1
|
Caillaud M, Laisney M, Bejanin A, Duclos H, Scherer-Gagou C, Prundean A, Bonneau D, Eustache F, Verny C, Desgranges B, Allain P. Social cognition profile in early Huntington disease: Insight from neuropsychological assessment and structural neuroimaging. J Huntingtons Dis 2024; 13:467-477. [PMID: 39973378 DOI: 10.1177/18796397241291730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Huntington's disease (HD) is traditionally associated with motor, cognitive, and neuropsychiatric symptoms. Recent observations suggest that disturbances in social cognition may feature prominently in HD, potentially contributing to behavioral challenges. OBJECTIVE This study aims to explore the onset and neural mechanisms underlying social cognition disturbances in HD, which are not yet well understood despite increasing recognition of these symptoms. METHODS This study compared 20 individuals in the early stages of HD with 20 healthy controls across a range of cognitive tests, in-depth social cognition assessments, and structural MRI evaluations. RESULTS The findings revealed alterations in various aspects of social cognition, particularly cognitive and affective Theory of Mind, in the early HD group. Some of these alterations correlated with the neurodegeneration of the striatum (caudate), suggesting that social cognition deficits may serve as early indicators of disease progression. CONCLUSIONS This research underscores the importance of integrating social cognition evaluations into the clinical assessment of HD and hints at a complex interplay between these deficits and the broader neuropsychological impact of the disease. The results thus advocate for a more holistic approach to understanding and managing HD, considering the potential interdependencies between social cognition and other cognitive functions.
Collapse
Affiliation(s)
- Marie Caillaud
- Univ Angers, Nantes Université, [CHU Angers], LPPL, SFR CONFLUENCES, Angers, France
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Mickael Laisney
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Alexandre Bejanin
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Harmony Duclos
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | | | - Adriana Prundean
- Univ Angers, [CHU Angers], Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Dominique Bonneau
- Univ Angers, [CHU Angers], Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Christophe Verny
- Univ Angers, [CHU Angers], Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Béatrice Desgranges
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Philippe Allain
- Univ Angers, Nantes Université, [CHU Angers], LPPL, SFR CONFLUENCES, Angers, France
| |
Collapse
|
2
|
Funk AT, Hassan AAO, Waugh JL. In Humans, Insulo-striate Structural Connectivity is Largely Biased Toward Either Striosome-like or Matrix-like Striatal Compartments. Neurosci Insights 2024; 19:26331055241268079. [PMID: 39280330 PMCID: PMC11402065 DOI: 10.1177/26331055241268079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
The insula is an integral component of sensory, motor, limbic, and executive functions, and insular dysfunction is associated with numerous human neuropsychiatric disorders. Insular efferents project widely, but insulo-striate projections are especially numerous. The targets of these insulo-striate projections are organized into tissue compartments, the striosome and matrix. These striatal compartments have distinct embryologic origins, afferent and efferent connectivity, dopamine pharmacology, and susceptibility to injury. Striosome and matrix appear to occupy separate sets of cortico-striato-thalamo-cortical loops, so a bias in insulo-striate projections toward one compartment may also embed an insular subregion in distinct regulatory and functional networks. Compartment-specific mapping of insulo-striate structural connectivity is sparse; the insular subregions are largely unmapped for compartment-specific projections. In 100 healthy adults, diffusion tractography was utilized to map and quantify structural connectivity between 19 structurally-defined insular subregions and each striatal compartment. Insulo-striate streamlines that reached striosome-like and matrix-like voxels were concentrated in distinct insular zones (striosome: rostro- and caudoventral; matrix: caudodorsal) and followed different paths to reach the striatum. Though tractography was generated independently in each hemisphere, the spatial distribution and relative bias of striosome-like and matrix-like streamlines were highly similar in the left and right insula. 16 insular subregions were significantly biased toward 1 compartment: 7 toward striosome-like voxels and 9 toward matrix-like voxels. Striosome-favoring bundles had significantly higher streamline density, especially from rostroventral insular subregions. The biases in insulo-striate structural connectivity that were identified mirrored the compartment-specific biases identified in prior studies that utilized injected tract tracers, cytoarchitecture, or functional MRI. Segregating insulo-striate structural connectivity through either striosome or matrix may be an anatomic substrate for functional specialization among the insular subregions.
Collapse
Affiliation(s)
- Adrian T Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| | - Asim AO Hassan
- Department of Natural Sciences and Mathematics, University of Texas at Dallas, TX, USA
| | - Jeff L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
3
|
Wang X, Li Y, Li B, Shang H, Yang J. Gray matter alterations in Huntington's disease: A meta-analysis of VBM neuroimaging studies. J Neurosci Res 2024; 102:e25366. [PMID: 38953592 DOI: 10.1002/jnr.25366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Increasing neuroimaging studies have attempted to identify biomarkers of Huntington's disease (HD) progression. Here, we conducted voxel-based meta-analyses of voxel-based morphometry (VBM) studies on HD to investigate the evolution of gray matter volume (GMV) alterations and explore the effects of genetic and clinical features on GMV changes. A systematic review was performed to identify the relevant studies. Meta-analyses of whole-brain VBM studies were performed to assess the regional GMV changes in all HD mutation carriers, in presymptomatic HD (pre-HD), and in symptomatic HD (sym-HD). A quantitative comparison was performed between pre-HD and sym-HD. Meta-regression analyses were used to explore the effects of genetic and clinical features on GMV changes. Twenty-eight studies were included, comparing a total of 1811 HD mutation carriers [including 1150 pre-HD and 560 sym-HD] and 969 healthy controls (HCs). Pre-HD showed decreased GMV in the bilateral caudate nuclei, putamen, insula, anterior cingulate/paracingulate gyri, middle temporal gyri, and left dorsolateral superior frontal gyrus compared with HCs. Compared with pre-HD, GMV decrease in sym-HD extended to the bilateral median cingulate/paracingulate gyri, Rolandic operculum and middle occipital gyri, left amygdala, and superior temporal gyrus. Meta-regression analyses found that age, mean lengths of CAG repeats, and disease burden were negatively associated with GMV atrophy of the bilateral caudate and right insula in all HD mutation carriers. This meta-analysis revealed the pattern of GMV changes from pre-HD to sym-HD, prompting the understanding of HD progression. The pattern of GMV changes may be biomarkers for disease progression in HD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuming Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Boyi Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Funk AT, Hassan AAO, Waugh JL. In humans, insulo-striate structural connectivity is largely biased toward either striosome-like or matrix-like striatal compartments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588409. [PMID: 38645229 PMCID: PMC11030402 DOI: 10.1101/2024.04.07.588409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The insula is an integral component of sensory, motor, limbic, and executive functions, and insular dysfunction is associated with numerous human neuropsychiatric disorders. Insular afferents project widely, but insulo-striate projections are especially numerous. The targets of these insulo-striate projections are organized into tissue compartments, the striosome and matrix. These striatal compartments have distinct embryologic origins, afferent and efferent connectivity, dopamine pharmacology, and susceptibility to injury. Striosome and matrix appear to occupy separate sets of cortico-striato-thalamo-cortical loops, so a bias in insulo-striate projections towards one compartment may also embed an insular subregion in distinct regulatory and functional networks. Compartment-specific mapping of insulo-striate structural connectivity is sparse; the insular subregions are largely unmapped for compartment-specific projections. In 100 healthy adults, we utilized probabilistic diffusion tractography to map and quantify structural connectivity between 19 structurally-defined insular subregions and each striatal compartment. Insulo-striate streamlines that reached striosome-like and matrix-like voxels were concentrated in distinct insular zones (striosome: rostro- and caudoventral; matrix: caudodorsal) and followed different paths to reach the striatum. Though tractography was generated independently in each hemisphere, the spatial distribution and relative bias of striosome-like and matrix-like streamlines were highly similar in the left and right insula. 16 insular subregions were significantly biased towards one compartment: seven toward striosome-like voxels and nine toward matrix-like voxels. Striosome-favoring bundles had significantly higher streamline density, especially from rostroventral insular subregions. The biases in insulo-striate structural connectivity we identified mirrored the compartment-specific biases identified in prior studies that utilized injected tract tracers, cytoarchitecture, or functional MRI. Segregating insulo-striate structural connectivity through either striosome or matrix may be an anatomic substrate for functional specialization among the insular subregions.
Collapse
Affiliation(s)
- AT Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX
| | - AAO Hassan
- Department of Natural Sciences and Mathematics, University of Texas at Dallas
| | - JL Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| |
Collapse
|
5
|
Jellinger KA. Mild cognitive impairment in Huntington's disease: challenges and outlooks. J Neural Transm (Vienna) 2024; 131:289-304. [PMID: 38265518 DOI: 10.1007/s00702-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Although Huntington's disease (HD) has classically been viewed as an autosomal-dominant inherited neurodegenerative motor disorder, cognitive and/or behavioral changes are predominant and often an early manifestation of disease. About 40% of individuals in the presymptomatic period of HD meet the criteria for mild cognitive impairment, later progressing to dementia. The heterogenous spectrum of cognitive decline is characterized by deficits across multiple domains, particularly executive dysfunctions, but the underlying pathogenic mechanisms are still poorly understood. Investigating the pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. Multimodal imaging revealed circuit-wide gray and white matter degenerative processes in several key brain regions, affecting prefronto-striatal/cortico-basal ganglia circuits and many other functional brain networks. Studies in transgenic animal models indicated early synaptic dysfunction, deficient neurotrophic transport and other molecular changes contributing to neuronal death. Synaptopathy within the cerebral cortex, striatum and hippocampus may be particularly important in mediating cognitive and neuropsychiatric manifestations of HD, although many other neuronal systems are involved. The interaction of mutant huntingtin protein (mHTT) with tau and its implication for cognitive impairment in HD is a matter of discussion. Further neuroimaging and neuropathological studies are warranted to better elucidate early pathophysiological mechanisms and to develop validated biomarkers to detect patients' cognitive status during the early stages of the condition significantly to implement effective preventing or management strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
6
|
Rossetti MA, Anderson KM, Hay KR, Del Bene VA, Celka AS, Piccolino A, Nelson Sheese AL, Huynh M, Zhu L, Claassen DO, Furr Stimming E, Considine CM. An Exploratory Pilot Study of Neuropsychological Performance in Two Huntington Disease Centers of Excellence Clinics. Arch Clin Neuropsychol 2024; 39:24-34. [PMID: 37530515 DOI: 10.1093/arclin/acad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 08/03/2023] Open
Abstract
OBJECTIVES To describe the characteristics of patients receiving a clinical referral for neuropsychological evaluation in two Huntington's Disease Society of America Centers of Excellence (HDSA COE). In this exploratory pilot study, we used an empirically supported clinical neuropsychological battery to assess differences in cognitive performance between premanifest and manifest HD patient groups (compared with each other and normative expectations). METHOD Clinical data from 76 adult genetically confirmed patients referred for neuropsychological evaluations was retrospectively collected from two HDSA COEs. ANOVA and Chi-square tests were used to compare variables between pre-manifest (n = 14) and manifest (n = 62) groups for demographic, cognitive, neuropsychiatric, and disease severity variables. RESULTS Our clinics serviced a disproportionate number of motor manifest patients. Six measures were excluded from analyses due to infrequent administration. The full WAIS-IV Digit Span was disproportionately administered to the manifest group. The premanifest group showed stronger cognitive performance with effect sizes in the large range on subtests of the WAIS-IV Digit Span, HVLT-R, SDMT, and verbal fluency. CONCLUSIONS This is the first study to assess an empirically supported neuropsychological research battery in a clinical setting with a relatively large sample size given the rarity of HD. The battery adequately captured areas of impairment across the disease spectrum. Application of the current battery with larger premanifest samples is warranted.
Collapse
Affiliation(s)
- M Agustina Rossetti
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Kendra M Anderson
- Department of Neurology, McGovern Medical School UT Health, The University of Texas Health, Science Center, Houston, TX 77054, USA
| | - Kaitlyn R Hay
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Victor A Del Bene
- Department of Neurology, University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35244,USA
| | - Andrea S Celka
- Department of Neurology, University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35244,USA
| | - Adam Piccolino
- Piccolino Psychological Services, Burnsville, MN 55337, USA
| | - Amelia L Nelson Sheese
- Department of Neurological Sciences, University of Nebraska Medical Center College of Medicine, Omaha, NE 68198, USA
| | - Melissa Huynh
- Department of Neurology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Liang Zhu
- Department of Neurology, McGovern Medical School UT Health, The University of Texas Health, Science Center, Houston, TX 77054, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Erin Furr Stimming
- Department of Neurology, McGovern Medical School UT Health, The University of Texas Health, Science Center, Houston, TX 77054, USA
| | - Ciaran M Considine
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Saigoh K, Hirano M, Mitsui Y, Oda I, Ikegawa A, Samukawa M, Yoshikawa K, Yamagishi Y, Kusunoki S, Nagai Y. Memantine administration prevented chorea movement in Huntington's disease: a case report. J Med Case Rep 2023; 17:431. [PMID: 37840138 PMCID: PMC10578007 DOI: 10.1186/s13256-023-04161-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Huntington's disease is an autosomal dominant inherited disorder characterized by personality changes (such as irritability and restlessness) and psychotic symptoms (such as hallucinations and delusions). When the personality changes become noticeable, involuntary movements (chorea) also develop. The disease is caused by the CAG repeat expansion in the coding region of the HTT gene, and the diagnosis is based on the presence of this expansion. However, there is currently no effective treatment for the progression of Huntington's disease and its involuntary motor symptoms. Herein, we present a case in which memantine was effective in treating the chorea movements of Huntington's disease. CASE PRESENTATION A 75-year-old Japanese woman presented to the hospital with involuntary movements of Huntington's disease that began when she was 73 years old. In a cerebral blood flow test (N-isopropyl-p-iodoamphetamine-single-photon emission computed tomography), decreased blood flow was observed in the precuneus (anterior wedge) and posterior cingulate gyrus. Usually, such areas of decreased blood flow are observed in patients with Alzheimer's-type dementia. So, we administered memantine for Alzheimer's-type dementia, and this treatment suppressed the involuntary movements of Huntington's disease, and the symptoms progressed slowly for 7 years after the onset of senility. In contrast, her brother died of complications of pneumonia during the course of Huntington's disease. CONCLUSIONS We recorded changes in parameters such as the results of the N-isopropyl-p-iodoamphetamine-single-photon emission computed tomography and gait videos over 7 years. Treatment with memantine prevented the chorea movement and the progression of Huntington's disease. We believe this record will provide clinicians with valuable information in diagnosing and treating Huntington's disease.
Collapse
Affiliation(s)
- Kazumasa Saigoh
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama, Japan.
- Department of Life Science, Faculty of Science, and Engineering, Kindai University, 377-2, Ohno-Higashi, Osakasayama, Osaka, 589-8511, Japan.
- Department of Clinical Genetics, Kindai University Hospital, Osakasayama, Japan.
| | - Makito Hirano
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Yoshiyuki Mitsui
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Itsuki Oda
- Department of Clinical Genetics, Kindai University Hospital, Osakasayama, Japan
| | - Atsuko Ikegawa
- Department of Clinical Genetics, Kindai University Hospital, Osakasayama, Japan
| | - Makoto Samukawa
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Keisuke Yoshikawa
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Yuko Yamagishi
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Susumu Kusunoki
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| |
Collapse
|
8
|
Kozel J, Školoudík D, Ressner P, Michalčová P, Dušek P, Hanzlíková P, Dvořáčková N, Heryán T, Bártová P. Echogenicity of Brain Structures in Huntington's Disease Patients Evaluated by Transcranial Sonography - Magnetic Resonance Fusion Imaging using Virtual Navigator and Digital Image Analysis. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2023; 44:495-502. [PMID: 37224875 PMCID: PMC11928295 DOI: 10.1055/a-2081-1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/29/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE Transcranial sonography (TCS) magnetic resonance (MR) fusion imaging and digital image analysis are useful tools for the evaluation of various brain pathologies. This study aimed to compare the echogenicity of predefined brain structures in Huntington's disease (HD) patients and healthy controls by TCS-MR fusion imaging using Virtual Navigator and digitized image analysis. MATERIALS AND METHODS The echogenicity of the caudate nucleus (CN), substantia nigra (SN), lentiform nucleus (LN), insula, and brainstem raphe (BR) evaluated by TCS-MR fusion imaging using digitized image analysis was compared between 21 HD patients and 23 healthy controls. The cutoff values of echogenicity indices for the CN, LN, insula, and BR with optimal sensitivity and specificity were calculated using receiver operating characteristic analysis. RESULTS The mean echogenicity indices for the CN (67.0±22.6 vs. 37.9±7.6, p<0.0001), LN (110.7±23.6 vs. 59.7±11.1, p<0.0001), and insula (121.7±39.1 vs. 70.8±23.0, p<0.0001) were significantly higher in HD patients than in healthy controls. In contrast, BR echogenicity (24.8±5.3 vs. 30.1±5.3, p<0.001) was lower in HD patients than in healthy controls. The area under the curve was 90.9%, 95.5%, 84.1%, and 81.8% for the CN, LN, insula, and BR, respectively. The sensitivity and specificity were 86% and 96%, respectively, for the CN and 90% and 100%, respectively, for the LN. CONCLUSION Increased CN, LN, and insula echogenicity and decreased BR echogenicity are typical findings in HD patients. The high sensitivity and specificity of the CN and LN hyperechogenicity in TCS-MR fusion imaging make them promising diagnostic markers for HD.
Collapse
Affiliation(s)
- Jiří Kozel
- Center for Health Research, University of Ostrava Faculty of Medicine, Ostrava, Czech Republic
| | - David Školoudík
- Center for Health Research, University of Ostrava Faculty of Medicine, Ostrava, Czech Republic
| | - Pavel Ressner
- Neurology, Faculty of Medicine, Masaryk University and St. Anne’s University Hospital, Brno, Czech Republic
| | - Patricie Michalčová
- Center for Health Research, University of Ostrava Faculty of Medicine, Ostrava, Czech Republic
| | - Petr Dušek
- Neurology, The First Faculty of Medicine, Charles University, Praha, Czech Republic
| | - Pavla Hanzlíková
- Radiodiagnostics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Nina Dvořáčková
- Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Tomáš Heryán
- Center for Health Research, University of Ostrava Faculty of Medicine, Ostrava, Czech Republic
| | - Petra Bártová
- Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| |
Collapse
|
9
|
Sierra LA, Ullman CJ, Frank SA, Laganiere S. Using the LASSI-L to Detect Robust Interference Effects in Premanifest Huntington Disease. Cogn Behav Neurol 2023; 36:100-107. [PMID: 36728399 DOI: 10.1097/wnn.0000000000000329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Diagnosis of manifest Huntington disease (HD) is based primarily on motor symptoms, but premanifest HD (preHD) is often associated with subtle cognitive decline. The Loewenstein-Acevedo Scales for Semantic Interference and Learning (LASSI-L) is a validated verbal learning test that can be used to detect early cognitive decline. OBJECTIVE To determine the utility of the LASSI-L for detecting early cognitive decline in individuals with preHD and to compare the results of the LASSI-L with those of commonly used neuropsychological tests in HD. METHOD We administered the LASSI-L to 13 individuals with preHD and 13 healthy controls matched for age, sex, and education as part of a longitudinal study of disease progression. For comparison purposes, we administered the Mini-Mental State Examination; Stroop Color and Word Test; Symbol Digit Modalities Test; Trail-Making Test, Parts A and B; and category fluency (animals) task. RESULTS Five of the seven sections on the LASSI-L captured group differences: Proactive Semantic Interference (PSI; P < 0.001), Failure to Recover From PSI ( P = 0.038), Retroactive Semantic Interference (RSI; P = 0.013), Delayed Recall ( P < 0.001), and B1 Cued Recall Intrusions ( P = 0.036). Using a false discovery rate of <0.05, PSI, RSI, and Delayed Recall remained significant. CONCLUSION The LASSI-L is a sensitive instrument for detecting early interference effects in individuals with preHD that outperforms commonly used neuropsychological tests. The LASSI-L could be a useful addition to clinical and research protocols involving individuals with preHD.
Collapse
Affiliation(s)
- Luis A Sierra
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | |
Collapse
|
10
|
Cavallo M, Sergi A, Pagani M. Cognitive and social cognition deficits in Huntington's disease differ between the prodromal and the manifest stages of the condition: A scoping review of recent evidence. BRITISH JOURNAL OF CLINICAL PSYCHOLOGY 2022; 61:214-241. [PMID: 34651307 DOI: 10.1111/bjc.12337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/02/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Huntington's disease (HD) is a dramatic neurodegenerative disorder encompassing severe motor symptoms coupled to significant cognitive and social cognition deficits. However, it is not clear whether and how patients' neuropsychological profile changes between the prodromal and the manifest stages of the condition. The aim of the present in-depth review is to consider cognitive and social cognition impairment in HD patients by differentiating deficits arising before diagnosis from those evident from the manifest phase onwards. METHODS Electronic databases were searched between January 1st , 2010 and December 31st , 2020 by using multiple combinations of keywords related to the investigation of neuropsychological profile in HD for preliminary search, and by defining strict selection criteria for studies to be included. RESULTS Forty-two studies were included. Evidence suggests that the neuropsychological profile in HD reflects a complex pathological spectrum of deficits. It includes impairment in the realms of executive functions, memory, attention, information processing, and social cognition. Interestingly, patients' profiles differ significantly between the manifest and the prodromal stages of their condition, not only in quantitative terms but also from a qualitative point of view. CONCLUSIONS Researchers and clinicians should thus include in clinical routine timely and specific neuropsychological assessments in order to monitor patients' cognitive status as time goes by, with the ultimate goal to implement effective clinical management strategies. PRACTITIONER POINTS The neuropsychological profile in HD encompasses a complex pathological spectrum of deficits. Patients' profiles differ significantly between the manifest and the prodromal stages of their condition. Clinicians should include in everyday practice a timely and specific neuropsychological assessment. Detecting patients' cognitive status during the early stages of the condition already can contribute significantly to implement effective clinical management strategies.
Collapse
Affiliation(s)
- Marco Cavallo
- Faculty of Psychology, eCampus University, Novedrate, Italy
- Clinical Psychology Service, Saint George Foundation, Cavallermaggiore, Italy
| | | | - Marco Pagani
- Institute of Cognitive Sciences and Technology, CNR, Rome, Italy
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Ramirez-Garcia G, Galvez V, Diaz R, Campos-Romo A, Fernandez-Ruiz J. Montreal Cognitive Assessment (MoCA) performance in Huntington's disease patients correlates with cortical and caudate atrophy. PeerJ 2022; 10:e12917. [PMID: 35402100 PMCID: PMC8988933 DOI: 10.7717/peerj.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
Huntington's Disease (HD) is an autosomal neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Cognitive impairment develops gradually in HD patients, progressing later into a severe cognitive dysfunction. The Montreal Cognitive Assessment (MoCA) is a brief screening test commonly employed to detect mild cognitive impairment, which has also been useful to assess cognitive decline in HD patients. However, the relationship between MoCA performance and brain structural integrity in HD patients remains unclear. Therefore, to explore this relationship we analyzed if cortical thinning and subcortical nuclei volume differences correlated with HD patients' MoCA performance. Twenty-two HD patients and twenty-two healthy subjects participated in this study. T1-weighted images were acquired to analyze cortical thickness and subcortical nuclei volumes. Group comparison analysis showed a significantly lower score in the MoCA global performance of HD patients. Also, the MoCA total score correlated with cortical thinning of fronto-parietal and temporo-occipital cortices, as well as with bilateral caudate volume differences in HD patients. These results provide new insights into the effectiveness of using the MoCA test to detect cognitive impairment and the brain atrophy pattern associated with the cognitive status of prodromal/early HD patients.
Collapse
Affiliation(s)
- Gabriel Ramirez-Garcia
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Victor Galvez
- Escuela de Psicología, Universidad Panamericana, Ciudad de Mexico, Mexico
| | - Rosalinda Diaz
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Aurelio Campos-Romo
- Facultad de Medicina, Unidad Periférica de Neurociencias, Universidad Nacional Autónoma de México/Instituto Nacional de Neurologia y Neurocirugia, Ciudad de Mexico, Mexico
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
12
|
Howard E, Ballinger S, Kinney NG, Balgenorth Y, Ehrhardt A, Phillips JS, Irwin DJ, Grossman M, Cousins KA. Frontal Atrophy and Executive Dysfunction Relate to Complex Numbers Impairment in Progressive Supranuclear Palsy. J Alzheimers Dis 2022; 88:1553-1566. [PMID: 35811515 PMCID: PMC9915885 DOI: 10.3233/jad-215327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous research finds a range of numbers impairments in Parkinsonian syndromes (PS), but has largely focused on how visuospatial impairments impact deficits in basic numerical processes (e.g., magnitude judgments, chunking). Differentiation between these basic functions and more complex numerical processes often utilized in everyday tasks may help elucidate neurocognitive and neuroanatomic bases of numbers deficits in PS. OBJECTIVE To test neurocognitive and neuroanatomic correlates of complex numerical processing in PS, we assessed number abilities, neuropsychological performance, and cortical thickness in progressive supranuclear palsy (PSP) and Lewy body spectrum disorders (LBSD). METHODS Fifty-six patients (LBSD = 35; PSP = 21) completed a Numbers Battery, including basic and complex numerical tasks. The Mini-Mental State Exam (MMSE), letter fluency (LF), and Judgment of Line Orientation (JOLO) assessed global, executive, and visuospatial functioning respectively. Mann-Whitney U tests compared neuropsychological testing and rank-transformed analysis of covariance (ANCOVA) compared numbers performance between groups while adjusting for demographic variables. Spearman's and partial correlations related numbers performance to neuropsychological tasks. Neuroimaging assessed cortical thickness in disease groups and demographically-matched healthy controls. RESULTS PSP had worse complex numbers performance than LBSD (F = 6.06, p = 0.02) but similar basic numbers performance (F = 0.38, p > 0.1), covarying for MMSE and sex. Across syndromes, impaired complex numbers performance was linked to poor LF (rho = 0.34, p = 0.01) but not JOLO (rho = 0.23, p > 0.05). Imaging revealed significant frontal atrophy in PSP compared to controls, which was associated with worse LF and complex numbers performance. CONCLUSION PSP demonstrated selective impairments in complex numbers processing compared to LBSD. This complex numerical deficit may relate to executive dysfunction and frontal atrophy.
Collapse
Affiliation(s)
- Erica Howard
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha Ballinger
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nikolas G. Kinney
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yvonne Balgenorth
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Annabess Ehrhardt
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey S. Phillips
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Katheryn A.Q. Cousins
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Correspondence to: Katheryn A.Q. Cousins, PhD, 3400 Spruce St, Department of Neurology, 3W Gates Building, Philadel phia, PA 19104, USA. Tel.: +1 215 349 5863; Fax: +1 215 349 8464;
| |
Collapse
|
13
|
Kinnunen KM, Schwarz AJ, Turner EC, Pustina D, Gantman EC, Gordon MF, Joules R, Mullin AP, Scahill RI, Georgiou-Karistianis N. Volumetric MRI-Based Biomarkers in Huntington's Disease: An Evidentiary Review. Front Neurol 2021; 12:712555. [PMID: 34621236 PMCID: PMC8490802 DOI: 10.3389/fneur.2021.712555] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/10/2021] [Indexed: 01/02/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder that is caused by expansion of a CAG-repeat tract in the huntingtin gene and characterized by motor impairment, cognitive decline, and neuropsychiatric disturbances. Neuropathological studies show that disease progression follows a characteristic pattern of brain atrophy, beginning in the basal ganglia structures. The HD Regulatory Science Consortium (HD-RSC) brings together diverse stakeholders in the HD community—biopharmaceutical industry, academia, nonprofit, and patient advocacy organizations—to define and address regulatory needs to accelerate HD therapeutic development. Here, the Biomarker Working Group of the HD-RSC summarizes the cross-sectional evidence indicating that regional brain volumes, as measured by volumetric magnetic resonance imaging, are reduced in HD and are correlated with disease characteristics. We also evaluate the relationship between imaging measures and clinical change, their longitudinal change characteristics, and within-individual longitudinal associations of imaging with disease progression. This analysis will be valuable in assessing pharmacodynamics in clinical trials and supporting clinical outcome assessments to evaluate treatment effects on neurodegeneration.
Collapse
Affiliation(s)
| | - Adam J Schwarz
- Takeda Pharmaceuticals, Ltd., Cambridge, MA, United States
| | | | - Dorian Pustina
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Emily C Gantman
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Mark F Gordon
- Teva Pharmaceuticals, West Chester, PA, United States
| | | | - Ariana P Mullin
- Critical Path Institute, Tucson, AZ, United States.,Wave Life Sciences, Ltd., Cambridge, MA, United States
| | - Rachael I Scahill
- Huntington's Disease Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
14
|
Rivera D, Mascialino G, Brooks BL, Olabarrieta-Landa L, Longoni M, Galarza-Del-Angel J, Arango-Lasprilla JC. Multivariate Base Rates of Low Scores on Tests of Executive Functions in a Multi-Country Latin American Sample. Dev Neuropsychol 2020; 46:1-15. [PMID: 33356560 DOI: 10.1080/87565641.2020.1863407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The objective of the study was to determine the prevalence of low scores in a diverse Latin American population for two neuropsychological commonly used tests to evaluate executive functions and to compare the number of low scores obtained using normative data from a Spanish-speaking population from Latin America versus an English-speaking population from U.S.A. Healthy adults (N = 5402) were administered the Modified Wisconsin Card Sorting Test and Stroop Color-Word. Low scores on measures of executive functioning are common. Clinicians working with Spanish-speaking adults should take into account the higher probability of low scores on these measures to reduce false-positive diagnoses of cognitive deficits in an individual.
Collapse
Affiliation(s)
- Diego Rivera
- Departamento De Ciencias De La Salud, Universidad Pública De Navarra , Pamplona, Spain
| | - Guido Mascialino
- Escuela De Psicología, Universidad De Las Américas , Quito, Ecuador
| | - Brian L Brooks
- Departments of Pediatrics, Clinical Neurosciences, and Psychology, University of Calgary , Calgary, Alberta, Canada.,Neuropsychology Service, Alberta Children's Hospital , Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada
| | | | - Melina Longoni
- Dirección de Discapacidad de Ituzaingo , Buenos Aires, Argentina
| | | | - Juan Carlos Arango-Lasprilla
- Biocruces Bizkaia Health Research Institute. Cruces University Hospital . Barakaldo, Spain.,IKERBASQUE. Basque Foundation for Science ., Bilbao, Spain.,Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU) , Bizkaia, Spain
| |
Collapse
|
15
|
Tan B, Shishegar R, Poudel GR, Fornito A, Georgiou-Karistianis N. Cortical morphometry and neural dysfunction in Huntington's disease: a review. Eur J Neurol 2020; 28:1406-1419. [PMID: 33210786 DOI: 10.1111/ene.14648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/22/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023]
Abstract
Numerous neuroimaging techniques have been used to identify biomarkers of disease progression in Huntington's disease (HD). To date, the earliest and most sensitive of these is caudate volume; however, it is becoming increasingly evident that numerous changes to cortical structures, and their interconnected networks, occur throughout the course of the disease. The mechanisms by which atrophy spreads from the caudate to these cortical regions remains unknown. In this review, the neuroimaging literature specific to T1-weighted and diffusion-weighted magnetic resonance imaging is summarized and new strategies for the investigation of cortical morphometry and the network spread of degeneration in HD are proposed. This new avenue of research may enable further characterization of disease pathology and could add to a suite of biomarker/s of disease progression for patient stratification that will help guide future clinical trials.
Collapse
Affiliation(s)
- Brendan Tan
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Rosita Shishegar
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Australian e-Health Research Centre, CSIRO, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Melbourne, VIC, Australia
| | - Govinda R Poudel
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Sydney Imaging, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Australian Catholic University, Melbourne, VIC, Australia
| | - Alex Fornito
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Melbourne, VIC, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Cheong RY, Gabery S, Petersén Å. The Role of Hypothalamic Pathology for Non-Motor Features of Huntington's Disease. J Huntingtons Dis 2020; 8:375-391. [PMID: 31594240 PMCID: PMC6839491 DOI: 10.3233/jhd-190372] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Huntington’s disease (HD) is a fatal genetic neurodegenerative disorder. It has mainly been considered a movement disorder with cognitive symptoms and these features have been associated with pathology of the striatum and cerebral cortex. Importantly, individuals with the mutant huntingtin gene suffer from a spectrum of non-motor features often decades before the motor disorder manifests. These symptoms and signs include a range of psychiatric symptoms, sleep problems and metabolic changes with weight loss particularly in later stages. A higher body mass index at diagnosis is associated with slower disease progression. The common psychiatric symptom of apathy progresses with the disease. The fact that non-motor features are present early in the disease and that they show an association to disease progression suggest that unravelling the underlying neurobiological mechanisms may uncover novel targets for early disease intervention and better symptomatic treatment. The hypothalamus and the limbic system are important brain regions that regulate emotion, social cognition, sleep and metabolism. A number of studies using neuroimaging, postmortem human tissue and genetic manipulation in animal models of the disease has collectively shown that the hypothalamus and the limbic system are affected in HD. These findings include the loss of neuropeptide-expressing neurons such as orexin (hypocretin), oxytocin, vasopressin, somatostatin and VIP, and increased levels of SIRT1 in distinct nuclei of the hypothalamus. This review provides a summary of the results obtained so far and highlights the potential importance of these changes for the understanding of non-motor features in HD.
Collapse
Affiliation(s)
- Rachel Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sanaz Gabery
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Rodríguez-Lorenzana A, Ramos-Usuga D, Díaz LA, Mascialino G, Yacelga Ponce T, Rivera D, Arango-Lasprilla JC. Normative data of neuropsychological tests of attention and executive functions in Ecuadorian adult population. AGING NEUROPSYCHOLOGY AND COGNITION 2020; 28:508-527. [PMID: 32666879 DOI: 10.1080/13825585.2020.1790493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The purpose of this study was to generate normative data for five tests of attention and executive functions (M-WCST, Stroop test, TMT, BTA, and SDMT), in a group of 322 Ecuadorian adults from Quito between the ages of 18 and 85. METHOD Multiple regression analyzes taking into account age, education, and gender were used to generate the normative data. RESULTS Age and education were significantly related to test performance such that scores decreased with age and improved as a function of education. An online calculator is provided to generate normative test scores. CONCLUSIONS This is the first study that presents normative data for tests of executive functions and attention in an Ecuadorian adult population. This data will improve the clinical practice of neuropsychology and help to develop the field in the country.
Collapse
Affiliation(s)
| | - Daniela Ramos-Usuga
- Biocruces Bizkaia Health Research Institute , Barakaldo, Spain.,Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU) , Leioa, Spain
| | - Lila Adana Díaz
- Escuela De Psicología, Universidad De Las Américas , Quito, Ecuador
| | - Guido Mascialino
- Escuela De Psicología, Universidad De Las Américas , Quito, Ecuador
| | | | - Diego Rivera
- Departamento De Ciencias De La Salud, Universidad Pública De Navarra , Navarra, España
| | - Juan Carlos Arango-Lasprilla
- Biocruces Bizkaia Health Research Institute , Barakaldo, Spain.,IKERBASQUE. Basque Foundation for Science , Bilbao, Spain.,Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU) , Leioa, Spain
| |
Collapse
|
18
|
Júlio F, Ribeiro MJ, Morgadinho A, Sousa M, van Asselen M, Simões MR, Castelo-Branco M, Januário C. Cognition, function and awareness of disease impact in early Parkinson's and Huntington's disease. Disabil Rehabil 2020; 44:921-939. [PMID: 32620060 DOI: 10.1080/09638288.2020.1783001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Purpose: Patients with Parkinson's and Huntington's Disease (PD and HD) present impairments in cognitively challenging everyday activities. This study contrasts these two basal ganglia disorders on the ability to perform daily life- like tasks and their level of awareness regarding the disease impact on function.Methods: 19 controls, 10 early-onset PD, 20 early stage PD, and 15 early manifest HD patients were compared in the "EcoKitchen," a virtual reality task with increasing executive load, the "Behavioural Assessment of Dysexecutive Syndrome battery - BADS," and "The Adults and Older Adults Functional Assessment Inventory - IAFAI," a self-report functional questionnaire. The EcoKitchen clinical correlates were investigated.Results: All clinical groups presented slower EcoKitchen performance than controls, however, only HD patients showed decreased accuracy. HD and PD patients exhibited reduced BADS scores compared to the other study participants. Importantly, on the IAFAI, PD patients signalled more physically related incapacities and HD patients indicated more cognitively related incapacities. Accordingly, the EcoKitchen performance was significantly associated with PD motor symptom severity.Conclusions: Our findings suggest differential disease impact on cognition and function across PD and HD patients, with preserved awareness regarding disease- related functional sequelae. These observations have important implications for clinical management, research and rehabilitation.Implications for rehabilitationPatients with early stage Parkinson's and Huntington's disease have diagnosis-specific impairments in the performance of executively demanding everyday activities and, yet, show preserved awareness about the disease impact on their daily life.An active involvement of patients in the rehabilitation process should be encouraged, as their appraisal of the disease effects can help on practical decisions about meaningful targets for intervention, vocational choices, quality-of-life issues and/or specific everyday skills to boost.The EcoKitchen, a non-immersive virtual reality task, can detect and quantify early deficits in everyday-like tasks and is therefore a valuable tool for assessing the effects of rehabilitation strategies on the functional cognition of these patients.Rehabilitation efforts in the mild stages of Parkinson's and Huntington's disease should be aware of greater time needs from the patients in the performance of daily life tasks, target executive skills, and give a more prominent role to patients in symptoms report and management.
Collapse
Affiliation(s)
- Filipa Júlio
- University of Coimbra, Faculty of Psychology and Education Sciences, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Maria J Ribeiro
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | | | - Mário Sousa
- Coimbra University Hospital, Coimbra, Portugal
| | - Marieke van Asselen
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Mário R Simões
- University of Coimbra, Faculty of Psychology and Education Sciences, Coimbra, Portugal.,University of Coimbra, Faculty of Psychology and Education Sciences, Center for Research in Neuropsychology and Cognitive Behavioural Intervention (CINEICC), Coimbra, Portugal
| | - Miguel Castelo-Branco
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal.,University of Coimbra, Institute of Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal.,University of Coimbra, Faculty of Medicine, Coimbra, Portugal
| | - Cristina Januário
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal.,Coimbra University Hospital, Coimbra, Portugal.,University of Coimbra, Faculty of Medicine, Coimbra, Portugal
| |
Collapse
|
19
|
Yhnell E, Furby H, Lowe RS, Brookes-Howell LC, Drew CJG, Playle R, Watson G, Metzler-Baddeley C, Rosser AE, Busse ME. A randomised feasibility study of computerised cognitive training as a therapeutic intervention for people with Huntington's disease (CogTrainHD). Pilot Feasibility Stud 2020; 6:88. [PMID: 32577299 PMCID: PMC7304172 DOI: 10.1186/s40814-020-00623-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is associated with a range of cognitive deficits including problems with executive function. In the absence of a disease modifying treatment, cognitive training has been proposed as a means of slowing cognitive decline; however, the impact of cognitive training in HD patient populations remains unclear. The CogTrainHD study assessed the feasibility and acceptability of home-based computerised executive function training, for people impacted by HD. METHODS Thirty HD gene carriers were recruited and randomised to either executive function training or non-intervention control groups. Participants allocated to the intervention group were asked to complete executive function training three times a week for 30 min for 12 weeks in their own homes. Semi-structured interviews were conducted with participants and friends, family or carers, to determine their views on the study. RESULTS 26 out of 30 participants completed the baseline assessments and were subsequently randomised: 13 to the control group and 13 to the intervention group. 23 of the 30 participants were retained until study completion: 10/13 in the intervention group and 13/13 in the control group. 4/10 participants fully adhered to the executive function training. All participants in the control group 13/13 completed the study as intended. Interview data suggested several key facilitators including participant determination, motivation, incorporation of the intervention into routine and support from friends and family members. Practical limitations, including lack of time, difficulty and frustration in completing the intervention, were identified as barriers to study completion. CONCLUSIONS The CogTrainHD feasibility study provides important evidence regarding the feasibility and acceptability of a home-based cognitive training intervention for people with HD. Variable adherence to the cognitive training implies that the intervention is not feasible to all participants in its current form. The study has highlighted important aspects in relation to both the study and intervention design that require consideration, and these include the design of games in the executive function training software, logistical considerations such as lack of time, the limited time participants had to complete the intervention and the number of study visits required. Further studies are necessary before computerised executive function training can be recommended routinely for people with HD. TRIAL REGISTRATION ClinicalTrials.gov, Registry number NCT02990676.
Collapse
Affiliation(s)
- Emma Yhnell
- Neuroscience and Mental Health Research Institute, Cardiff University (NMHRI), 3rd Floor, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
- Cardiff University School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX UK
| | - Hannah Furby
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff University, Cardiff, CF24 4HQ UK
| | - Rachel S. Lowe
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| | - Lucy C. Brookes-Howell
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| | - Cheney J. G. Drew
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| | - Rebecca Playle
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| | - Gareth Watson
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| | - Claudia Metzler-Baddeley
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff University, Cardiff, CF24 4HQ UK
| | - Anne E. Rosser
- Neuroscience and Mental Health Research Institute, Cardiff University (NMHRI), 3rd Floor, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
- Cardiff University Brain Repair Group, Life Sciences Building, Museum Avenue, Cardiff, CF10 3AX UK
| | - Monica E. Busse
- Centre for Trials Research (CTR), Cardiff University, Neuadd Meironnydd, Heath Park, Cardiff, CF14 4YS UK
| |
Collapse
|
20
|
Furlong LS, Jakabek D, Power BD, Owens-Walton C, Wilkes FA, Walterfang M, Velakoulis D, Egan G, Looi JC, Georgiou-Karistianis N. Morphometric in vivo evidence of thalamic atrophy correlated with cognitive and motor dysfunction in Huntington's disease: The IMAGE-HD study. Psychiatry Res Neuroimaging 2020; 298:111048. [PMID: 32120305 DOI: 10.1016/j.pscychresns.2020.111048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 01/18/2023]
Abstract
In Huntington's disease (HD), neurodegeneration causes progressive atrophy to the striatum, cortical areas, and white matter tracts - components of corticostriatal circuitry. Such processes may affect the thalamus, a key circuit node. We investigated whether differences in dorsal thalamic morphology were detectable in HD, and whether thalamic atrophy was associated with neurocognitive, neuropsychiatric and motor dysfunction. Magnetic resonance imaging scans and clinical outcome measures were obtained from 34 presymptomatic HD (pre-HD), 29 early symptomatic HD (symp-HD), and 26 healthy control individuals who participated in the IMAGE-HD study. Manual region of interest (ROI) segmentation was conducted to measure dorsal thalamic volume, and thalamic ROI underwent shape analysis using the spherical harmonic point distribution method. The symp-HD group had significant thalamic volumetric reduction and global shape deflation, indicative of atrophy, compared to pre-HD and control groups. Thalamic atrophy significantly predicted neurocognitive and motor dysfunction within the symp-HD group only. Thalamic morphology differentiates symp-HD from pre-HD and healthy individuals. Thalamic changes may be one of the structural bases (endomorphotypes), of the endophenotypic neurocognitive and motor manifestations of disease. Future research should continue to investigate the thalamus as a potential in vivo biomarker of disease progression in HD.
Collapse
Affiliation(s)
- Lisa S Furlong
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, School of Clinical Medicine, Australian National University Medical School, Canberra, Australia; John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | - David Jakabek
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
| | - Brian D Power
- School of Medicine Fremantle, The University of Notre Dame Australia, Fremantle, Australia; Clinical Research Centre, North Metropolitan Health Service - Mental Health, WA, Australia
| | - Conor Owens-Walton
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, School of Clinical Medicine, Australian National University Medical School, Canberra, Australia
| | - Fiona A Wilkes
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, School of Clinical Medicine, Australian National University Medical School, Canberra, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, and University of Melbourne, Melbourne, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, and University of Melbourne, Melbourne, Australia
| | - Gary Egan
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia; Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Melbourne, Australia
| | - Jeffrey Cl Looi
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychiatry and Addiction Medicine, School of Clinical Medicine, Australian National University Medical School, Canberra, Australia; Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Neuropsychiatry Centre, and University of Melbourne, Melbourne, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health Monash University, Clayton, Australia
| |
Collapse
|
21
|
Chattopadhyay R. Journey of neuroscience: marketing management to organizational behavior. MANAGEMENT RESEARCH REVIEW 2020. [DOI: 10.1108/mrr-09-2019-0387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this paper is to provide an overview of the advancement of neuroscience research works in the domains of marketing management and organizational behavior and its future scope for expansion in the area of organizational behavior.
Design/methodology/approach
A total of 77 neuroscience research articles in the area of marketing management and organizational behavior published between 2004 and 2017 were reviewed, and a possible future direction for neuroscience research in the area of organizational behavior was identified in this article.
Findings
Findings from neuroscience research works suggest that tools and techniques that are useful in the neuroscience domain are also quite powerful and reliable in the context of organizational behavior research. Here, it should be noted that not all of these are independently powerful. Therefore, in certain cases, it is desirable to use neuroscience techniques in association with existing methods.
Originality/value
Neuroscientific research works in the context of the marketing domain were started with the motivation to identify the neural signaling in association with different marketing initiatives. However, the research works have proceeded much deeper and entered into the field of consumer psychology. Further research shows that neuroscience techniques are quite useful in the understanding of consumer behavior and can be extended in the field of organizational behavior. In this study, the authors have provided the future direction of neuroscience research works in the area of organizational behavior.
Collapse
|
22
|
Julayanont P, McFarland NR, Heilman KM. Mild cognitive impairment and dementia in motor manifest Huntington's disease: Classification and prevalence. J Neurol Sci 2019; 408:116523. [PMID: 31678902 DOI: 10.1016/j.jns.2019.116523] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/11/2019] [Accepted: 10/04/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To identify the characteristics and prevalence of mild cognitive impairment in patients with motor-manifest Huntington's disease (HD) and to propose a new mild cognitive impairment (HD-MCI) classification for HD. METHODS We included 307 motor-manifest HD participants from the ENROLL-HD study who completed the evaluation in four neurocognitive domains including executive functions, processing speed, language, and memory. Cognitive impairment in each domain was determined by age- and education-adjusted cutoffs (> 1.5 standard deviations below the mean). HD-MCI was defined as an impairment in at least one cognitive domain without a loss of functional independence (Function Independence Scale, FIS ≥85). Dementia (HD-Dem) was defined as at least two domains of cognitive impairment with functional impairment (FIS ≤80). RESULTS At the onset of motor symptoms, MCI was present in 84% and dementia in 5% of patients. After 5 years of motor symptoms, 24% of participants met the criteria for MCI and 69% for dementia. Executive dysfunction was the most common impairment, being present in 70% of participants, followed by slowed processing speed in 67%. Language impairment was reported in 55% and memory deficits in 53%. MCI subtypes were classified as "Executive-predominant" (executive impairment and slowed processing speed), "Representational-predominant" (impaired language and memory) and "Mixed Executive-Representational". Executive-predominant MCI comprised 30%, Representational-predominant 15% and Mixed 55% of this cohort. CONCLUSION MCI is highly prevalent in the early stage of motor-manifest HD. Three MCI subgroups are defined suggesting at the earlier stage of this disease the frontal-striatal-executive and/or the temporoparietal-representational functional network can be impaired.
Collapse
Affiliation(s)
- Parunyou Julayanont
- Division of Behavioral and Cognitive Neurology, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Nikolaus R McFarland
- Center for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Kenneth M Heilman
- Division of Behavioral and Cognitive Neurology, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA; Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, USA.
| |
Collapse
|
23
|
Rammal S, Abi Chahine J, Rammal M, Fares Y, Abou Abbas L. Modified Wisconsin Card Sorting Test (M-WCST): Normative Data for the Lebanese Adult Population. Dev Neuropsychol 2019; 44:397-408. [PMID: 31394932 DOI: 10.1080/87565641.2019.1652828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to generate normative data on the M-WCST in a Lebanese adult population and to examine the relationship between performance on this task and demographic variables. The sample consisted of 220 healthy adults aged between 18 and 64 years. Regression-based strategy was applied to generate normative data. The results showed a statistically significant effect of age and level of education on the M-WCST measures, whereas gender was not significant. Demographically calibrated percentiles and scaled scores were created. Finally, this study was the first to provide normative-adjusted tables for the M-WCST scores in Lebanon.
Collapse
Affiliation(s)
- Sahar Rammal
- a Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University , Hadat , Lebanon
| | - Jessica Abi Chahine
- a Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University , Hadat , Lebanon
| | - Malak Rammal
- b Faculty of Medical Sciences, Lebanese University , Hadat , Lebanon
| | - Youssef Fares
- c Faculty of Medical Sciences, Department of Neurosurgery, Neuroscience Research Center, Lebanese University , Hadat , Lebanon
| | - Linda Abou Abbas
- a Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University , Hadat , Lebanon
| |
Collapse
|
24
|
The prevalence and the burden of pain in patients with Huntington disease: a systematic review and meta-analysis. Pain 2019; 160:773-783. [PMID: 30889051 DOI: 10.1097/j.pain.0000000000001472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It is remarkable that studies focusing on the prevalence and the burden of pain in patients with Huntington disease (HD) are scarce. This may lead to inadequate recognition of pain and hence lack of treatment, eventually affecting the quality of life. The aim of this review is to investigate the prevalence of pain and its burden in HD by performing a systematic literature search. In February 2018, a systematic search was performed in the electronic databases of Pubmed, Embase, Cinahl, Cochrane, and PsycINFO. Studies focusing on patients with juvenile HD were excluded. All other types of study were included without language restrictions. In total, 2234 articles were identified, 15 of which met the inclusion criteria and provided information on 2578 patients with HD. The sample-weighted prevalence of pain was 41.3% (95% confidence interval: 36%-46%). The pain burden, which was measured with the SF-36, is significantly less compared with that in the general population. The sample-weighted mean score on the SF-36 was 84 (95% confidence interval: 81-86), where a score of 100 represents the lowest symptom burden. The results demonstrate that pain could be an important nonmotor symptom in patients with HD, and there are indications that the pain burden could be diminished because of HD. Larger and high-quality prospective cohort and clinical studies are required to confirm these findings. In the meantime, awareness about pain and its burden in patients with HD is warranted in clinical practice.
Collapse
|
25
|
Rowley CD, Tabrizi SJ, Scahill RI, Leavitt BR, Roos RAC, Durr A, Bock NA. Altered Intracortical T 1-Weighted/T 2-Weighted Ratio Signal in Huntington's Disease. Front Neurosci 2018; 12:805. [PMID: 30455625 PMCID: PMC6230564 DOI: 10.3389/fnins.2018.00805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/16/2018] [Indexed: 01/04/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disorder that is characterized by neuronal cell death. Although medium spiny neurons in the striatum are predominantly affected, other brain regions including the cerebral cortex also degenerate. Previous structural imaging studies have reported decreases in cortical thickness in HD. Here we aimed to further investigate changes in cortical tissue composition in vivo in HD using standard clinical T1-weighted (T1W) and T2-weighted (T2W) magnetic resonance images (MRIs). 326 subjects from the TRACK-HD dataset representing healthy controls and four stages of HD progression were analyzed. The intracortical T1W/T2W intensity was sampled in the middle depth of the cortex over 82 regions across the cortex. While these previously collected images were not optimized for intracortical analysis, we found a significant increase in T1W/T2W intensity (p < 0.05 Bonferroni-Holm corrected) beginning with HD diagnosis. Increases in ratio intensity were found in the insula, which then spread to ventrolateral frontal cortex, superior temporal gyrus, medial temporal gyral pole, and cuneus with progression into the most advanced HD group studied. Mirroring past histological reports, this increase in the ratio image intensity may reflect disease-related increases in myelin and/or iron in the cortex. These findings suggest that future imaging studies are warranted with imaging optimized to more sensitively and specifically assess which features of cortical tissue composition are abnormal in HD to better characterize disease progression.
Collapse
Affiliation(s)
- Christopher D. Rowley
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University, Hamilton, ON, Canada
| | - Sarah J. Tabrizi
- Huntington’s Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Rachael I. Scahill
- Huntington’s Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Blair R. Leavitt
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Raymund A. C. Roos
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Alexandra Durr
- INSERM U1127, CNRS UMR7225, UMR_S1127, UPMC Université Paris VI, Institut du Cerveau et de la Moelle Epinière, Sorbonne University, Paris, France
- APHP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Nicholas A. Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Structural Magnetic Resonance Imaging in Huntington's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:335-380. [PMID: 30409258 DOI: 10.1016/bs.irn.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, caused by expansion of the CAG repeat in the huntingtin gene. HD is characterized clinically by progressive motor, cognitive and neuropsychiatric symptoms. There are currently no disease modifying treatments available for HD, and there is a great need for biomarkers to monitor disease progression and identify new targets for therapeutic intervention. Neuroimaging techniques provide a powerful tool for assessing disease pathology and progression in premanifest stages, before the onset of overt motor symptoms. Structural magnetic resonance imaging (MRI) is non-invasive imaging techniques which have been employed to study structural and microstructural changes in premanifest and manifest HD gene carriers. This chapter described structural imaging techniques and analysis methods employed across HD MRI studies. Current evidence for structural MRI abnormalities in HD, and associations between atrophy, structural white matter changes, iron deposition and clinical performance are discussed; together with the use of structural MRI measures as a diagnostic tool, to assess longitudinal changes, and as potential biomarkers and endpoints for clinical trials.
Collapse
|
27
|
Snowden JS. The Neuropsychology of Huntington's Disease. Arch Clin Neuropsychol 2018; 32:876-887. [PMID: 28961886 DOI: 10.1093/arclin/acx086] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/04/2017] [Indexed: 01/24/2023] Open
Abstract
Huntington's disease is an inherited, degenerative brain disease, characterized by involuntary movements, cognitive disorder and neuropsychiatric change. Men and women are affected equally. Symptoms emerge at around 40 years, although there is wide variation. A rare juvenile form has onset in childhood or adolescence. The evolution of disease is insidious and structural and functional brain changes may be present more than a decade before symptoms and signs become manifest. The earliest site of pathology is the striatum and neuroimaging measures of striatal change correlate with neurological and cognitive markers of disease. Chorea and other aspects of the movement disorder are the most visible aspect of the disease. However, non-motor features have greatest affect on functional independence and quality of life, so require recognition and management. The evidence-base for non-pharmacological treatments in Huntington's disease is currently limited, but recent intervention studies are encouraging.
Collapse
Affiliation(s)
- Julie S Snowden
- Greater Manchester Neuroscience Centre, Salford Royal NHS Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Lahr J, Minkova L, Tabrizi SJ, Stout JC, Klöppel S, Scheller E. Working Memory-Related Effective Connectivity in Huntington's Disease Patients. Front Neurol 2018; 9:370. [PMID: 29915555 PMCID: PMC5994408 DOI: 10.3389/fneur.2018.00370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/07/2018] [Indexed: 11/30/2022] Open
Abstract
Huntington’s disease (HD) is a genetically caused neurodegenerative disorder characterized by heterogeneous motor, psychiatric, and cognitive symptoms. Although motor symptoms may be the most prominent presentation, cognitive symptoms such as memory deficits and executive dysfunction typically co-occur. We used functional magnetic resonance imaging (fMRI) and task fMRI-based dynamic causal modeling (DCM) to evaluate HD-related changes in the neural network underlying working memory (WM). Sixty-four pre-symptomatic HD mutation carriers (preHD), 20 patients with early manifest HD symptoms (earlyHD), and 83 healthy control subjects performed an n-back fMRI task with two levels of WM load. Effective connectivity was assessed in five predefined regions of interest, comprising bilateral inferior parietal cortex, left anterior cingulate cortex, and bilateral dorsolateral prefrontal cortex. HD mutation carriers performed less accurately and more slowly at high WM load compared with the control group. While between-group comparisons of brain activation did not reveal differential recruitment of the cortical WM network in mutation carriers, comparisons of brain connectivity as identified with DCM revealed a number of group differences across the whole WM network. Most strikingly, we observed decreasing connectivity from several regions toward right dorsolateral prefrontal cortex (rDLPFC) in preHD and even more so in earlyHD. The deterioration in rDLPFC connectivity complements results from previous studies and might mirror beginning cortical neural decline at premanifest and early manifest stages of HD. We were able to characterize effective connectivity in a WM network of HD mutation carriers yielding further insight into patterns of cognitive decline and accompanying neural deterioration.
Collapse
Affiliation(s)
- Jacob Lahr
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Lora Minkova
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Julie C Stout
- School of Psychological Sciences, Institute of Clinical and Cognitive Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Center for Geriatric Medicine and Gerontology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Elisa Scheller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Department of Psychology, Laboratory for Biological and Personality Psychology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
29
|
|
30
|
Roman OC, Stovall J, Claassen DO. Perseveration and Suicide in Huntington's Disease. J Huntingtons Dis 2018; 7:185-187. [PMID: 29614688 DOI: 10.3233/jhd-170249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) patients are at significantly higher risk of suicidal behavior, and associated cognitive and behavioral factors play an important role. Impulsivity is commonly thought to be a risk factor, but does not completely account for all suicide attempts. OBJECTIVE To provide clinical evidence that perseverative behavior may precipitate suicide attempts in HD. METHODS Case review of four HD patients who attempted suicide. RESULTS Each patient demonstrated a clinical history of perseverative behavior, and endorsed perseveration on upsetting thoughts leading up to their suicide attempts. The attempts were planned in response to these ruminations. CONCLUSIONS The patients in this series experienced uncontrollable distressful thoughts prior to their thoughtfully planned suicide attempts. These patients did not appear to act impulsively in their decision to attempt suicide.
Collapse
Affiliation(s)
- Olivia C Roman
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey Stovall
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
31
|
Galvez V, Ramírez-García G, Hernandez-Castillo CR, Bayliss L, Díaz R, Lopez-Titla MM, Campos-Romo A, Fernandez-Ruiz J. Extrastriatal degeneration correlates with deficits in the motor domain subscales of the UHDRS. J Neurol Sci 2018; 385:22-29. [DOI: 10.1016/j.jns.2017.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 06/29/2017] [Accepted: 11/30/2017] [Indexed: 11/26/2022]
|
32
|
Wu D, Faria AV, Younes L, Mori S, Brown T, Johnson H, Paulsen JS, Ross CA, Miller MI, the PREDICT‐HD Investigators and Coordinators of the Huntington Study Group. Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease. Hum Brain Mapp 2017; 38:5035-5050. [PMID: 28657159 PMCID: PMC5766002 DOI: 10.1002/hbm.23713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dan Wu
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Andreia V. Faria
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
- Institute for Computational Medicine, Johns Hopkins UniversityBaltimoreMaryland
- Department of Applied Mathematics and StatisticsJohns Hopkins UniversityBaltimoreMaryland
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimoreMaryland
| | - Timothy Brown
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
| | - Hans Johnson
- Department of Electrical and Computer EngineeringUniversity of IowaIowa CityIowa
| | - Jane S. Paulsen
- Departments of Psychiatry, Neurology, Psychology and NeurosciencesUniversity of IowaIowa CityIowa
| | - Christopher A. Ross
- Division of Neurobiology, Departments of Psychiatry, Neurology, Neuroscience and Pharmacology, and Program in Cellular and Molecular MedicineJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Michael I. Miller
- Center for Imaging Science, Johns Hopkins UniversityBaltimoreMaryland
- Institute for Computational Medicine, Johns Hopkins UniversityBaltimoreMaryland
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMaryland
| | | |
Collapse
|
33
|
Birba A, García-Cordero I, Kozono G, Legaz A, Ibáñez A, Sedeño L, García AM. Losing ground: Frontostriatal atrophy disrupts language embodiment in Parkinson’s and Huntington’s disease. Neurosci Biobehav Rev 2017; 80:673-687. [DOI: 10.1016/j.neubiorev.2017.07.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022]
|
34
|
Domínguez D JF, Poudel G, Stout JC, Gray M, Chua P, Borowsky B, Egan GF, Georgiou-Karistianis N. Longitudinal changes in the fronto-striatal network are associated with executive dysfunction and behavioral dysregulation in Huntington's disease: 30 months IMAGE-HD data. Cortex 2017; 92:139-149. [DOI: 10.1016/j.cortex.2017.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/16/2016] [Accepted: 04/05/2017] [Indexed: 12/17/2022]
|
35
|
Vågberg M, Granåsen G, Svenningsson A. Brain Parenchymal Fraction in Healthy Adults-A Systematic Review of the Literature. PLoS One 2017; 12:e0170018. [PMID: 28095463 PMCID: PMC5240949 DOI: 10.1371/journal.pone.0170018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/26/2016] [Indexed: 01/18/2023] Open
Abstract
Brain atrophy is an important feature of many neurodegenerative disorders. It can be described in terms of change in the brain parenchymal fraction (BPF). In order to interpret the BPF in disease, knowledge on the BPF in healthy individuals is required. The aim of this study was to establish a normal range of values for the BPF of healthy individuals via a systematic review of the literature. The databases PubMed and Scopus were searched and 95 articles, including a total of 9269 individuals, were identified including the required data. We present values of BPF from healthy individuals stratified by age and post-processing method. The mean BPF correlated with mean age and there were significant differences in age-adjusted mean BPF between methods. This study contributes to increased knowledge about BPF in healthy individuals, which may assist in the interpretation of BPF in the setting of disease. We highlight the differences between post-processing methods and the need for a consensus gold standard.
Collapse
Affiliation(s)
- Mattias Vågberg
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Gabriel Granåsen
- Epidemiology and Global Health Unit, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anders Svenningsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Clemensson EKH, Clemensson LE, Riess O, Nguyen HP. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory. PLoS One 2017; 12:e0169051. [PMID: 28045968 PMCID: PMC5207398 DOI: 10.1371/journal.pone.0169051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/11/2016] [Indexed: 12/21/2022] Open
Abstract
The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.
Collapse
Affiliation(s)
- Erik Karl Håkan Clemensson
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Germany
| | - Laura Emily Clemensson
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Germany
- QPS Austria, Grambach, Austria
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Germany
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, Tuebingen, Germany
- Centre for Rare Diseases, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
37
|
Scahill RI, Andre R, Tabrizi SJ, Aylward EH. Structural imaging in premanifest and manifest Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:247-261. [PMID: 28947121 DOI: 10.1016/b978-0-12-801893-4.00020-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huntington disease (HD) neuropathology has a devastating effect on brain structure and consequently brain function; neuroimaging provides a means to assess these effects in gene carriers. In this chapter we first outline the unique utility of structural imaging in understanding HD and discuss some of the acquisition and analysis techniques currently available. We review the existing literature to summarize what we know so far about structural brain changes across the spectrum of disease from premanifest through to manifest disease. We then consider how these neuroimaging findings relate to patient function and nonimaging biomarkers, and can be used to predict disease onset. Finally we review the utility of imaging measures for assessment of treatment efficacy in clinical trials.
Collapse
Affiliation(s)
- Rachael I Scahill
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Ralph Andre
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom.
| | - Elizabeth H Aylward
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
38
|
Coppen EM, van der Grond J, Hafkemeijer A, Rombouts SARB, Roos RAC. Early grey matter changes in structural covariance networks in Huntington's disease. NEUROIMAGE-CLINICAL 2016; 12:806-814. [PMID: 27830113 PMCID: PMC5094265 DOI: 10.1016/j.nicl.2016.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/27/2016] [Accepted: 10/11/2016] [Indexed: 01/18/2023]
Abstract
Background Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. Objectives We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Methods Structural magnetic resonance imaging data of premanifest HD (n = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Results Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p < 0.001, in pre-HD p = 0.003). One other network contained the hippocampus, premotor, sensorimotor, and insular cortices (in HD p < 0.001, in pre-HD p = 0.023). Additionally, in HD patients only, decreased network integrity was observed in a network including the lingual gyrus, intracalcarine, cuneal, and lateral occipital cortices (p = 0.032). Changes in network integrity were significantly associated with scores of motor and neuropsychological assessments. In premanifest HD, voxel-based analyses showed pronounced volume loss in the basal ganglia, but less prominent in cortical regions. Conclusion Our results suggest that structural covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD. Identification of anatomical networks in Huntington's disease (HD). Independent component analysis was used to examine structural covariance networks. HD patients showed changes in subcortical and cortical covariance networks. A network-based approach is sensitive to reveal early grey matter changes.
Collapse
Key Words
- CAG, cytosine-adenine-guanine
- Grey matter
- HD, Huntington's disease
- HTT, Huntingtin
- Huntington's disease
- ICA, Independent Component Analysis
- MMSE, Mini Mental State Examination
- MNI, Montreal Neurological Institute
- SDMT, Symbol Digit Modality Test
- Structural MRI
- Structural covariance networks
- TFC, Total Functional Capacity
- TMS, Total Motor Score
- TMT, Trail-Making Test
- UHDRS, Unified Huntington's Disease Rating Scale
- VBM, Voxel-Based Morphometry
- Voxel-based morphometry
Collapse
Affiliation(s)
- Emma M Coppen
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Anne Hafkemeijer
- Department of Radiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Department of Methodology and Statistics, Institute of Psychology, Leiden University, PO Box 9555, 2300 RB Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Department of Methodology and Statistics, Institute of Psychology, Leiden University, PO Box 9555, 2300 RB Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden University, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
39
|
Teixeira AL, de Souza LC, Rocha NP, Furr-Stimming E, Lauterbach EC. Revisiting the neuropsychiatry of Huntington's disease. Dement Neuropsychol 2016; 10:261-266. [PMID: 29213467 PMCID: PMC5619263 DOI: 10.1590/s1980-5764-2016dn1004002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/20/2016] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease classified under the choreas. Besides motor symptoms, HD is marked by cognitive and behavioral symptoms, impacting patients' functional capacity. The progression of cognitive impairment and neuropsychiatric symptoms occur in parallel with neurodegeneration. The nature of these symptoms is very dynamic, and the major clinical challenges include executive dysfunction, apathy, depression and irritability. Herein, we provide a focused updated review on the cognitive and psychiatric features of HD.
Collapse
Affiliation(s)
- Antonio Lucio Teixeira
- Laboratorio Interdisciplinar de
Investigação Médica, Faculdade de Medicina, Universidade
Federal de Minas Gerais, Belo Horizonte MG, Brazil
- Neuropsychiatry Program, Department of Psychiatry and
Behavioral Sciences, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, TX
| | - Leonardo Cruz de Souza
- Laboratorio Interdisciplinar de
Investigação Médica, Faculdade de Medicina, Universidade
Federal de Minas Gerais, Belo Horizonte MG, Brazil
| | - Natalia Pessoa Rocha
- Laboratorio Interdisciplinar de
Investigação Médica, Faculdade de Medicina, Universidade
Federal de Minas Gerais, Belo Horizonte MG, Brazil
- Neuropsychiatry Program, Department of Psychiatry and
Behavioral Sciences, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, TX
| | - Erin Furr-Stimming
- Department of Neurology, McGovern Medical School,
University of Texas Health Science Center at Houston, Houston, TX
| | - Edward C. Lauterbach
- Department of Psychiatry and Behavioral Sciences, Mercer
University School of Medicine, Macon, GA
| |
Collapse
|
40
|
A review on brain structures segmentation in magnetic resonance imaging. Artif Intell Med 2016; 73:45-69. [DOI: 10.1016/j.artmed.2016.09.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/27/2016] [Accepted: 09/05/2016] [Indexed: 11/18/2022]
|
41
|
Wilson H, Niccolini F, Haider S, Marques TR, Pagano G, Coello C, Natesan S, Kapur S, Rabiner EA, Gunn RN, Tabrizi SJ, Politis M. Loss of extra-striatal phosphodiesterase 10A expression in early premanifest Huntington's disease gene carriers. J Neurol Sci 2016; 368:243-8. [PMID: 27538642 DOI: 10.1016/j.jns.2016.07.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
Abstract
Huntington's disease (HD) is a monogenic neurodegenerative disorder with an underlying pathology involving the toxic effect of mutant huntingtin protein primarily in striatal and cortical neurons. Phosphodiesterase 10A (PDE10A) regulates intracellular signalling cascades, thus having a key role in promoting neuronal survival. Using positron emission tomography (PET) with [(11)C]IMA107, we investigated the in vivo extra-striatal expression of PDE10A in 12 early premanifest HD gene carriers. Image processing and kinetic modelling was performed using MIAKAT™. Parametric images of [(11)C]IMA107 non-displaceable binding potential (BPND) were generated from the dynamic [(11)C]IMA107 scans using the simplified reference tissue model with the cerebellum as the reference tissue for nonspecific binding. We set a threshold criterion for meaningful quantification of [(11)C]IMA107 BPND at 0.30 in healthy control data; regions meeting this criterion were designated as regions of interest (ROIs). MRI-based volumetric analysis showed no atrophy in ROIs. We found significant differences in mean ROIs [(11)C]IMA107 BPND between HD gene carriers and healthy controls. HD gene carriers had significant loss of PDE10A within the insular cortex and occipital fusiform gyrus compared to healthy controls. Insula and occipital fusiform gyrus are important brain areas for the regulation of cognitive and limbic function that is impaired in HD. Our findings suggest that dysregulation of PDE10A-mediated intracellular signalling could be an early phenomenon in the course of HD with relevance also for extra-striatal brain areas.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Salman Haider
- Huntington's Disease Research Group, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christopher Coello
- Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK
| | - Sridhar Natesan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Shitij Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eugenii A Rabiner
- Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Roger N Gunn
- Imanova Ltd., Centre for Imaging Sciences, Hammersmith Hospital, London, UK; Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Research Group, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
42
|
Schroll H, Hamker FH. Basal Ganglia dysfunctions in movement disorders: What can be learned from computational simulations. Mov Disord 2016; 31:1591-1601. [PMID: 27393040 DOI: 10.1002/mds.26719] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
The basal ganglia are a complex neuronal system that is impaired in several movement disorders, including Parkinson's disease, Huntington's disease, and dystonia. Empirical studies have provided valuable insights into the brain dysfunctions underlying these disorders. The systems-level perspective, however, of how patients' motor, cognitive, and emotional impairments originate from known brain dysfunctions has been a challenge to empirical investigations. These causal relations have been analyzed via computational modeling, a method that describes the simulation of interacting brain processes in a computer system. In this article, we review computational insights into the brain dysfunctions underlying Parkinson's disease, Huntington's disease, and dystonia, with particular foci on dysfunctions of the dopamine system, basal ganglia pathways, and neuronal oscillations. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Henning Schroll
- Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Fred H Hamker
- Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
43
|
Liu W, Yang J, Chen K, Luo C, Burgunder J, Gong Q, Shang H. Resting-state fMRI reveals potential neural correlates of impaired cognition in Huntington's disease. Parkinsonism Relat Disord 2016; 27:41-6. [PMID: 27117563 DOI: 10.1016/j.parkreldis.2016.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Huntington's Disease (HD) is characterized by motor, cognitive and psychiatric dysfunction. Functional MRI (fMRI) provides new insight into the pathologic mechanism underlying the cognitive symptoms. Previous fMRI studies of HD focused on functional synchronization of various brain areas by measuring functional connectivity, a method that is unable to identify regional intrinsic neural activity changes in the brain. To fill in this gap, we utilized amplitude of low frequency fluctuations (ALFF). OBJECTIVE To investigate alterations in regional brain activity and their association with clinical characteristics in the early stages of HD. METHODS Ten early stage HD patients and 20 age- and sex-matched healthy controls were scanned to obtain imaging data. HD patients were assessed with the Unified Huntington's Disease Rating Scale, Mini-Mental State Exam (MMSE), Stroop test, Symbol Digit Modalities Test (SDMT), Verbal Fluency Test and Beck Depression Index. RESULTS Gray matter volume (GMV) reduction was detected in bilateral striatum and left calcarine cortex in the HD group. After correcting for GMV, HD patients demonstrated significantly decreased ALFF in the right precuneus and angular gyrus, and increased ALFF in bilateral inferior temporal gyrus (ITG) and left superior frontal gyrus. Increased mean values of ALFF in the left ITG were correlated with worse performance in SDMT, and decreased mean values of ALFF in the precuneus were correlated with worse performance in the Stroop test and SDMT. CONCLUSIONS Our results suggest that intrinsic brain activity alterations in the precuneus and cortico-striatal circuit may be the mechanism underlying impaired cognition in early HD.
Collapse
Affiliation(s)
- Wanglin Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - ChunYan Luo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - QiYong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
44
|
Faria AV, Ratnanather JT, Tward DJ, Lee DS, van den Noort F, Wu D, Brown T, Johnson H, Paulsen JS, Ross CA, Younes L, Miller MI. Linking white matter and deep gray matter alterations in premanifest Huntington disease. Neuroimage Clin 2016; 11:450-460. [PMID: 27104139 PMCID: PMC4827723 DOI: 10.1016/j.nicl.2016.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 01/07/2023]
Abstract
Huntington disease (HD) is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i) regions of interest surrounding these structures, using (ii) tractography-based analysis, and using (iii) whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores), and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be targeted to delay the onset or slow the disease progression.
Collapse
Affiliation(s)
- Andreia V Faria
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - J Tilak Ratnanather
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Daniel J Tward
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - David Soobin Lee
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Frieda van den Noort
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Dan Wu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy Brown
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA
| | - Hans Johnson
- Department of Psychiatry, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jane S Paulsen
- Department of Psychiatry, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, and Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| | - Laurent Younes
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, The Johns Hopkins University, Baltimore, MD, USA
| | - Michael I Miller
- Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
45
|
Müller HP, Gorges M, Grön G, Kassubek J, Landwehrmeyer GB, Süßmuth SD, Wolf RC, Orth M. Motor network structure and function are associated with motor performance in Huntington's disease. J Neurol 2016; 263:539-49. [PMID: 26762394 DOI: 10.1007/s00415-015-8014-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/25/2015] [Accepted: 12/27/2015] [Indexed: 12/11/2022]
Abstract
In Huntington's disease, the relationship of brain structure, brain function and clinical measures remains incompletely understood. We asked how sensory-motor network brain structure and neural activity relate to each other and to motor performance. Thirty-four early stage HD and 32 age- and sex-matched healthy control participants underwent structural magnetic resonance imaging (MRI), diffusion tensor, and intrinsic functional connectivity MRI. Diffusivity patterns were assessed in the cortico-spinal tract and the thalamus-somatosensory cortex tract. For the motor network connectivity analyses the dominant M1 motor cortex region and for the basal ganglia-thalamic network the thalamus were used as seeds. Region to region structural and functional connectivity was examined between thalamus and somatosensory cortex. Fractional anisotropy (FA) was higher in HD than controls in the basal ganglia, and lower in the external and internal capsule, in the thalamus, and in subcortical white matter. Between-group axial and radial diffusivity differences were more prominent than differences in FA, and correlated with motor performance. Within the motor network, the insula was less connected in HD than in controls, with the degree of connection correlating with motor scores. The basal ganglia-thalamic network's connectivity differed in the insula and basal ganglia. Tract specific white matter diffusivity and functional connectivity were not correlated. In HD sensory-motor white matter organization and functional connectivity in a motor network were independently associated with motor performance. The lack of tract-specific association of structure and function suggests that functional adaptation to structural loss differs between participants.
Collapse
Affiliation(s)
- Hans-Peter Müller
- Department of Neurology, University of Ulm, Oberer Eselsberg 45/1, 89081, Ulm, Germany
| | - Martin Gorges
- Department of Neurology, University of Ulm, Oberer Eselsberg 45/1, 89081, Ulm, Germany
| | - Georg Grön
- Section Neuropsychology and Functional Imaging, Department of Psychiatry, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45/1, 89081, Ulm, Germany
| | | | - Sigurd D Süßmuth
- Department of Neurology, University of Ulm, Oberer Eselsberg 45/1, 89081, Ulm, Germany
| | - Robert Christian Wolf
- Department of Psychiatry, Psychotherapy and Psychosomatics, Saarland University, Homburg, Germany
| | - Michael Orth
- Department of Neurology, University of Ulm, Oberer Eselsberg 45/1, 89081, Ulm, Germany.
| |
Collapse
|
46
|
Arango-Lasprilla J, Rivera D, Longoni M, Saracho C, Garza M, Aliaga A, Rodríguez W, Rodríguez-Agudelo Y, Rábago B, Sutter M, Schebela S, Luna M, Ocampo-Barba N, Galarza-del-Angel J, Bringas M, Esenarro L, Martínez C, García-Egan P, Perrin P. Modified Wisconsin Card Sorting Test (M-WCST): Normative data for the Latin American Spanish speaking adult population. NeuroRehabilitation 2015; 37:563-90. [DOI: 10.3233/nre-151280] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- J.C. Arango-Lasprilla
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - D. Rivera
- Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - M. Longoni
- Clínica de rehabilitación Las Araucarias, Buenos Aires, Argentina
| | | | - M.T. Garza
- Facultad de Psicología Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - A. Aliaga
- Servicio Médico Legal, Ministerio de Justicia, Santiago, Chile
| | - W. Rodríguez
- Ponce Health Sciences University, Ponce, Puerto Rico
| | | | - B. Rábago
- Instituto Vocacional Enrique Díaz de León, Guadalajara, Mexico
| | - M. Sutter
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - S. Schebela
- Instituto de Prevención Social, Asuncion, Paraguay
| | - M. Luna
- Universidad Dr. José Matías Delgado, San Salvador, El Salvador
| | | | | | - M.L. Bringas
- International center for neurological Restoration CIREN, Havana, Cuba
| | - L. Esenarro
- Instituto de Neuropsicología y Demencias, Lima, Peru
| | - C. Martínez
- Departamento de Medicina de Rehabilitación, Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - P. García-Egan
- Departamento de Psicología, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - P.B. Perrin
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
47
|
Genes of the dopaminergic system selectively modulate top-down but not bottom-up attention. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 15:104-16. [PMID: 25253063 DOI: 10.3758/s13415-014-0320-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cognitive performance is modulated by the neurotransmitter dopamine (DA). Recently, it has been proposed that DA has a strong impact on top-down but not on bottom-up selective visual attention. We tested this assumption by analyzing the influence of two gene variants of the dopaminergic system. Both the catechol O-methyltransferase (COMT) protein and the dopamine transporter (DAT) protein are crucial for the degradation and inactivation of DA. These metabolizing proteins modulate the availability of DA, especially in the prefrontal cortex and basal ganglia. The functional COMT Val158Met polymorphism of the COMT gene represents two coding variants, valine and methionine. In Met allele carriers, the COMT activity is reduced three- to fourfold. A variable number of tandem repeats (VNTR) polymorphism exists in the DAT1 gene, which encodes DAT. The DAT density was reported to be about 50% higher for the DAT1 10-repeat than the DAT1 9-repeat allele. We assessed attention via two experimental tasks that predominantly measure either top-down processing (the Stroop task) or bottom-up processing (the Posner-Cuing task). Carriers of the Met allele of the COMT Val158Met polymorphism displayed better performance in the Stroop task, but did not outperform the other participants in the Posner-Cuing task. The same result was noted for carriers of the DAT1 10-repeat allele. From these findings, we suggest that normal variations of the dopaminergic system impact more strongly on top-down than on bottom-up attention.
Collapse
|
48
|
Schroll H, Beste C, Hamker FH. Combined lesions of direct and indirect basal ganglia pathways but not changes in dopamine levels explain learning deficits in patients with Huntington's disease. Eur J Neurosci 2015; 41:1227-44. [DOI: 10.1111/ejn.12868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/17/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Henning Schroll
- Neurology; Charité - Universitätsmedizin Berlin; Berlin Germany
- Bernstein Center for Computational Neuroscience; Charité - Universitätsmedizin Berlin; Berlin Germany
- Psychology; Humboldt Universität zu Berlin; Berlin Germany
- Computer Science; Chemnitz University of Technology; Straße der Nationen 62 09111 Chemnitz Germany
| | - Christian Beste
- Cognitive Neurophysiology; Department of Child and Adolescent Psychiatry; Faculty of Medicine of the TU Dresden; Dresden Germany
| | - Fred H. Hamker
- Bernstein Center for Computational Neuroscience; Charité - Universitätsmedizin Berlin; Berlin Germany
- Computer Science; Chemnitz University of Technology; Straße der Nationen 62 09111 Chemnitz Germany
| |
Collapse
|
49
|
Assessing impairment of executive function and psychomotor speed in premanifest and manifest Huntington's disease gene-expansion carriers. J Int Neuropsychol Soc 2015; 21:193-202. [PMID: 25850430 DOI: 10.1017/s1355617715000090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Executive functions (EF) and psychomotor speed (PMS) has been widely studied in Huntington's disease (HD). Most studies have focused on finding markers of disease progression by comparing group means at different disease stages. Our aim was to investigate performances on nine measures of EF and PMS in a group of premanifest and manifest HD-gene expansion carriers and to investigate which measures were most sensitive for assessment of individual patients by analyzing frequencies of impaired performances relative to healthy controls. We recruited HD gene-expansion carriers, 48 manifest and 50 premanifest and as controls 39 healthy gene-expansion negative individuals. All participants underwent neurological examination and neuropsychological testing with nine cognitive measures. The frequency of impairment was investigated using cutoff scores. In group comparisons the manifest HD gene-expansion carriers scored significantly worse than controls on all tests and in classification of individual scores the majority of scores were classified as probably impaired (10th percentile) or impaired (5th percentile) with Symbol Digit Modalities Test (SDMT) being the most frequently impaired. Group comparisons of premanifest HD gene-expansion carriers and healthy controls showed significant differences on SDMT and Alternating fluency tests. Nevertheless the frequencies of probably impaired and impaired scores on individual tests were markedly higher for Alternating and Lexical fluency tests than for SDMT. We found distinct group differences in frequency of impairment on measures of EF and PMS in manifest and premanifest HD gene-expansion carriers. Our results indicate to what degree these measures can be expected to be clinically impaired.
Collapse
|
50
|
Cruickshank TM, Thompson JA, Domínguez D JF, Reyes AP, Bynevelt M, Georgiou-Karistianis N, Barker RA, Ziman MR. The effect of multidisciplinary rehabilitation on brain structure and cognition in Huntington's disease: an exploratory study. Brain Behav 2015; 5:e00312. [PMID: 25642394 PMCID: PMC4309878 DOI: 10.1002/brb3.312] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND There is a wealth of evidence detailing gray matter degeneration and loss of cognitive function over time in individuals with Huntington's disease (HD). Efforts to attenuate disease-related brain and cognitive changes have been unsuccessful to date. Multidisciplinary rehabilitation, comprising motor and cognitive intervention, has been shown to positively impact on functional capacity, depression, quality of life and some aspects of cognition in individuals with HD. This exploratory study aimed to evaluate, for the first time, whether multidisciplinary rehabilitation can slow further deterioration of disease-related brain changes and related cognitive deficits in individuals with manifest HD. METHODS Fifteen participants who manifest HD undertook a multidisciplinary rehabilitation intervention spanning 9 months. The intervention consisted of once-weekly supervised clinical exercise, thrice-weekly self-directed home based exercise and fortnightly occupational therapy. Participants were assessed using MR imaging and validated cognitive measures at baseline and after 9 months. RESULTS Participants displayed significantly increased gray matter volume in the right caudate and bilaterally in the dorsolateral prefrontal cortex after 9 months of multidisciplinary rehabilitation. Volumetric increases in gray matter were accompanied by significant improvements in verbal learning and memory (Hopkins Verbal Learning-Test). A significant association was found between gray matter volume increases in the dorsolateral prefrontal cortex and performance on verbal learning and memory. CONCLUSIONS This study provides preliminary evidence that multidisciplinary rehabilitation positively impacts on gray matter changes and cognitive functions relating to verbal learning and memory in individuals with manifest HD. Larger controlled trials are required to confirm these preliminary findings.
Collapse
Affiliation(s)
- Travis M Cruickshank
- School of Medical Sciences, Edith Cowan UniversityPerth, Western Australia, Australia
| | - Jennifer A Thompson
- School of Medical Sciences, Edith Cowan UniversityPerth, Western Australia, Australia
| | - Juan F Domínguez D
- School of Psychological Sciences, Monash UniversityMelbourne, Victoria, Australia
| | - Alvaro P Reyes
- School of Medical Sciences, Edith Cowan UniversityPerth, Western Australia, Australia
| | - Mike Bynevelt
- Department of Surgery, UWA and Neurological Intervention and Imaging Service of Western AustraliaPerth, Western Australia, Australia
| | | | | | - Mel R Ziman
- School of Medical Sciences, Edith Cowan UniversityPerth, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western AustraliaPerth, Western Australia, Australia
| |
Collapse
|