prognostic risk model for PDAC and clarify the molecular and immune characteristics and the benefit of immune checkpoint inhibitor (ICI) therapy in prognostic risk model-defined subgroups of PDAC, we analyze the association between the density of immune cell infiltration and lymph node metastatic status and further study the potential role of immune cells, immune cell-related genes, and immunotherapy outcomes in PDAC patients using bioinformatics models and machine learning methods. Based on The Cancer Genome Atlas (TCGA), PACA-AU and PACA-CA data sets, 62 immune-related hub genes were identified by weighted gene co-expression network analysis (WGCNA). Four genes were selected to construct a molecular subtype identification based on the type 1 T helper cell-related hub genes by using the Cox regression method. We found that lower type 1 T helper cell abundance was correlated with prolonged survival in PDAC patients. Further, prognostic risk score model constructed with the type 1 T helper cell-related signature showed high accuracy in predicting overall survival and response to immunotherapy. This study might improve the understanding of the role of type 1 T helper cells in PDAC patients and aid in the development of immunotherapy and personalized treatments for these patients.
Collapse
Affiliation(s)
- Ran Wei
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huihui Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzhong Cao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dailei Qin
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wuguo Deng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shengping Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Gatto L, Franceschi E, Di Nunno V, Maggio I, Lodi R, Brandes AA. Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Rev Anticancer Ther 2021; 21:1333-1353. [PMID: 34734551 DOI: 10.1080/14737140.2021.1997599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The field of cancer immunotherapy has achieved great advancements through the application of genetically engineered T cells with chimeric antigen receptors (CAR), that have shown exciting success in eradicating hematologic malignancies and have proved to be safe with promising early signs of antitumoral activity in the treatment of glioblastoma (GBM). AREAS COVERED We discuss the use of CAR T cells in GBM, focusing on limitations and obstacles to advancement, mostly related to toxicities, hostile tumor microenvironment, limited CAR T cells infiltration and persistence, target antigen loss/heterogeneity and inadequate trafficking. Furthermore, we introduce the refined strategies aimed at strengthening CAR T activity and offer insights in to novel immunotherapeutic approaches, such as the potential use of CAR NK or CAR M to optimize anti-tumor effects for GBM management. EXPERT OPINION With the progressive wide use of CAR T cell therapy, significant challenges in treating solid tumors, including central nervous system (CNS) tumors, are emerging, highlighting early disease relapse and cancer cell resistance issues, owing to hostile immunosuppressive microenvironment and tumor antigen heterogeneity. In addition to CAR T cells, there is great interest in utilizing other types of CAR-based therapies, such as CAR natural killer (CAR NK) or CAR macrophages (CAR M) cells for CNS tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Enrico Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| | | | - Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Raffaele Lodi
- IrcssIstituto di Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| |
Collapse
|
7
|
Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia K. CCR7 as a therapeutic target in Cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188499. [PMID: 33385485 DOI: 10.1016/j.bbcan.2020.188499] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The CCR7 chemokine axis is comprised of chemokine ligand 21 (CCL21) and chemokine ligand 19 (CCL19) acting on chemokine receptor 7 (CCR7). This axis plays two important but apparently opposing roles in cancer. On the one hand, this axis is significantly engaged in the trafficking of a number of effecter cells involved in mounting an immune response to a growing tumour. This suggests therapeutic strategies which involve potentiation of this axis can be used to combat the spread of cancer. On the other hand, the CCR7 axis plays a significant role in controlling the migration of tumour cells towards the lymphatic system and metastasis and can thus contribute to the expansion of cancer. This implies that therapeutic strategies which involve decreasing signaling through the CCR7 axis would have a beneficial effect in preventing dissemination of cancer. This dichotomy has partly been the reason why this axis has not yet been exploited, as other chemokine axes have, as a therapeutic target in cancer. Recent report of a crystal structure for CCR7 provides opportunities to exploit this axis in developing new cancer therapies. However, it remains unclear which of these two strategies, potentiation or antagonism of the CCR7 axis, is more appropriate for cancer therapy. This review brings together the evidence supporting both roles of the CCR7 axis in cancer and examines the future potential of each of the two different therapeutic approaches involving the CCR7 axis in cancer.
Collapse
Affiliation(s)
- Anwar Salem
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Mashael Alotaibi
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Rima Mroueh
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Haneen A Basheer
- Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
8
|
Computational Identification of Tumor Suppressor Genes Based on Gene Expression Profiles in Normal and Cancerous Gastrointestinal Tissues. JOURNAL OF ONCOLOGY 2020; 2020:2503790. [PMID: 32774369 PMCID: PMC7396062 DOI: 10.1155/2020/2503790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Cancer prevails in various gastrointestinal (GI) organs, such as esophagus, stomach, and colon. However, the small intestine has an extremely low cancer risk. It is interesting to investigate the molecular cues that could explain the significant difference in cancer incidence rates among different GI tissues. Using several large-scale normal and cancer tissue genomics datasets, we compared the gene expression profiling between small intestine and other GI tissues and between GI cancers and normal tissues. We identified 17 tumor suppressor genes (TSGs) which showed significantly higher expression levels in small intestine than in other GI tissues and significantly lower expression levels in GI cancers than in normal tissues. These TSGs were mainly involved in metabolism, immune, and cell growth signaling-associated pathways. Many TSGs had a positive expression correlation with survival prognosis in various cancers, confirming their tumor suppressive function. We demonstrated that the downregulation of many TSGs was associated with their hypermethylation in cancer. Moreover, we showed that the expression of many TSGs inversely correlated with tumor purity and positively correlated with antitumor immune response in various cancers, suggesting that these TSGs may exert their tumor suppressive function by promoting antitumor immunity. Furthermore, we identified a transcriptional regulatory network of the TSGs and their master transcriptional regulators (MTRs). Many of MTRs have been recognized as tumor suppressors, such as HNF4A, ZBTB7A, p53, and RUNX3. The TSGs could provide new molecular cues associated with tumorigenesis and tumor development and have potential clinical implications for cancer diagnosis, prognosis, and treatment.
Collapse
|
9
|
Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol 2019; 117:201-215. [PMID: 31835202 DOI: 10.1016/j.molimm.2019.11.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) expand in tumor-bearing host. They suppress anti-tumor immune response and promote tumor growth. Chemokines play a vital role in recruiting MDSCs into tumor tissue. They can also induce the generation of MDSCs in the bone marrow, maintain their suppressive activity, and promote their proliferation and differentiation. Here, we review CCL2/CCL12-CCR2, CCL3/4/5-CCR5, CCL15-CCR1, CX3CL1/CCL26-CX3CR1, CXCL5/2/1-CXCR2, CXCL8-CXCR1/2, CCL21-CCR7, CXCL13-CXCR5 signaling pathways, their role in MDSCs recruitment to tumor tissue, and their correlation with tumor development, metastasis and prognosis. Targeting chemokines and their receptors may serve as a promising strategy in immunotherapy, especially combined with other strategies such as chemotherapy, cyclin-dependent kinase or immune checkpoints inhibitors.
Collapse
|
10
|
Akhavan D, Alizadeh D, Wang D, Weist MR, Shepphird JK, Brown CE. CAR T cells for brain tumors: Lessons learned and road ahead. Immunol Rev 2019; 290:60-84. [PMID: 31355493 PMCID: PMC6771592 DOI: 10.1111/imr.12773] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Malignant brain tumors, including glioblastoma, represent some of the most difficult to treat of solid tumors. Nevertheless, recent progress in immunotherapy, across a broad range of tumor types, provides hope that immunological approaches will have the potential to improve outcomes for patients with brain tumors. Chimeric antigen receptors (CAR) T cells, a promising immunotherapeutic modality, utilizes the tumor targeting specificity of any antibody or receptor ligand to redirect the cytolytic potency of T cells. The remarkable clinical response rates of CD19-targeted CAR T cells and early clinical experiences in glioblastoma demonstrating safety and evidence for disease modifying activity support the potential of further advancements ultimately providing clinical benefit for patients. The brain, however, is an immune specialized organ presenting unique and specific challenges to immune-based therapies. Remaining barriers to be overcome for achieving effective CAR T cell therapy in the central nervous system (CNS) include tumor antigenic heterogeneity, an immune-suppressive microenvironment, unique properties of the CNS that limit T cell entry, and risks of immune-based toxicities in this highly sensitive organ. This review will summarize preclinical and clinical data for CAR T cell immunotherapy in glioblastoma and other malignant brain tumors, including present obstacles to advancement.
Collapse
Affiliation(s)
- David Akhavan
- Department of Radiation OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Darya Alizadeh
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Dongrui Wang
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Michael R. Weist
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Molecular Imaging and TherapyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Jennifer K. Shepphird
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Christine E. Brown
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| |
Collapse
|