1
|
Omidkhoda SF, Rajabian F, Hosseinzadeh H. Lipoic acid as a protective agent against lipopolysaccharide and other natural toxins: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04123-w. [PMID: 40227307 DOI: 10.1007/s00210-025-04123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
Alpha-lipoic acid, also known as lipoate or lipoic acid (LA), is naturally present in the mitochondria of cells, where it functions as a cofactor for dehydrogenase enzyme complexes. It has also been reported that LA is a potent antioxidant. Not only does it scavenge free radicals directly, but it can also regenerate other essential cellular antioxidants. LA exhibits various anti-inflammatory effects and offers protection to mitochondria. Numerous studies have assessed the potential protective effects of LA against natural toxins, including lipopolysaccharides, galactosamine, mycotoxins, snake venoms, and toxins derived from cyanobacteria and plants. In general, the results of these studies indicate that LA can be effective in mitigating various toxicities, primarily due to the previously mentioned capabilities. Furthermore, novel mechanisms have been proposed for LA against specific toxins, for example, direct inactivation of secretory phospholipase A2 in some snake venoms or enhancement of p-glycoprotein activity to prevent saxitoxin entry into the neuronal cells. However, the gaps in the available data from most animal experiments conducted to date have resulted in insufficient evidence to justify further clinical evaluations of the effects of LA on human poisoning cases. Consequently, more extensive research is required to address these gaps and fully realize the therapeutic potential of this valuable substance.
Collapse
Affiliation(s)
- Seyedeh Farzaneh Omidkhoda
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Feng Y, Xie F, Ding R, Zhang Q, Zeng Y, Li L, Wu L, Yu Y, Fang L. One-pot rapid preparation of long-term antioxidant and antibacterial biomedical gels based on lipoic acid and eugenol for accelerating cutaneous wound healing. J Mater Chem B 2024; 12:12641-12651. [PMID: 39498838 DOI: 10.1039/d4tb01844c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The complex battlefield environment often puts great pressure on the treatment of open wounds caused by burns and trauma, which cannot heal for a long time due to the lack of medical resources. Once wounds are not sutured and severely infected, they can lead to infective endocarditis, sepsis, and even death. Therefore, it is urgent to develop advanced dressings to replace sutures and antibiotics, which can quickly seal wounds and maintain long-term stability of antibacterial and antioxidant properties. In this study, novel biobased antibacterial adhesive gels composed of natural small molecule lipoic acid and eugenol were prepared via a one-pot solvent-free reaction for wound management. The gels were crosslinked via the ring-opening polymerization of lipoic acid and hydrogen bond interaction. Due to its structure feature, the PLA-E1 gel displayed excellent flexibility, transparency, self-healing and adhesiveness. The gel system showed long-term high antioxidant activity (95%) after exposure to air at room temperature for one year. Meanwhile, the reactive oxygen species (ROS) scavenging efficacy was kept around 52%. Both trauma and burn in vivo experiments demonstrated that the PLA-E1 gel could accelerate wound healing through antibacterial, antioxidant, angiogenic and tissue regenerative effects, indicating the potential applications of cutaneous wound healing on the battlefield.
Collapse
Affiliation(s)
- Yungang Feng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Fangrui Xie
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Rui Ding
- College of Chemical Engineering, Taiyuan University of Technology, Yingze West Street 79, Taiyuan, 030024, China
| | - Qingrong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China.
| | - Youzhi Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Li Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Lianbin Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Yunlong Yu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China.
| | - Linxuan Fang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Fan Z, Su D, Li ZC, Sun S, Ge Z. Metformin attenuates central sensitization by regulating neuroinflammation through the TREM2-SYK signaling pathway in a mouse model of chronic migraine. J Neuroinflammation 2024; 21:318. [PMID: 39627853 PMCID: PMC11613737 DOI: 10.1186/s12974-024-03313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Chronic migraine (CM) is a serious neurological disorder. Central sensitization is one of the important pathophysiological mechanisms underlying CM, and microglia-induced neuroinflammation conduces to central sensitization. Triggering receptor expressed on myeloid cells 2 (TREM2) is presented solely in microglia residing within the central nervous system and plays a key role in neuroinflammation. Metformin has been shown to regulate inflammatory responses and exert analgesic effects, but its relationship with CM remains unclear. In the study, we investigated whether metformin modulates TREM2 to improve central sensitization of CM and clarified the potential molecular mechanisms. METHODS A CM mouse model was induced by administration of nitroglycerin (NTG). Behavioral evaluations were conducted using von Frey filaments and hot plate experiments. Western blot and immunofluorescence techniques were employed to investigate the molecular mechanisms. Metformin and the SYK inhibitor R406 were administered to mice to assess their regulatory effects on neuroinflammation and central sensitization. To explore the role of TREM2-SYK in regulating neuroinflammation with metformin, a lentivirus encoding TREM2 was injected into the trigeminal nucleus caudalis (TNC). In vitro experiments were conducted to evaluate the regulation of TREM2-SYK by metformin, involving interventions with LPS, metformin, R406, siTREM2, and TREM2 plasmids. RESULTS Metformin and R406 pretreatment can effectively improve hyperalgesia in CM mice. Both metformin and R406 significantly inhibit c-fos and CGRP expression in CM mice, effectively suppressing the activation of microglia and NLRP3 inflammasome induced by NTG. With the administration of NTG, TREM2 expression gradually increased in TNC microglia. Additionally, we observed that metformin significantly inhibits TREM2 and SYK expression in CM mice. Lv-TREM2 attenuated metformin-mediated anti-inflammatory responses. In vitro experiments, knockdown of TREM2 inhibited LPS-induced SYK pathway activation and alleviated inflammatory responses. After the sole overexpression of TREM2, the SYK signaling pathway is activated, resulting in the activation of the NLRP3 inflammasome and an increased expression of pro-inflammatory cytokines; nevertheless, this consequence can be reversed by R406. The overexpression of TREM2 attenuates the inhibition of SYK activity mediated by metformin, and this effect can be reversed by R406. CONCLUSIONS Our findings suggest that metformin attenuates central sensitization in CM by regulating the activation of microglia and NLRP3 inflammasome through the TREM2-SYK pathway.
Collapse
Affiliation(s)
- Zhenzhen Fan
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Dandan Su
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Zi Chao Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Songtang Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China.
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China.
- Gansu Provincial Neurology Clinical Medical Research Center, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Expert Workstation of Academician Wang Longde, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Fan H, Fu Q, Du G, Qin L, Shi X, Wang D, Yang Y. Microglial Mayhem NLRP3 Inflammasome's Role in Multiple Sclerosis Pathology. CNS Neurosci Ther 2024; 30:e70135. [PMID: 39690733 DOI: 10.1111/cns.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/29/2024] [Accepted: 11/05/2024] [Indexed: 12/19/2024] Open
Abstract
INTRODUCTION This review delves into the intricate relationship between NLR inflammasomes, particularly the NLRP3 inflammasome, and the immune-mediated neurodegenerative disease, multiple sclerosis (MS). While the precise etiology of MS remains elusive, compelling research underscores the pivotal role of the immune response in disease progression. Notably, recent investigations highlight the significant involvement of NLRP3 inflammasomes in various autoimmune diseases, prompting an in-depth exploration of their impact on MS. METHOD The review focuses on elucidating the activation mechanism of NLRP3 inflammasomes within microglia/macrophages (MG/MФ), examining how this activation promotes an inflammatory response that exacerbates neuronal damage in MS. A comprehensive analysis of existing literature and research findings forms the basis for understanding the intricate interplay between NLRP3 inflammasomes and MS pathogenesis. RESULTS Synthesizing current research, the review provides insight into the pivotal role played by NLR inflammasomes, specifically NLRP3, in MS. Emphasis is placed on the inflammatory response orchestrated by activated MG/MФ, elucidating the cascade that perpetuates neuronal damage in the disease. CONCLUSIONS This review concludes by consolidating key findings and offering a nuanced perspective on the role of NLRP3 inflammasomes in MS pathogenesis. The detailed exploration of the activation process within MG/MФ provides a foundation for understanding the disease's underlying mechanisms. Furthermore, the review sets the stage for potential therapeutic strategies targeting NLRP3 inflammasomes in the pursuit of MS treatment.
Collapse
Affiliation(s)
- Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Qizhi Fu
- Department of Intensive Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ling Qin
- Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yanhui Yang
- Department of Emergency Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Massimini M, Bachetti B, Dalle Vedove E, Benvenga A, Di Pierro F, Bernabò N. A Set of Dysregulated Target Genes to Reduce Neuroinflammation at Molecular Level. Int J Mol Sci 2022; 23:ijms23137175. [PMID: 35806178 PMCID: PMC9266409 DOI: 10.3390/ijms23137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Increasing evidence links chronic neurodegenerative diseases with neuroinflammation; it is known that neuroprotective agents are capable of modulating the inflammatory processes, that occur with the onset of neurodegeneration pathologies. Here, with the intention of providing a means for active compounds’ screening, a dysregulation of neuronal inflammatory marker genes was induced and subjected to neuroprotective active principles, with the aim of selecting a set of inflammatory marker genes linked to neurodegenerative diseases. Considering the important role of microglia in neurodegeneration, a murine co-culture of hippocampal cells and inflamed microglia cells was set up. The evaluation of differentially expressed genes and subsequent in silico analysis showed the main dysregulated genes in both cells and the principal inflammatory processes involved in the model. Among the identified genes, a well-defined set was chosen, selecting those in which a role in human neurodegenerative progression in vivo was already defined in literature, matched with the rate of prediction derived from the Principal Component Analysis (PCA) of in vitro treatment-affected genes variation. The obtained panel of dysregulated target genes, including Cxcl9 (Chemokine (C-X-C motif) ligand 9), C4b (Complement Component 4B), Stc1 (Stanniocalcin 1), Abcb1a (ATP Binding Cassette Subfamily B Member 1), Hp (Haptoglobin) and Adm (Adrenomedullin), can be considered an in vitro tool to select old and new active compounds directed to neuroinflammation.
Collapse
Affiliation(s)
- Marcella Massimini
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Benedetta Bachetti
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Elena Dalle Vedove
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Alessia Benvenga
- R&D Division, C.I.A.M. Srl, 63100 Ascoli Piceno, Italy; (B.B.); (E.D.V.); (A.B.)
| | - Francesco Di Pierro
- Velleja Research, 20125 Milan, Italy;
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| |
Collapse
|
6
|
Oh J, Bar-Or A. Emerging therapies to target CNS pathophysiology in multiple sclerosis. Nat Rev Neurol 2022; 18:466-475. [PMID: 35697862 DOI: 10.1038/s41582-022-00675-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
The rapidly evolving therapeutic landscape of multiple sclerosis (MS) has contributed to paradigm shifts in our understanding of the biological mechanisms that contribute to CNS injury and in treatment philosophies. Opportunities remain to further improve treatment of relapsing-remitting MS, but two major therapeutic gaps are the limiting of progressive disease mechanisms and the repair of CNS injury. In this Review, we provide an overview of selected emerging therapies that predominantly target processes within the CNS that are thought to be involved in limiting non-relapsing, progressive disease injury or promoting tissue repair. Among these, we consider agents that modulate adaptive and innate CNS-compartmentalized inflammation, which can be mediated by infiltrating immune cells and/or resident CNS cells, including microglia and astrocytes. We also discuss agents that target degenerative disease mechanisms, agents that might confer neuroprotection, and agents that create a more favourable environment for or actively contribute to oligodendrocyte precursor cell differentiation, remyelination and axonal regeneration. We focus on agents that are novel for MS, that are known to or are presumed to penetrate the CNS, and that have already entered early stages of development in MS clinical trials.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Ontario, Canada.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, and Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Xie H, Yang X, Cao Y, Long X, Shang H, Jia Z. Role of lipoic acid in multiple sclerosis. CNS Neurosci Ther 2021; 28:319-331. [PMID: 34964271 PMCID: PMC8841304 DOI: 10.1111/cns.13793] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Lipoic acid (LA) is an endogenous antioxidant that exists widely in nature. Supplementation with LA is a promising approach to improve the outcomes of patients with multiple sclerosis (MS). This systematic review aimed to provide a comprehensive overview of both in vitro and in vivo studies describing the pharmacokinetics, efficacy, safety, and mechanism of LA in MS‐related experiments and clinical trials. A total of 516 records were identified by searching five databases, including PubMed, Web of Science, Embase, Scopus, and Cochrane Library. Overall, we included 20 studies reporting LA effects in cell and mouse models of MS and 12 studies reporting LA effects in patients with MS. Briefly, cell experiments revealed that LA protected neurons by inhibiting the expression of inflammatory mediators and activities of immune cells. Experimental autoimmune encephalomyelitis mouse experiments demonstrated that LA consistently reduced the number of infiltrating immune cells in the central nervous system and decreased the clinical disability scores. Patients with MS showed relatively stable Expanded Disability Status Scale scores and better walking performance with few adverse events after the oral administration of LA. Notably, heterogeneity of this evidence existed among modeling methods, LA usage, MS stage, and trial duration. In conclusion, this review provides evidence for the anti‐inflammatory and antioxidative effects of LA in both in vitro and in vivo experiments; therefore, patients with MS may benefit from LA administration. Whether LA can be a routine supplementary therapy warrants further study.
Collapse
Affiliation(s)
- Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xiufang Yang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xipeng Long
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Hollen CW, Paz Soldán MM, Rinker JR, Spain RI. The Future of Progressive Multiple Sclerosis Therapies. Fed Pract 2020; 37:S43-S49. [PMID: 32341636 PMCID: PMC7182248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) affects more than a million people in the US. A considerable portion of these patients either begin with primary progressive disease or eventually transition to secondary progressive MS. A progressive disease course is the most critical factor affecting disability accumulation. The relatively recent development of treatments for relapsing multiple sclerosis has had a profound impact on the disease course for many with MS. Unfortunately, therapies for progressive MS have not had the same degree of advancement in general. New insights into the pathophysiology of progressive MS may lead to new treatments. OBSERVATIONS In this review, we identify some of the significant challenges encountered in the development of therapies for progressive MS, assess the evidence for use of currently approved therapies for patients with progressive MS, identify some of the current therapies in development from progressive MS, and consider the role for discontinuing therapy in certain patients. CONCLUSIONS Developing effective disease modifying therapies that slow or stop the gradual accumulation of neurologic disability in progressive MS represents a critical unmet need. As the understanding of the inflammatory and neurodegenerative aspects of MS are better elucidated there may be opportunity for advancement in the treatment of progressive MS.
Collapse
Affiliation(s)
- Chris W Hollen
- is Multiple Sclerosis Fellow and is a Neurologist and the Associate Director of Clinical Affairs for the MSCoE-West, both at the VA Portland Health Care System in Oregon. is a Neurologist and the Clinical Director of the MSCoE-West Regional Program at the VA Salt Lake City Health Care System in Utah. is a Neurologist and the Clinic Director of the MS Clinic at the Birmingham VA Medical Center in Alabama
| | - M Mateo Paz Soldán
- is Multiple Sclerosis Fellow and is a Neurologist and the Associate Director of Clinical Affairs for the MSCoE-West, both at the VA Portland Health Care System in Oregon. is a Neurologist and the Clinical Director of the MSCoE-West Regional Program at the VA Salt Lake City Health Care System in Utah. is a Neurologist and the Clinic Director of the MS Clinic at the Birmingham VA Medical Center in Alabama
| | - John R Rinker
- is Multiple Sclerosis Fellow and is a Neurologist and the Associate Director of Clinical Affairs for the MSCoE-West, both at the VA Portland Health Care System in Oregon. is a Neurologist and the Clinical Director of the MSCoE-West Regional Program at the VA Salt Lake City Health Care System in Utah. is a Neurologist and the Clinic Director of the MS Clinic at the Birmingham VA Medical Center in Alabama
| | - Rebecca I Spain
- is Multiple Sclerosis Fellow and is a Neurologist and the Associate Director of Clinical Affairs for the MSCoE-West, both at the VA Portland Health Care System in Oregon. is a Neurologist and the Clinical Director of the MSCoE-West Regional Program at the VA Salt Lake City Health Care System in Utah. is a Neurologist and the Clinic Director of the MS Clinic at the Birmingham VA Medical Center in Alabama
| |
Collapse
|