1
|
Mulkerrin G, França MC, Lope J, Tan EL, Bede P. Neuroimaging in hereditary spastic paraplegias: from qualitative cues to precision biomarkers. Expert Rev Mol Diagn 2022; 22:745-760. [PMID: 36042576 DOI: 10.1080/14737159.2022.2118048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION : Hereditary spastic paraplegias (HSP) include a clinically and genetically heterogeneous group of conditions. Novel imaging modalities have been increasingly applied to HSP cohorts which helps to quantitatively evaluate the integrity of specific anatomical structures and develop monitoring markers for both clinical care and future clinical trials. AREAS COVERED : Advances in HSP imaging are systematically reviewed with a focus on cohort sizes, imaging modalities, study design, clinical correlates, methodological approaches, and key findings. EXPERT OPINION : A wide range of imaging techniques have been recently applied to HSP cohorts. Common shortcomings of existing studies include the evaluation of genetically unconfirmed or admixed cohorts, limited sample sizes, unimodal imaging approaches, lack of postmortem validation, and a limited clinical battery, often exclusively focusing on motor aspects of the condition. A number of innovative methodological approaches have also be identified, such as robust longitudinal study designs, the implementation of multimodal imaging protocols, complementary cognitive assessments, and the comparison of HSP cohorts to MND cohorts. Collaborative multicentre initiatives may overcome sample limitations, and comprehensive clinical profiling with motor, extrapyramidal, cerebellar, and neuropsychological assessments would permit systematic clinico-radiological correlations. Academic achievements in HSP imaging have the potential to be developed into viable clinical applications to expedite the diagnosis and monitor disease progression.
Collapse
Affiliation(s)
| | - Marcondes C França
- Department of Neurology, The State University of Campinas, São Paulo, Brazil
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Peter Bede
- Department of Neurology, St James's Hospital, Dublin, Ireland.,Computational Neuroimaging Group, Trinity College Dublin, Ireland
| |
Collapse
|
2
|
Rossi S, Rubegni A, Riso V, Barghigiani M, Bassi MT, Battini R, Bertini E, Cereda C, Cioffi E, Criscuolo C, Dal Fabbro B, Dato C, D'Angelo MG, Di Muzio A, Diamanti L, Dotti MT, Filla A, Gioiosa V, Liguori R, Martinuzzi A, Massa R, Mignarri A, Moroni R, Musumeci O, Nicita F, Orologio I, Orsi L, Pegoraro E, Petrucci A, Plumari M, Ricca I, Rizzo G, Romano S, Rumore R, Sampaolo S, Scarlato M, Seri M, Stefan C, Straccia G, Tessa A, Travaglini L, Trovato R, Ulgheri L, Vazza G, Orlacchio A, Silvestri G, Santorelli FM, Melone MAB, Casali C. Clinical-Genetic Features Influencing Disability in Spastic Paraplegia Type 4. Neurol Genet 2022; 8:e664. [PMID: 35372684 PMCID: PMC8969300 DOI: 10.1212/nxg.0000000000000664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022]
Abstract
Background and ObjectivesHereditary spastic paraplegias (HSPs) are a group of inherited rare neurologic disorders characterized by length-dependent degeneration of the corticospinal tracts and dorsal columns, whose prominent clinical feature is represented by spastic gait. Spastic paraplegia type 4 (SPG4, SPAST-HSP) is the most common form. We present both clinical and molecular findings of a large cohort of patients, with the aim of (1) defining the clinical spectrum of SPAST-HSP in Italy; (2) describing their molecular features; and (3) assessing genotype-phenotype correlations to identify features associated with worse disability.MethodsA cross-sectional retrospective study with molecular and clinical data collected in an anonymized database was performed.ResultsA total of 723 Italian patients with SPAST-HSP (58% men) from 316 families, with a median age at onset of 35 years, were included. Penetrance was 97.8%, with men showing higher Spastic Paraplegia Rating Scale (SPRS) scores (19.67 ± 12.58 vs 16.15 ± 12.61, p = 0.009). In 26.6% of patients with SPAST-HSP, we observed a complicated phenotype, mainly including intellectual disability (8%), polyneuropathy (6.7%), and cognitive decline (6.5%). Late-onset cases seemed to progress more rapidly, and patients with a longer disease course displayed a more severe neurologic disability, with higher SPATAX (3.61 ± 1.46 vs 2.71 ± 1.20, p < 0.001) and SPRS scores (22.63 ± 11.81 vs 12.40 ± 8.83, p < 0.001). Overall, 186 different variants in the SPAST gene were recorded, of which 48 were novel. Patients with SPAST-HSP harboring missense variants displayed intellectual disability (14.5% vs 4.4%, p < 0.001) more frequently, whereas patients with truncating variants presented more commonly cognitive decline (9.7% vs 2.6%, p = 0.001), cerebral atrophy (11.2% vs 3.4%, p = 0.003), lower limb spasticity (61.5% vs 44.5%), urinary symptoms (50.0% vs 31.3%, p < 0.001), and sensorimotor polyneuropathy (11.1% vs 1.1%, p < 0.001). Increasing disease duration (DD) and abnormal motor evoked potentials (MEPs) were also associated with increased likelihood of worse disability (SPATAX score>3).DiscussionThe SPAST-HSP phenotypic spectrum in Italian patients confirms a predominantly pure form of HSP with mild-to-moderate disability in 75% of cases, and slight prevalence of men, who appeared more severely affected. Early-onset cases with intellectual disability were more frequent among patients carrying missense SPAST variants, whereas patients with truncating variants showed a more complicated disease. Both longer DD and altered MEPs are associated with worse disability.
Collapse
|
3
|
Baldwin I, Shafer RL, Hossain WA, Gunewardena S, Veatch OJ, Mosconi MW, Butler MG. Genomic, Clinical, and Behavioral Characterization of 15q11.2 BP1-BP2 Deletion (Burnside-Butler) Syndrome in Five Families. Int J Mol Sci 2021; 22:1660. [PMID: 33562221 PMCID: PMC7914695 DOI: 10.3390/ijms22041660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/07/2023] Open
Abstract
The 15q11.2 BP1-BP2 deletion (Burnside-Butler) syndrome is emerging as the most common cytogenetic finding in patients with neurodevelopmental or autism spectrum disorders (ASD) presenting for microarray genetic testing. Clinical findings in Burnside-Butler syndrome include developmental and motor delays, congenital abnormalities, learning and behavioral problems, and abnormal brain findings. To better define symptom presentation, we performed comprehensive cognitive and behavioral testing, collected medical and family histories, and conducted clinical genetic evaluations. The 15q11.2 BP1-BP2 region includes the TUBGCP5, CYFIP1, NIPA1, and NIPA2 genes. To determine if additional genomic variation outside of the 15q11.2 region influences expression of symptoms in Burnside-Butler syndrome, whole-exome sequencing was performed on the parents and affected children for the first time in five families with at least one parent and child with the 15q1l.2 BP1-BP2 deletion. In total, there were 453 genes with possibly damaging variants identified across all of the affected children. Of these, 99 genes had exclusively de novo variants and 107 had variants inherited exclusively from the parent without the deletion. There were three genes (APBB1, GOLGA2, and MEOX1) with de novo variants that encode proteins evidenced to interact with CYFIP1. In addition, one other gene of interest (FAT3) had variants inherited from the parent without the deletion and encoded a protein interacting with CYFIP1. The affected individuals commonly displayed a neurodevelopmental phenotype including ASD, speech delay, abnormal reflexes, and coordination issues along with craniofacial findings and orthopedic-related connective tissue problems. Of the 453 genes with variants, 35 were associated with ASD. On average, each affected child had variants in 6 distinct ASD-associated genes (x¯ = 6.33, sd = 3.01). In addition, 32 genes with variants were included on clinical testing panels from Clinical Laboratory Improvement Amendments (CLIA) approved and accredited commercial laboratories reflecting other observed phenotypes. Notably, the dataset analyzed in this study was small and reported results will require validation in larger samples as well as functional follow-up. Regardless, we anticipate that results from our study will inform future research into the genetic factors influencing diverse symptoms in patients with Burnside-Butler syndrome, an emerging disorder with a neurodevelopmental behavioral phenotype.
Collapse
Affiliation(s)
- Isaac Baldwin
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (I.B.); (W.A.H.); (O.J.V.)
- Department of Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA
| | - Robin L. Shafer
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training, University of Kansas, Lawrence, KS 66045, USA; (R.L.S.); (M.W.M.)
| | - Waheeda A. Hossain
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (I.B.); (W.A.H.); (O.J.V.)
- Department of Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Olivia J. Veatch
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (I.B.); (W.A.H.); (O.J.V.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training, University of Kansas, Lawrence, KS 66045, USA; (R.L.S.); (M.W.M.)
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
| | - Merlin G. Butler
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (I.B.); (W.A.H.); (O.J.V.)
- Department of Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Gillespie MK, Humphreys P, McMillan HJ, Boycott KM. Association of Early-Onset Spasticity and Risk for Cognitive Impairment With Mutations at Amino Acid 499 in SPAST. J Child Neurol 2018; 33:329-332. [PMID: 29421991 DOI: 10.1177/0883073818756680] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hereditary spastic paraplegia is a phenotypically and genetically heterogeneous group of neurodegenerative disorders characterized by lower extremity weakness and spasticity. Spastic paraplegia 4 (SPG4), caused by heterozygous mutations in the gene SPAST, typically causes a late-onset, uncomplicated form of hereditary spastic paraplegia in affected individuals. Additional clinical features in SPG4 have been reported on occasion, but no genotype-phenotype correlation has been established. Through targeted clinical testing, we identified 2 unrelated female patients with the same de novo p.Arg499His mutation in SPAST. Both patients presented with early-onset spasticity resulting in delayed motor milestones, which led to a diagnosis of cerebral palsy in one child and tethered cord in the other. Review of the literature identified several patients with mutations at amino acid 499 and early-onset symptoms associated with a risk of cognitive impairment. Early and accurate diagnosis of children with early-onset spasticity is important for informed prognosis and genetic counselling.
Collapse
Affiliation(s)
- Meredith K Gillespie
- 1 Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Peter Humphreys
- 1 Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- 2 Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Hugh J McMillan
- 1 Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- 2 Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Kym M Boycott
- 1 Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- 3 Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| |
Collapse
|
5
|
Coignion C, Banneau G, Goizet C. Paraplegie spastiche ereditarie. Neurologia 2016. [DOI: 10.1016/s1634-7072(16)77572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
López E, Casasnovas C, Giménez J, Santamaría R, Terrazas JM, Volpini V. Identification of two novel KIF5A mutations in hereditary spastic paraplegia associated with mild peripheral neuropathy. J Neurol Sci 2015; 358:422-7. [PMID: 26403765 DOI: 10.1016/j.jns.2015.08.1529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
Spastic paraplegia type 10 (SPG10) is a rare form of autosomal dominant hereditary spastic paraplegia (AD-HSP) due to mutations in KIF5A, a gene encoding the neuronal kinesin heavy-chain involved in axonal transport. KIF5A mutations have been associated with a wide clinical spectrum, ranging from pure HSP to isolated peripheral nerve involvement or complicated HSP phenotypes. Most KIF5A mutations are clustered in the motor domain of the protein that is necessary for microtubule interaction. Here we describe two Spanish families with an adult onset complicated AD-HSP in which neurological studies revealed a mild sensory neuropathy. Intention tremor was also present in both families. Molecular genetic analysis identified two novel mutations c.773 C>T and c.833 C>T in the KIF5A gene resulting in the P258L and P278L substitutions respectively. Both were located in the highly conserved kinesin motor domain of the protein which has previously been identified as a hot spot for KIF5A mutations. This study adds to the evidence associating the known occurrence of mild peripheral neuropathy in the adult onset SPG10 type of AD-HSP.
Collapse
Affiliation(s)
- Eva López
- Molecular Diagnostic Centre for Hereditary Diseases (CDGM), Institut d'Investigacions Biomèdiques de Bellvitge (IDIBELL), Gran Via 199, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Carlos Casasnovas
- Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, IDIBELL.C/Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Giménez
- Molecular Diagnostic Centre for Hereditary Diseases (CDGM), Institut d'Investigacions Biomèdiques de Bellvitge (IDIBELL), Gran Via 199, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Raúl Santamaría
- Laboratorio Dr. Echevarne, C/Provença 312, 08037 Barcelona, Spain
| | - Jesús M Terrazas
- Neurology Department, Hospital de Laredo, Avda. Derechos humanos s/n 39.770 Laredo, Cantabria, Spain
| | - Víctor Volpini
- Molecular Diagnostic Centre for Hereditary Diseases (CDGM), Institut d'Investigacions Biomèdiques de Bellvitge (IDIBELL), Gran Via 199, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
7
|
Magariello A, Tortorella C, Patitucci A, Tortelli R, Liguori M, Mazzei R, Conforti FL, Citrigno L, Ungaro C, Simone IL, Muglia M. First mutation in the nuclear localization signal sequence of spastin protein identified in a patient with hereditary spastic paraplegia. Eur J Neurol 2012; 20:e22-3. [DOI: 10.1111/ene.12000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/27/2012] [Indexed: 11/28/2022]
Affiliation(s)
- A. Magariello
- Institute of Neurological Sciences; National Research Council; Mangone, Cosenza Italy
| | - C. Tortorella
- Department of Neurological and Psychiatric Sciences, Institute of Neurology; University of Bari; Bari Italy
| | - A. Patitucci
- Institute of Neurological Sciences; National Research Council; Mangone, Cosenza Italy
| | - R. Tortelli
- Department of Neurological and Psychiatric Sciences, Institute of Neurology; University of Bari; Bari Italy
| | - M. Liguori
- Institute of Neurological Sciences; National Research Council; Mangone, Cosenza Italy
| | - R. Mazzei
- Institute of Neurological Sciences; National Research Council; Mangone, Cosenza Italy
| | - F. L. Conforti
- Institute of Neurological Sciences; National Research Council; Mangone, Cosenza Italy
| | - L. Citrigno
- Institute of Neurological Sciences; National Research Council; Mangone, Cosenza Italy
| | - C. Ungaro
- Institute of Neurological Sciences; National Research Council; Mangone, Cosenza Italy
| | - I. L. Simone
- Department of Neurological and Psychiatric Sciences, Institute of Neurology; University of Bari; Bari Italy
| | - M. Muglia
- Institute of Neurological Sciences; National Research Council; Mangone, Cosenza Italy
| |
Collapse
|
8
|
Proukakis C, Moore D, Labrum R, Wood NW, Houlden H. Detection of novel mutations and review of published data suggests that hereditary spastic paraplegia caused by spastin (SPAST) mutations is found more often in males. J Neurol Sci 2011; 306:62-5. [PMID: 21546041 DOI: 10.1016/j.jns.2011.03.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 02/08/2011] [Accepted: 03/28/2011] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is characterised in its pure form by slowly progressive spastic paraparesis. Around 40% of autosomal dominant (AD) cases are caused by mutations in SPAST, encoding spastin. PATIENTS AND METHODS The clinical and investigation details of all patients with a SPAST mutation identified through our centre were reviewed. All published reports of SPAST mutations where the sex of patients was given were subsequently analysed in order to determine whether there is evidence of one sex being preferentially affected. RESULTS In total 22 probable pathogenic changes were detected, including 11 novel ones. One patient carried two adjacent missense mutations. The pathogenicity of a further novel missense mutation is uncertain. Most patients had a pure phenotype, although mild peripheral neuropathy was sometimes present. The total number of patients with SPAST mutations was 27, as three of the previously known mutations were present in more than one person. The excess of males over females in our population (17:10) prompted us to review all published studies where the sex of the patients was given (n=31). A significant excess of males was identified (ratio 1.29, p=0.0007). CONCLUSIONS Our results are consistent with data suggesting that SPAST mutations mostly cause a pure HSP phenotype. The excess of males in our sample and in published reports suggests that penetrance or severity may be sex-dependent, and merits further investigation as it may have important implications for counselling.
Collapse
Affiliation(s)
- Christos Proukakis
- Department of Clinical Neurosciences, University College London Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.
| | | | | | | | | |
Collapse
|
9
|
Unrath A, Müller HP, Riecker A, Ludolph AC, Sperfeld AD, Kassubek J. Whole brain-based analysis of regional white matter tract alterations in rare motor neuron diseases by diffusion tensor imaging. Hum Brain Mapp 2011; 31:1727-40. [PMID: 20336652 DOI: 10.1002/hbm.20971] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Different motor neuron disorders (MNDs) are mainly defined by the clinical presentation based on the predominance of upper or lower motor neuron impairment and the course of the disease. Magnetic resonance imaging (MRI) mostly serves as a tool to exclude other pathologies, but novel approaches such as diffusion tensor imaging (DTI) have begun to add information on the underlying pathophysiological processes of these disorders in vivo. The present study was designed to investigate three different rare MNDs, i.e., primary lateral sclerosis (PLS, N = 25), hereditary spastic paraparesis (HSP, N = 24), and X-linked spinobulbar muscular atrophy (X-SBMA, N = 20), by use of whole-brain-based DTI analysis in comparison with matched controls. This analysis of white matter (WM) impairment revealed widespread and characteristic patterns of alterations within the motor system with a predominant deterioration of the corticospinal tract (CST) in HSP and PLS patients according to the clinical presentation and also in patients with X-SBMA to a lesser degree, but also WM changes in projections to the limbic system and within distinct areas of the corpus callosum (CC), the latter both for HSP and PLS. In summary, DTI was able to define a characteristic WM pathoanatomy in motor and extra-motor brain areas, such as the CC and the limbic projectional system, for different MNDs via whole brain-based FA assessment and quantitative fiber tracking. Future advanced MRI-based investigations might help to provide a fingerprint-identification of MNDs.
Collapse
|
10
|
Musumeci O, Bassi MT, Mazzeo A, Grandis M, Crimella C, Martinuzzi A, Toscano A. A novel mutation in KIF5A gene causing hereditary spastic paraplegia with axonal neuropathy. Neurol Sci 2010; 32:665-8. [PMID: 21107874 DOI: 10.1007/s10072-010-0445-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Hereditary spastic paraplegias (HSPs) include a group of neurodegenerative diseases, and so far 46 SPG loci have been mapped and 17 genes isolated. Among the autosomal dominant HSPs (AD-HSPs), SPG10 is a rare form due to mutations in KIF5A gene (locus 12q13.3). We describe the clinical, neurophysiological, morphological and genetic study of an Italian family with AD-HSP. The proband presented with an adult onset spastic paraparesis and diffuse paresthesias where neurophysiological and nerve biopsy morphological studies revealed an axonal neuropathy. Molecular genetic analysis identified a new missense mutation (c.608C>G) of KIF5A gene resulting in a serine to cysteine substitution, S203C, located in a highly conserved domain of the protein. This pedigree confirms the occurrence of an axonal peripheral neuropathy in SPG10.
Collapse
Affiliation(s)
- Olimpia Musumeci
- Department of Neurosciences, Psychiatry and Anaesthesiology, University of Messina, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Warnecke T, Duning T, Schirmacher A, Mohammadi S, Schwindt W, Lohmann H, Dziewas R, Deppe M, Ringelstein EB, Young P. A novel splice site mutation in the SPG7 gene causing widespread fiber damage in homozygous and heterozygous subjects. Mov Disord 2010; 25:413-20. [PMID: 20108356 DOI: 10.1002/mds.22949] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are genetically and clinically heterogeneous neurodegenerative disorders. The purpose of this study was to assess the genotype and phenotype in a family with a complicated form of autosomal recessive hereditary spastic paraplegia (ARHSP). Neurological and neuropsychological evaluation, neurophysiologic studies, fiberoptic endoscopic evaluation of swallowing (FEES), neuroimaging analysis including diffusion tensor imaging (DTI), and mutation analysis of SPG4 and SPG7 gene were performed. The index case (mother) was affected by an adult-onset form of complicated ARHSP due to the homozygous splice site mutation c.1552+1 G>T in the SPG7 gene. This mutation leads to an abnormally spliced mRNA lacking exon 11. Additional clinical features were bilateral ptosis and subtle deficits in executive function. All three asymptomatic daughters carried the sequence variation c.1552+1 G>T in heterozygous state. DTI of the mother revealed disturbance of white matter (WM) integrity in the left frontal lobe, the left corticospinal tract and both sides of the brainstem. DTI of the daughters showed subtle WM alteration in the frontal corpus callosum. The novel mutation is the first splice site mutation found in the SPG7 gene. It removes part of the AAA domain of paraplegin protein, probably leading to a loss-of-function of the paraplegin-AFG3L2 complex in the mitochondrial inner membrane. The pattern of WM damage in the homozygote index case may be specific for SPG7-HSP. The detection of cerebral WM alterations in the corpus callosum of asymptomatic heterozygote carriers confirms this brain region as the most prominent and early location of fiber damage in ARHSP.
Collapse
Affiliation(s)
- Tobias Warnecke
- Department of Neurology, University Hospital of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Magariello A, Muglia M, Patitucci A, Ungaro C, Mazzei R, Gabriele AL, Sprovieri T, Citrigno L, Conforti FL, Liguori M, Gambardella A, Bono F, Piccoli T, Patti F, Zappia M, Mancuso M, Iemolo F, Quattrone A. Mutation analysis of the SPG4 gene in Italian patients with pure and complicated forms of spastic paraplegia. J Neurol Sci 2010; 288:96-100. [DOI: 10.1016/j.jns.2009.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
|
13
|
Hourani R, El-Hajj T, Barada WH, Hourani M, Yamout BI. MR imaging findings in autosomal recessive hereditary spastic paraplegia. AJNR Am J Neuroradiol 2009; 30:936-40. [PMID: 19193756 DOI: 10.3174/ajnr.a1483] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE Hereditary spastic paraplegia (HSP) is a disorder characterized by degeneration of the corticospinal tracts and posterior column of the spinal cord. Previously described radiologic findings included nonspecific brain abnormalities such as brain atrophy and white matter lesions, as well as atrophy of the spinal cord. In our study, we aimed to better characterize brain and spine MR imaging findings in a series of patients with HSP. MATERIALS AND METHODS Nine patients from 4 different Lebanese families with the autosomal recessive form of HSP were included in the study. All patients underwent brain and whole-spine MR imaging. We assessed the presence of white matter abnormalities mainly along the corticospinal tracts, brain atrophy, thinning of the corpus callosum, and the presence of spinal cord atrophy or abnormal signal intensity. RESULTS Imaging revealed mild brain atrophy (44%), atrophy of the corpus callosum (55%), white matter lesions (67%), abnormal T2 high signal intensity in the posterior limb of the internal capsule (55%), and mild spinal cord atrophy (33%). CONCLUSIONS The MR imaging findings of HSP are nonspecific and variable; however, the most prominent features include atrophy of the corpus callosum, T2 signal intensity in the posterior limb of the internal capsule, and spinal cord atrophy.
Collapse
Affiliation(s)
- R Hourani
- Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon.
| | | | | | | | | |
Collapse
|
14
|
Salinas S, Proukakis C, Crosby A, Warner TT. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 2008; 7:1127-38. [DOI: 10.1016/s1474-4422(08)70258-8] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Hehr U, Bauer P, Winner B, Schule R, Olmez A, Koehler W, Uyanik G, Engel A, Lenz D, Seibel A, Hehr A, Ploetz S, Gamez J, Rolfs A, Weis J, Ringer TM, Bonin M, Schuierer G, Marienhagen J, Bogdahn U, Weber BHF, Topaloglu H, Schols L, Riess O, Winkler J. Long-term course and mutational spectrum of spatacsin-linked spastic paraplegia. Ann Neurol 2008; 62:656-65. [PMID: 18067136 DOI: 10.1002/ana.21310] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Hereditary spastic paraplegias (HSPs) comprise a heterogeneous group of neurodegenerative disorders resulting in progressive spasticity of the lower limbs. One form of autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum (TCC) was linked to chromosomal region 15q13-21 (SPG11) and associated with mutations in the spatacsin gene. We assessed the long-term course and the mutational spectrum of spatacsin-associated ARHSP with TCC. METHODS Neurological examination, cerebral magnetic resonance imaging (MRI), 18fluorodeoxyglucose positron emission tomography (PET), nerve biopsy, linkage and mutation analysis are presented. RESULTS Spastic paraplegia in patients with spatacsin mutations (n = 20) developed during the second decade of life. The Spastic Paraplegia Rating Scale (SPRS) showed severely compromised walking between the second and third decades of life (mean SPRS score, >30). Impaired cognitive function was associated with severe atrophy of the frontoparietal cortex, TCC, and bilateral periventricular white matter lesions. Progressive cortical and thalamic hypometabolism in the 18fluorodeoxyglucose PET was observed. Sural nerve biopsy showed a loss of unmyelinated nerve fibers and accumulation of intraaxonal pleomorphic membranous material. Mutational analysis of spatacsin demonstrated six novel and one previously reported frameshift mutation and two novel nonsense mutations. Furthermore, we report the first two splice mutations to be associated with SPG11. INTERPRETATION We demonstrate that not only frameshift and nonsense mutations but also splice mutations result in SPG11. Mutations are distributed throughout the spatacsin gene and emerge as major cause for ARHSP with TCC associated with severe motor and cognitive impairment. The clinical phenotype and the ultrastructural analysis suggest a disturbed axonal transport of long projecting neurons.
Collapse
Affiliation(s)
- Ute Hehr
- Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kassubek J, Juengling FD, Baumgartner A, Unrath A, Ludolph AC, Sperfeld AD. Different regional brain volume loss in pure and complicated hereditary spastic paraparesis: a voxel-based morphometric study. AMYOTROPHIC LATERAL SCLEROSIS : OFFICIAL PUBLICATION OF THE WORLD FEDERATION OF NEUROLOGY RESEARCH GROUP ON MOTOR NEURON DISEASES 2007; 8:328-336. [PMID: 17852008 DOI: 10.1080/17482960701500718] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Three-dimensional magnetic resonance imaging of the brain was analyzed using optimized voxel-based morphometry in 21 patients with pure hereditary spastic paraparesis (pHSP) and 12 patients with complicated HSP (cHSP). PHSP patients showed only small regional grey matter volume reduction, whereas significantly decreased grey matter volumes were localized pericentrally in cHSP. In the white matter, several small areas of regional volume reduction were observed in the pHSP patients, whereas the cHSP group exhibited large robust volume reduction involving the entire corpus callosum, a result that was reproduced by an additional region-based MRI analysis. It could be demonstrated that the topography of cerebral volume changes differed markedly in pHSP or cHSP at group level. Corpus callosum thinning seems to be a general feature of cHSP.
Collapse
Affiliation(s)
- Jan Kassubek
- Department of Neurology, University of Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Ribaï P, Depienne C, Fedirko E, Jothy AC, Viveweger C, Hahn-Barma V, Brice A, Durr A. Mental deficiency in three families with SPG4 spastic paraplegia. Eur J Hum Genet 2007; 16:97-104. [DOI: 10.1038/sj.ejhg.5201922] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
18
|
Meijer IA, Dupré N, Brais B, Cossette P, St-Onge J, Rioux MF, Benard M, Rouleau GA. SPG4 founder effect in French Canadians with hereditary spastic paraplegia. Can J Neurol Sci 2007; 34:211-4. [PMID: 17598600 DOI: 10.1017/s0317167100006065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND The most common cause of autosomal dominant Hereditary Spastic Paraplegia (HSP) is mutations in the SPG4 gene. We have previously identified novel SPG4 mutations in a collection of North American families including the c.G1801A mutation present in two families from Quebec. The aim of this study is to estimate the frequency of the c.G1801A mutation in the French Canadian (FC) population and to determine whether this mutation originates from a common ancestor. METHODS We collected and sequenced exon 15 in probands of 37 families. Genotypes of markers flanking the SPG4 gene were used to construct haplotypes in five families. Clinical information was reviewed by a neurologist with expertise in HSP. RESULTS We have identified three additional unrelated families with the c.G1801A mutation and haplotype analysis revealed that all five families share a common ancestor. The mutation is present in 7% of all our FC families and explains half of our spastin linked FC families. The phenotype associated with the c.G1801A genotype is pure HSP with bladder involvement. CONCLUSION In this study we have determined that the relative frequency of the c.G1801A mutation in our FC collection is 7%, and approximately 50% in the spastin positive FC group. This mutation is the most common HSP mutation identified in this population to date and is suggestive of a founder effect in Quebec.
Collapse
Affiliation(s)
- Inge A Meijer
- Center for the Study of Brain Diseases, CHUM Research Center, Notre-Dame Hospital, Montreal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
James PA, Talbot K. The molecular genetics of non-ALS motor neuron diseases. Biochim Biophys Acta Mol Basis Dis 2006; 1762:986-1000. [PMID: 16765570 DOI: 10.1016/j.bbadis.2006.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/23/2006] [Accepted: 04/11/2006] [Indexed: 12/11/2022]
Abstract
Hereditary disorders of voluntary motor neurons are individually relatively uncommon, but have the potential to provide significant insights into motor neuron function in general and into the mechanisms underlying the more common form of sporadic Amyotrophic Lateral Sclerosis. Recently, mutations in a number of novel genes have been associated with Lower Motor Neuron (HSPB1, HSPB8, GARS, Dynactin), Upper Motor Neuron (Spastin, Atlastin, Paraplegin, HSP60, KIF5A, NIPA1) or mixed ALS-like phenotypes (Alsin, Senataxin, VAPB, BSCL2). In comparison to sporadic ALS these conditions are usually associated with slow progression, but as experience increases, a wide variation in clinical phenotype has become apparent. At the molecular level common themes are emerging that point to areas of specific vulnerability for motor neurons such as axonal transport, endosomal trafficking and RNA processing. We review the clinical and molecular features of this diverse group of genetically determined conditions and consider the implications for the broad group of motor neuron diseases in general.
Collapse
Affiliation(s)
- Paul A James
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | | |
Collapse
|