1
|
Li L, Chen R, Zhang H, Li J, Huang H, Weng J, Tan H, Guo T, Wang M, Xie J. The epigenetic modification of DNA methylation in neurological diseases. Front Immunol 2024; 15:1401962. [PMID: 39376563 PMCID: PMC11456496 DOI: 10.3389/fimmu.2024.1401962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Methylation, a key epigenetic modification, is essential for regulating gene expression and protein function without altering the DNA sequence, contributing to various biological processes, including gene transcription, embryonic development, and cellular functions. Methylation encompasses DNA methylation, RNA methylation and histone modification. Recent research indicates that DNA methylation is vital for establishing and maintaining normal brain functions by modulating the high-order structure of DNA. Alterations in the patterns of DNA methylation can exert significant impacts on both gene expression and cellular function, playing a role in the development of numerous diseases, such as neurological disorders, cardiovascular diseases as well as cancer. Our current understanding of the etiology of neurological diseases emphasizes a multifaceted process that includes neurodegenerative, neuroinflammatory, and neurovascular events. Epigenetic modifications, especially DNA methylation, are fundamental in the control of gene expression and are critical in the onset and progression of neurological disorders. Furthermore, we comprehensively overview the role and mechanism of DNA methylation in in various biological processes and gene regulation in neurological diseases. Understanding the mechanisms and dynamics of DNA methylation in neural development can provide valuable insights into human biology and potentially lead to novel therapies for various neurological diseases.
Collapse
Affiliation(s)
- Linke Li
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Rui Chen
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hui Zhang
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hao Huang
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Huan Tan
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Mengyuan Wang
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Jiang Xie
- Key Laboratory of Drug Targeting and Drug Delivery of Ministry of Education (MOE), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pediatrics, Chengdu Third People’s Hospital, Chengdu, China
| |
Collapse
|
2
|
Zhang H, Liu L, Li M. Mini-review of DNA Methylation Detection Techniques and Their Potential Applications in Disease Diagnosis, Prognosis, and Treatment. ACS Sens 2024; 9:1089-1103. [PMID: 38365574 DOI: 10.1021/acssensors.3c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
DNA methylation is the dominant epigenetic mechanism for regulating gene expression in mammals, playing crucial roles in development, differentiation, and tissue homeostasis. Aberrations in DNA methylation are closely associated with the potential onset of various diseases. Consequently, numerous DNA methylation detection techniques have been successively developed. These methods not only facilitate the exploration of disease mechanisms but also hold significant promise for the development of diagnostic and prognostic strategies. In this Perspective, we present a comprehensive overview of commonly employed DNA methylation detection techniques as well as biosensing based on their underlying analytical techniques. For its medical applications, we begin by examining the pathogenesis of different diseases and then proceed to discuss how relevant technologies are applied in the context of these specific medical conditions. Additionally, we briefly discuss the current limitations of these techniques and highlight future challenges in advancing methylation detection and analysis methodologies.
Collapse
Affiliation(s)
- Huaming Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Changes in DNA methylation in APOE and ACKR3 genes in multiple sclerosis patients and the relationship with their heavy metal blood levels. Neurotoxicology 2021; 87:182-187. [PMID: 34624384 DOI: 10.1016/j.neuro.2021.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease with demyelinated lesions in the central nervous system caused by genetic and environmental factors. DNA methylation as an epigenetic change influenced by environmental factors, including heavy metals has been implemented in MS disease. We investigated the correlation of DNA methylation changes in APOE and ACKR3 genes in MS patients and the possible association with blood concentration of arsenic (As), cadmium (Cd) and lead (Pb) as major heavy metal pollutants. This study included 69 relapsing-remitting multiple sclerosis (RR-MS) patients and 69 age/gender-matched healthy subjects. The HRM real-time PCR method was used to investigate the changes in DNA methylation and heavy metal concentrations were measured by electrothermal atomic absorption spectrometry. Our results showed that the methylation pattern in the ACKR3 gene of the patient group was more hypomethylated, while in the case of the APOE gene, this pattern was more towards hypermethylation compared to healthy subjects. Moreover, the blood levels of As and Cd metals, but not Pb, were significantly higher in the patient group compare to the control group (p ≤ 0.05). The data indicate that the increase in expression of ACKR3 gene by hypomethylation and the decrease in expression of APOE gene via hypermethylation are possibly involved in the onset and progression of inflammatory processes in MS patients. The level of As can also lead to hypomethylation by disrupting the methylation patterns of the ACKR3 gene, resulting in increased expression in MS patients. Finally, we have shown that epigenetic changes can be an important factor in increasing and decreasing the expression of genes involved in the onset and/or progression of inflammatory processes in MS. Furthermore, exposure to heavy metals, especially As, by changing the natural patterns of DNA methylation can be effective in this disease.
Collapse
|