1
|
Goleij P, Amini A, Tabari MAK, Hadipour M, Rezaee A, Daglia M, Aschner M, Sanaye PM, Kumar AP, Khan H. Unraveling the role of the IL-20 cytokine family in neurodegenerative diseases: Mechanisms and therapeutic insights. Int Immunopharmacol 2025; 152:114399. [PMID: 40068518 DOI: 10.1016/j.intimp.2025.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
The IL-20 cytokine family, comprising IL-19, IL-20, IL-22, IL-24, and IL-26, has emerged as a critical player in the pathogenesis of neurodegenerative diseases due to its multiple roles in inflammation, tissue repair, and immune modulation. These cytokines signal through IL-20 receptor complexes (IL-20RA/IL-20RB and IL-22RA1/IL-20RB), triggering diverse immune processes. Recent evidence highlights their significant contributions to neuroinflammation and neurodegeneration in central nervous system disorders. IL-20 family cytokines impact microglial activation, which, when dysregulated, exacerbates neuronal damage. Specifically, IL-20 and IL-24 are linked to elevated pro-inflammatory markers in glial cells, promoting neurodegeneration. In contrast, IL-22 exhibits dual functionality, exerting protective and pathological roles depending on the inflammatory milieu. Key mechanisms involve the regulation of blood-brain barrier integrity, oxidative stress, and autophagy. IL-22 and IL-24 also protect neurons by enhancing antioxidant defenses and maintaining epithelial barrier function, while their dysregulation contributes to blood-brain barrier disruption and protein aggregate accumulation, hallmark features of Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Elevated IL-22 levels in Alzheimer's disease and IL-19's regulatory role in multiple sclerosis suggest they may serve as potential biomarkers and therapeutic targets. IL-26's role in amplifying inflammatory cascades further underscores the complexity of this cytokine family in neurodegenerative pathology. Therapeutically, strategies targeting IL-20 cytokines include monoclonal antibodies, receptor modulation, and recombinant cytokine administration. These approaches aim to mitigate neuroinflammation, restore immune balance, and protect neuronal integrity. This review underscores the IL-20 family's emerging relevance in neurodegenerative diseases, highlighting its potential for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Alireza Amini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
| | - Aryan Rezaee
- Medical Doctor, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
2
|
Erichsen PA, Henriksen EE, Nielsen JE, Ejlerskov P, Simonsen AH, Toft A. Immunological Fluid Biomarkers in Frontotemporal Dementia: A Systematic Review. Biomolecules 2025; 15:473. [PMID: 40305176 PMCID: PMC12025258 DOI: 10.3390/biom15040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 05/02/2025] Open
Abstract
Dysregulated immune activation plays a key role in the pathogenesis of neurodegenerative diseases, including frontotemporal dementia (FTD). This study reviews immunological biomarkers associated with FTD and its subtypes. A systematic search of PubMed and Web of Science was conducted for studies published before 1 January 2025, focusing on immunological biomarkers in CSF or blood from FTD patients with comparisons to healthy or neurological controls. A total of 124 studies were included, involving 6686 FTD patients and 202 immune biomarkers. Key findings include elevated levels of GFAP and MCP1/CCL2 in both CSF and blood and consistently increased CHIT1 and YKL-40 in CSF. Complement proteins from the classical activation pathway emerged as promising targets. Distinct immune markers were found to differentiate FTD from Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), with GFAP, SPARC, and SPP1 varying between FTD and AD and IL-15, HERV-K, NOD2, and CHIT1 differing between FTD and ALS. A few markers, such as Galectin-3 and PGRN, distinguished FTD subtypes. Enrichment analysis highlighted IL-10 signaling and immune cell chemotaxis as potential pathways for further exploration. This study provides an overview of immunological biomarkers in FTD, emphasizing those most relevant for future research on immune dysregulation in FTD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Anders Toft
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Rigshospitalet, 2100 Copenhagen, Denmark; (P.A.E.); (E.E.H.); (J.E.N.); (P.E.); (A.H.S.)
| |
Collapse
|
3
|
Chu M, Wen L, Jiang D, Liu L, Nan H, Yue A, Wang Y, Wang Y, Qu M, Wang N, Wu L. Peripheral inflammation in behavioural variant frontotemporal dementia: associations with central degeneration and clinical measures. J Neuroinflammation 2023; 20:65. [PMID: 36890594 PMCID: PMC9996857 DOI: 10.1186/s12974-023-02746-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Neuroinflammation plays a significant role in the progression of frontotemporal dementia (FTD). However, the association between peripheral inflammatory factors and brain neurodegeneration is poorly understood. We aimed to examine changes in peripheral inflammatory markers in patients with behavioural variant FTD (bvFTD) and explore the potential association between peripheral inflammation and brain structure, metabolism, and clinical parameters. METHODS Thirty-nine bvFTD patients and 40 healthy controls were enrolled and underwent assessment of plasma inflammatory factors, positron emission tomography/magnetic resonance imaging, and neuropsychological assessments. Group differences were tested using Student's t test, Mann‒Whitney U test, or ANOVA. Partial correlation analysis and multivariable regression analysis were implemented using age and sex as covariates to explore the association between peripheral inflammatory markers, neuroimaging, and clinical measures. The false discovery rate was used to correct for the multiple correlation test. RESULTS Plasma levels of six factors, including interleukin (IL)-2, IL-12p70, IL-17A, tumour necrosis superfamily member 13B (TNFSF/BAFF), TNFSF12 (TWEAK), and TNFRSF8 (sCD30), were increased in the bvFTD group. Five factors were significantly associated with central degeneration, including IL-2, IL-12p70, IL-17A, sCD30/TNFRSF8, and tumour necrosis factor (TNF)-α; the association between inflammation and brain atrophy was mainly distributed in frontal-limbic-striatal brain regions, whereas the association with brain metabolism was mainly in the frontal-temporal-limbic-striatal regions. BAFF/TNFSF13B, IL-4, IL-6, IL-17A and TNF-α were found to correlate with clinical measures. CONCLUSION Peripheral inflammation disturbance in patients with bvFTD participates in disease-specific pathophysiological mechanisms, which could be a promising target for diagnosis, treatment, and monitoring therapeutic efficacy.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ailing Yue
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingtao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ningqun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
4
|
Toft A, Sjödin S, Simonsen AH, Ejlerskov P, Roos P, Musaeus CS, Henriksen EE, Nielsen TT, Brinkmalm A, Blennow K, Zetterberg H, Nielsen JE. Endo-lysosomal protein concentrations in CSF from patients with frontotemporal dementia caused by CHMP2B mutation. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12402. [PMID: 36815874 PMCID: PMC9936136 DOI: 10.1002/dad2.12402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 02/19/2023]
Abstract
Introduction Increasing evidence implicates proteostatic dysfunction as an early event in the development of frontotemporal dementia (FTD). This study aimed to explore potential cerebrospinal fluid (CSF) biomarkers associated with the proteolytic systems in genetic FTD caused by CHMP2B mutation. Methods Combining solid-phase extraction and parallel reaction monitoring mass spectrometry, a panel of 47 peptides derived from 20 proteins was analyzed in CSF from 31 members of the Danish CHMP2B-FTD family. Results Compared with family controls, mutation carriers had significantly higher levels of complement C9, lysozyme and transcobalamin II, and lower levels of ubiquitin, cathepsin B, and amyloid precursor protein. Discussion Lower CSF ubiquitin concentrations in CHMP2B mutation carriers indicate that ubiquitin levels relate to the specific disease pathology, rather than all-cause neurodegeneration. Increased lysozyme and complement proteins may indicate innate immune activation. Altered levels of amyloid precursor protein and cathepsins have previously been associated with impaired lysosomal proteolysis in FTD. Highlights CSF markers of proteostasis were explored in CHMP2B-mediated frontotemporal dementia (FTD).31 members of the Danish CHMP2B-FTD family were included.We used solid-phase extraction and parallel reaction monitoring mass spectrometry.Six protein levels were significantly altered in CHMP2B-FTD compared with controls.Lower CSF ubiquitin levels in patients suggest association with disease mechanisms.
Collapse
Affiliation(s)
- Anders Toft
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Simon Sjödin
- Laboratory of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Anja Hviid Simonsen
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Patrick Ejlerskov
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Peter Roos
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Christian Sandøe Musaeus
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Emil Elbæk Henriksen
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Troels Tolstrup Nielsen
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| | - Ann Brinkmalm
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Kaj Blennow
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Henrik Zetterberg
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
| | - Jørgen Erik Nielsen
- Neurogenetics Clinic & Research LabDanish Dementia Research CentreRigshospitaletCopenhagenDenmark
| |
Collapse
|
5
|
Novel CSF Biomarkers Tracking Autoimmune Inflammatory and Neurodegenerative Aspects of CNS Diseases. Diagnostics (Basel) 2022; 13:diagnostics13010073. [PMID: 36611365 PMCID: PMC9818715 DOI: 10.3390/diagnostics13010073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The accurate diagnosis of neuroinflammatory (NIDs) and neurodegenerative (NDDs) diseases and the stratification of patients into disease subgroups with distinct disease-related characteristics that reflect the underlying pathology represents an unmet clinical need that is of particular interest in the era of emerging disease-modifying therapies (DMT). Proper patient selection for clinical trials and identifying those in the prodromal stages of the diseases or those at high risk will pave the way for precision medicine approaches and halt neuroinflammation and/or neurodegeneration in early stages where this is possible. Towards this direction, novel cerebrospinal fluid (CSF) biomarker candidates were developed to reflect the diseased organ's pathology better. Μisfolded protein accumulation, microglial activation, synaptic dysfunction, and finally, neuronal death are some of the pathophysiological aspects captured by these biomarkers to support proper diagnosis and screening. We also describe advances in the field of molecular biomarkers, including miRNAs and extracellular nucleic acids known as cell-free DNA and mitochondrial DNA molecules. Here we review the most important of these novel CSF biomarkers of NIDs and NDDs, focusing on their involvement in disease development and emphasizing their ability to define homogeneous disease phenotypes and track potential treatment outcomes that can be mirrored in the CSF compartment.
Collapse
|
6
|
Roos P, Johannsen P, Lindquist SG, Brown JM, Waldemar G, Duno M, Nielsen TT, Budtz‐Jørgensen E, Gydesen S, Holm IE, Collinge J, Isaacs AM, Nielsen JE, Gade A, Stokholm J, Thusgaard T, Fisher EM, Englund E. Six generations of CHMP2B-mediated Frontotemporal Dementia: Clinical features, predictive testing, progression, and survival. Acta Neurol Scand 2022; 145:529-540. [PMID: 34997757 DOI: 10.1111/ane.13578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Chromosome 3-linked frontotemporal dementia (FTD-3) is caused by a c.532-1G > C mutation in the CHMP2B gene. It is extensively studied in a Danish family comprising one of the largest families with an autosomal dominantly inherited frontotemporal dementia (FTD). This retrospective cohort study utilizes demographics to identify risk factors for onset, progression, life expectancy, and death in CHMP2B-mediated FTD. The pedigree of 528 individuals in six generations is provided, and clinical descriptions are presented. Choices of genetic testing are evaluated. MATERIALS AND METHODS Demographic and lifestyle factors were assessed in survival analysis in all identified CHMP2B mutation carriers (44 clinically affected FTD-3 patients and 16 presymptomatic CHMP2B mutation carriers). Predictors of onset and progression included sex, parental disease course, education, and vascular risk factors. Life expectancy was established by matching CHMP2B mutation carriers with average life expectancies in Denmark. RESULTS Disease course was not correlated to parental disease course and seemed unmodified by lifestyle factors. Diagnosis was recognized at an earlier age in members with higher levels of education, probably reflecting an early dysexecutive syndrome, unmasked earlier in people with higher work-related requirements. Carriers of the CHMP2B mutation had a significant reduction in life expectancy of 13 years. Predictive genetic testing was chosen by 20% of at-risk family members. CONCLUSIONS CHMP2B-mediated FTD is substantiated as an autosomal dominantly inherited disease of complete penetrance. The clinical phenotype is a behavioral variant FTD. The disease course is unpredictable, and life expectancy is reduced. The findings may be applicable to other genetic FTD subtypes.
Collapse
Affiliation(s)
- Peter Roos
- Danish Dementia Research Centre Department of Neurology Rigshospitalet University of Copenhagen Denmark
| | - Peter Johannsen
- Danish Dementia Research Centre Department of Neurology Rigshospitalet University of Copenhagen Denmark
- Medical & Science Novo Nordisk A/S Søborg Denmark
| | - Suzanne G. Lindquist
- Danish Dementia Research Centre Department of Neurology Rigshospitalet University of Copenhagen Denmark
- Department of Clinical Genetics, Rigshospitalet University of Copenhagen Denmark
| | | | - Gunhild Waldemar
- Danish Dementia Research Centre Department of Neurology Rigshospitalet University of Copenhagen Denmark
| | - Morten Duno
- Department of Clinical Genetics, Rigshospitalet University of Copenhagen Denmark
| | - Troels T. Nielsen
- Danish Dementia Research Centre Department of Neurology Rigshospitalet University of Copenhagen Denmark
| | - Esben Budtz‐Jørgensen
- Section of Biostatistics Department of Public Health University of Copenhagen Denmark
| | | | - Ida E. Holm
- Department of Pathology Aalborg University Hospital Randers Denmark
| | - John Collinge
- MRC Prion Unit at UCL UCL Institute of Prion Diseases Courtauld Building London UK
| | - Adrian M. Isaacs
- Department of Neuromuscular Diseases UCL Institute of Neurology Queen Square London UK
- UK Dementia Research Institute at UCL UCL Institute of Neurology Queen Square London UK
| | - Jørgen E. Nielsen
- Danish Dementia Research Centre Department of Neurology Rigshospitalet University of Copenhagen Denmark
| | | | | | | | | | | | | |
Collapse
|
7
|
Filipello F, Goldsbury C, You SF, Locca A, Karch CM, Piccio L. Soluble TREM2: Innocent bystander or active player in neurological diseases? Neurobiol Dis 2022; 165:105630. [PMID: 35041990 PMCID: PMC10108835 DOI: 10.1016/j.nbd.2022.105630] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor expressed by macrophages and microglia in the central nervous system (CNS). TREM2 has attracted a lot of interest in the past decade for its critical role in modulating microglia functions under homeostatic conditions and in neurodegenerative diseases. Genetic variation in TREM2 is sufficient to cause Nasu-Hakola disease, a rare pre-senile dementia with bone cysts, and to increase risk for Alzheimer's disease, frontotemporal dementia, and other neurodegenerative disorders. Beyond the role played by TREM2 genetic variants in these diseases, TREM2 engagement is a key step in microglia activation in response to different types of tissue injury (e.g. β-Amyloid deposition, demyelination, apoptotic cell death) leading to enhanced microglia metabolism, phagocytosis, proliferation and survival. TREM2 also exists as a soluble form (sTREM2), generated from receptor shedding or alternative splicing, which is detectable in plasma and cerebrospinal fluid (CSF). Genetic variation, physiological conditions and disease status impact CSF sTREM2 levels. Clinical and preclinical studies suggest that targeting and/or monitoring sTREM2 could have clinical and therapeutic implications. Despite the critical role of sTREM2 in neurologic disease, its function remains poorly understood. Here, we review the current literature on sTREM2 regarding its origin, genetic variation, and possible functions as a biomarker in neurological disorders and as a potential active player in CNS diseases and target for therapies.
Collapse
Affiliation(s)
- Fabia Filipello
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Claire Goldsbury
- Brain and Mind Centre and Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Shih Feng You
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Alberto Locca
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Brain and Mind Centre and Charles Perkins Centre, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Jorda A, Aldasoro M, Aldasoro C, Valles SL. Inflammatory Chemokines Expression Variations and Their Receptors in APP/PS1 Mice. J Alzheimers Dis 2021; 83:1051-1060. [PMID: 34397415 DOI: 10.3233/jad-210489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), an increase in inflammation is distinctive. Amyloid precursor protein plus presenilin-1 (APP/PS1 mice) is a model for this illness. Chemokines secreted by central nervous system (CNS) cells could play multiple important roles in AD. Data looking for the chemokines involved in inflammatory mechanisms are lacking. To understand the changes that occur in the inflammation process in AD, it is necessary to improve strategies to act on specific inflammatory targets. OBJECTIVE Chemokines and their receptors involved in phagocytosis, demyelination, chemotaxis, and coagulation were the objective of our study. METHODS Female APPswe/PS1 double-transgenic mice (B6C3-Tg) were used and cortex brain from 20-22-month-old mice obtained and used to quantify chemokines and chemokine receptors expression using RT-PCR technique. RESULTS Significant inflammatory changes were detected in APP/PS1 compared to wild type mice. CCR1, CCR3, CCR4, and CCR9 were elevated, and CCR2 were decreased compared with wild type mice. Their ligands CCL7, CCL11, CCL17, CCL22, CCL25, and CXCL4 showed an increase expression; however, changes were not observed in CCL2 in APP/PS1 compared to wild type mice. CONCLUSION This change in expression could explain the differences between AD patients and elderly people without this illness. This would provide a new strategy for the treatment of AD, with the possibility to act in specific inflammatory targets.
Collapse
Affiliation(s)
- Adrián Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain.,Faculty of Surgery and Chiropody, University of Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
| |
Collapse
|
9
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
10
|
Elevated serum chemokine CCL22 levels in first-episode psychosis: associations with symptoms, peripheral immune state and in vivo brain glial cell function. Transl Psychiatry 2020; 10:94. [PMID: 32179746 PMCID: PMC7075957 DOI: 10.1038/s41398-020-0776-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023] Open
Abstract
Several lines of research support immune system dysregulation in psychotic disorders. However, it remains unclear whether the immunological marker alterations are stable and how they associate with brain glial cell function. This longitudinal study aimed at investigating whether peripheral immune functions are altered in the early phases of psychotic disorders, whether the changes are associated with core symptoms, remission, brain glial cell function, and whether they persist in a one-year follow-up. Two independent cohorts comprising in total of 129 first-episode psychosis (FEP) patients and 130 controls were assessed at baseline and at the one-year follow-up. Serum cyto-/chemokines were measured using a 38-plex Luminex assay. The FEP patients showed a marked increase in chemokine CCL22 levels both at baseline (p < 0.0001; Cohen's d = 0.70) and at the 12-month follow-up (p = 0.0007) compared to controls. The group difference remained significant (p = 0.0019) after accounting for relevant covariates including BMI, smoking, and antipsychotic medication. Elevated serum CCL22 levels were significantly associated with hallucinations (ρ = 0.20) and disorganization (ρ = 0.23), and with worse verbal performance (ρ = -0.23). Brain glial cell activity was indexed with positron emission tomography and the translocator protein radiotracer [11C]PBR28 in subgroups of 15 healthy controls and 14 FEP patients with serum CCL22/CCL17 measurements. The distribution volume (VT) of [11C]PBR28 was lower in patients compared to controls (p = 0.026; Cohen's d = 0.94) without regionally specific effects, and was inversely associated with serum CCL22 and CCL17 levels (p = 0.036). Our results do not support the over-active microglia hypothesis of psychosis, but indicate altered CCR4 immune signaling in early psychosis with behavioral correlates possibly mediated through cross-talk between chemokine networks and dysfunctional or a decreased number of glial cells.
Collapse
|
11
|
Waegaert R, Dirrig-Grosch S, Parisot F, Keime C, Henriques A, Loeffler JP, René F. Longitudinal transcriptomic analysis of altered pathways in a CHMP2B intron5-based model of ALS-FTD. Neurobiol Dis 2019; 136:104710. [PMID: 31837425 DOI: 10.1016/j.nbd.2019.104710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/28/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with currently no cure. These two diseases share a clinical continuum with overlapping genetic causes. Mutations in the CHMP2B gene are found in patients with ALS, FTD and ALS-FTD. To highlight deregulated mechanisms occurring in ALS-FTD linked to the CHMP2B gene, we performed a whole transcriptomic study on lumbar spinal cord from CHMP2Bintron5 mice, a model that develops progressive motor alterations associated with dementia symptoms reminiscent of both ALS and FTD. To gain insight into the transcriptomic changes taking place during disease progression this study was performed at three stages: asymptomatic, symptomatic and end stage. We showed that before appearance of motor symptoms, the major disrupted mechanisms were linked with the immune system/inflammatory response and lipid metabolism. These processes were progressively replaced by alterations of neuronal electric activity as motor symptoms appeared, alterations that could lead to motor neuron dysfunction. To investigate overlapping alterations in gene expression between two ALS-causing genes, we then compared the transcriptome of symptomatic CHMP2Bintron5 mice with the one of symptomatic SOD1G86R mice and found the same families deregulated providing further insights into common underlying dysfunction of biological pathways, disrupted or disturbed in ALS. Altogether, this study provides a database to explore potential new candidate genes involved in the CHMP2Bintron5-based pathogenesis of ALS, and provides molecular clues to further understand the functional consequences that diseased neurons expressing CHMP2B mutant may have on their neighbor cells.
Collapse
Affiliation(s)
- Robin Waegaert
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Florian Parisot
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS, UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Alexandre Henriques
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Jean-Philippe Loeffler
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Frédérique René
- INSERM U1118 Mécanismes centraux et périphériques de la neurodégénérescence, Université de Strasbourg, 11 rue Humann, Strasbourg, France.
| |
Collapse
|