1
|
Garcia SJ, Mike EV, Zhang J, Cuda CM, Putterman C. Lipocalin-2 drives neuropsychiatric and cutaneous disease in MRL/lpr mice. Front Immunol 2024; 15:1466868. [PMID: 39399497 PMCID: PMC11466786 DOI: 10.3389/fimmu.2024.1466868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Approximately 20-40% of patients with systemic lupus erythematosus (SLE) experience neuropsychiatric SLE (NPSLE), which often manifests as cognitive dysfunction and depression. Currently, there are no approved treatments for NPSLE because its underlying mechanisms are unclear. Identifying relevant mediators and understanding their contribution to pathogenesis are crucial for developing targeted treatment options. Lipocalin 2 (LCN2) is a multifunctional acute-phase protein that plays important roles in immune cell differentiation, migration, and function. LCN2 has been implicated in models of neuroinflammatory disease. Methods We generated an LCN2-deficient MRL/lpr mouse to evaluate the effects of LCN2 on this classic NPSLE model. To evaluate the effects of LCN2 deficiency on behavior, the mice underwent a battery of behavioral tests evaluating depression, memory, and anxiety. Flow cytometry was used to quantify immune cell populations in the brain, blood, and secondary lymphoid organs. Cutaneous disease was quantified by scoring lesional skin, and skin infiltrates were quantified through immunofluorescent staining. Systemic disease was evaluated through measuring anti-nuclear antibodies by ELISA. Results In this study, we found that LCN2 deficiency significantly attenuates neuropsychiatric and cutaneous disease in MRL/lpr lupus prone mice, likely by decreasing local infiltration of immune cells into the brain and skin and reducing astrocyte activation in the hippocampus. Anti-nuclear antibodies and kidney disease were not affected by LCN2. Discussion As there was no effect on systemic disease, our results suggest that the inflammatory effects of LCN2 were localized to the skin and brain in this model. This study further establishes LCN2 as a potential target to ameliorate organ injury in SLE, including neuropsychiatric and cutaneous disease.
Collapse
Affiliation(s)
- Sayra J. Garcia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elise V. Mike
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carla M. Cuda
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Azrieli Faculty of Medicine, Bar Ilan University, Zefat, Israel
| |
Collapse
|
3
|
Sciarretta F, Ceci V, Tiberi M, Zaccaria F, Li H, Zhou ZY, Sun Q, Konja D, Matteocci A, Bhusal A, Verri M, Fresegna D, Balletta S, Ninni A, Di Biagio C, Rosina M, Suk K, Centonze D, Wang Y, Chiurchiù V, Aquilano K, Lettieri-Barbato D. Lipocalin-2 promotes adipose-macrophage interactions to shape peripheral and central inflammatory responses in experimental autoimmune encephalomyelitis. Mol Metab 2023; 76:101783. [PMID: 37517520 PMCID: PMC10448472 DOI: 10.1016/j.molmet.2023.101783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVE Accumulating evidence suggests that dysfunctional adipose tissue (AT) plays a major role in the risk of developing multiple sclerosis (MS), the most common immune-mediated and demyelinating disease of the central nervous system. However, the contribution of adipose tissue to the etiology and progression of MS is still obscure. This study aimed at deciphering the responses of AT in experimental autoimmune encephalomyelitis (EAE), the best characterized animal model of MS. RESULTS AND METHODS We observed a significant AT loss in EAE mice at the onset of disease, with a significant infiltration of M1-like macrophages and fibrosis in the AT, resembling a cachectic phenotype. Through an integrative and multilayered approach, we identified lipocalin2 (LCN2) as the key molecule released by dysfunctional adipocytes through redox-dependent mechanism. Adipose-derived LCN2 shapes the pro-inflammatory macrophage phenotype, and the genetic deficiency of LCN2 specifically in AT reduced weight loss as well as inflammatory macrophage infiltration in spinal cord in EAE mice. Mature adipocytes downregulating LCN2 reduced lipolytic response to inflammatory stimuli (e.g. TNFα) through an ATGL-mediated mechanism. CONCLUSIONS Overall data highlighted a role LCN2 in exacerbating inflammatory phenotype in EAE model, suggesting a pathogenic role of dysfunctional AT in MS.
Collapse
Affiliation(s)
| | - Veronica Ceci
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Fabio Zaccaria
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Haoyun Li
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Zhong-Yan Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiyang Sun
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Alessandro Matteocci
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; PhD program in Immunology, Molecular Medicine and Applied biotechnologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Martina Verri
- Pathology Unit, University Hospital Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Sara Balletta
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Andrea Ninni
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Di Biagio
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marco Rosina
- Neurology Unit, Fondazione PTV Policlinico Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daniele Lettieri-Barbato
- IRCCS, Fondazione Santa Lucia, 00179 Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
4
|
Wang Q, Lin Q, Wang H, Tang M, Fan K, Zhang Z, Huang E, Zhang W, Wang F, Ou Q, Liu X. Diagnostic value of cerebrospinal fluid Neutrophil Gelatinase-Associated Lipocalin for differentiation of bacterial meningitis from tuberculous meningitis or cryptococcal meningitis: a prospective cohort study. J Transl Med 2023; 21:603. [PMID: 37679727 PMCID: PMC10486126 DOI: 10.1186/s12967-023-04485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND The early differential diagnosis between bacterial meningitis (BM) and tuberculous meningitis (TBM) or cryptococcal meningitis (CM) remains a significant clinical challenge. Neutrophil Gelatinase-Associated Lipocalin (NGAL) has been reported as a novel inflammatory biomarker in the early stages of infection. This study aimed to investigate whether cerebrospinal fluid (CSF) NGAL can serve as a potential biomarker for distinguishing between BM and TBM or CM. METHODS We prospectively enrolled the patients with suspected CNS infections at admission and divided them into three case groups: BM (n = 67), TBM (n = 55), CM (n = 51), and an age- and sex-matched hospitalized control (HC, n = 58). Detected the CSF NGAL and assessed its diagnostic accuracy in distinguishing between BM and TBM or CM. Additionally, longitudinally measured the CSF NGAL levels in patients with BM to evaluate its potential as a monitoring tool for antibacterial treatment. RESULTS The concentration of CSF NGAL in BM was significantly higher than in TBM, CM, and HC (all P < 0.05), while the serum NGAL did not show significant differences among the three case groups. The ROC analysis demonstrated that CSF NGAL presented a good diagnostic performance with an AUC of 0.834 (0.770-0.886) and at the optimal cutoff value of 74.27 ng/mL with 70.15% sensitivity and 77.36% specificity for discriminating BM with TBM and CM. Additionally, the CSF NGAL in the convalescent period of BM was significantly lower than in the acute period (P < 0.05). CONCLUSIONS CSF NGAL may serve as a potential biomarker for distinguishing between acute BM and TBM or CM. Additionally, it holds clinical significance in monitoring the effectiveness of antibiotic therapy for BM.
Collapse
Affiliation(s)
- Qi Wang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qingwen Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Haiyan Wang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Minjie Tang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Kengna Fan
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zeqin Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Er Huang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Weiqing Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Fengqing Wang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Xiaofeng Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|