1
|
Sadeghzadeh J, Hosseini L, Mobed A, Zangbar HS, Jafarzadeh J, Pasban J, Shahabi P. The Impact of Cerebral Ischemia on Antioxidant Enzymes Activity and Neuronal Damage in the Hippocampus. Cell Mol Neurobiol 2023; 43:3915-3928. [PMID: 37740074 PMCID: PMC11407731 DOI: 10.1007/s10571-023-01413-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Cerebral ischemia and subsequent reperfusion, leading to reduced blood supply to specific brain areas, remain significant contributors to neurological damage, disability, and mortality. Among the vulnerable regions, the subcortical areas, including the hippocampus, are particularly susceptible to ischemia-induced injuries, with the extent of damage influenced by the different stages of ischemia. Neural tissue undergoes various changes and damage due to intricate biochemical reactions involving free radicals, oxidative stress, inflammatory responses, and glutamate toxicity. The consequences of these processes can result in irreversible harm. Notably, free radicals play a pivotal role in the neuropathological mechanisms following ischemia, contributing to oxidative stress. Therefore, the function of antioxidant enzymes after ischemia becomes crucial in preventing hippocampal damage caused by oxidative stress. This study explores hippocampal neuronal damage and enzymatic antioxidant activity during ischemia and reperfusion's early and late stages.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ahmad Mobed
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jaber Jafarzadeh
- Department of Community Nutrition Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jamshid Pasban
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
2
|
Danková M, Domoráková I, Fagová Z, Stebnický M, Kunová A, Mechírová E. Bradykinin and noradrenaline preconditioning influences level of antioxidant enzymes SOD, CuZn-SOD, Mn-SOD and catalase in the white matter of spinal cord in rabbits after ischemia/reperfusion. Eur J Histochem 2019; 63. [PMID: 31631645 PMCID: PMC6802454 DOI: 10.4081/ejh.2019.3045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/28/2019] [Indexed: 11/23/2022] Open
Abstract
The aim of present work is to assess the effects of bradykinin (Br) or noradrenaline (Nor) preconditioning to the levels of antioxidant enzymes: superoxide dismutase (SOD), copper, zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD) and catalase in ischemia/reperfusion (I/R) model in the rabbit spinal cord white matter as well as effect on glial fibrillary acidic protein (GFAP) and ubiquitin immunoreaction in glial cells. Rabbits were preconditioned by intraperitoneal single dose of Br or Nor 48 h prior to 20 min of ischemia followed by 24 or 48 h of reperfusion. White matter of L3-L6 spinal cord segments was used for comparison of antioxidant enzyme levels in sham control, ischemic groups and four preconditioned groups. The total SOD level in the Br or Nor preconditioned groups after 48 h of reperfusion was increased vs Br or Nor preconditioned groups after 24 h of reperfusion. The comparison among the ischemic group vs Br preconditioned (P<0.05), and Nor preconditioned (P<0.001) groups after 48 h of reperfusion, showed statistically significant decrease of Mn-SOD activity. Tissue catalase level activity was significantly decreased in the Br preconditioned group after 48 h of reperfusion (P<0.05) and Nor preconditioned groups after 24 h of reperfusion (P<0.001) and also after 48 h of reperfusion (P<0.001), in comparison to ischemic group after 48 h of reperfusion. Significantly decreased tissue catalase activity (P<0.05) in both Nor preconditioned groups after 24 or 48 h of reperfusion was measured vs Br preconditioned group after 48 h of reperfusion. According to our results, in the white matter, activation of stress proteins in glial cells, as well as antioxidant enzymes levels, were influenced by pharmacological preconditioning followed by 20 min of ischemia and 24 or 48 h of reperfusion. These changes contribute to ischemic tolerance acquisition and tissue protection from oxidative stress during reperfusion period.
Collapse
Affiliation(s)
- Marianna Danková
- Department of Histology and Embryology, Pavol Jozef Šafárik University, Košice.
| | | | | | | | | | | |
Collapse
|
3
|
Song X, Zhu W, An R, Li Y, Du Z. Protective effect of Daming capsule against chronic cerebral ischemia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:149. [PMID: 25966684 PMCID: PMC4456789 DOI: 10.1186/s12906-015-0668-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Background Accumulating evidence has shown that chronic cerebral ischemia (CCI) is one of the major causes of vascular dementia (VD) characterized by dysregulated cholesterol homeostasis and lipoprotein disturbances. Positive value of lipid-lowering agents has been widely evaluated for the treatment of VD. In the present study, we investigated whether Daming capsule (DMC) protected against CCI-induced VD and its possible mechanisms of action. DMC is a multi-herbal formula composed of Rheum palmatum L., Cassia obtusifolia L., Salvia miltiorrhiza, and Panax ginseng C.A., which has been used to treat hyperlipidemia for years in China. Methods A network pharmacology method was established to reveal whether DMC contained any chemical constituent targeting CCI-related proteins. Furthermore, the potential anti-CCI effects of DMC (100 mg/kg or 200 mg/kg) administered for 30 days were investigated in vivo on rats that were subjected to permanent bilateral occlusion of the carotid arteries (2-VO). Spatial learning and memory abilities were evaluated using a Morris water maze (MWM) and morphological changes of cerebral cortex and hippocampus were assessed using hematoxylin and eosin staining. Moreover, the lipid peroxidation levels and antioxidative capabilities were measured using biochemical analysis. Results Our network pharmacology analysis revealed the existence of multiple CCI-related chemical-target interactions in DMC, suggesting a potential protective effect. An in vivo experiment verified that 200 mg/kg DMC improved cognitive deficits of 2-VO rats in the MWM test and attenuated pathological alterations in both the cerebral cortex and the hippocampus. Biochemical assays indicated that DMC decreased malondialdehyde levels and CCI-elevated superoxide dismutase activities, but increased the activities of glutathione peroxidase and catalase. Conclusions Our findings suggested that DMC protected against cognitive dysfunction and nerve injuries caused by CCI, which is most likely related to its antioxidant actions.
Collapse
|
4
|
Lehotsky J, Petras M, Kovalska M, Tothova B, Drgova A, Kaplan P. Mechanisms involved in the ischemic tolerance in brain: effect of the homocysteine. Cell Mol Neurobiol 2015; 35:7-15. [PMID: 25194713 PMCID: PMC11488051 DOI: 10.1007/s10571-014-0112-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/02/2014] [Indexed: 02/02/2023]
Abstract
Hyperhomocysteinemia (hHCy) is recognized as a co-morbid risk factor of human stroke. It also aggravates the ischemia-induced injury by increased production of reactive oxygen species, and by the homocysteinylation and thiolation of functional proteins. Ischemic preconditioning represents adaptation of the CNS to sub-lethal ischemia, resulting in increased brain tolerance to subsequent ischemia. We present here an overview of recent data on the homocysteine (Hcy) metabolism and on the genetic and metabolic causes of hHCy-related neuropathologies in humans. In this context, the review documents for an increased oxidative stress and for the functional modifications of enzymes involved in the redox balance in experimentally induced hHCy. Hcy metabolism leads also to the redox imbalance and increased oxidative stress resulting in elevated lipoperoxidation and protein oxidation, the products known to be included in the neuronal degeneration. Additionally, we examine the effect of the experimental hHCy in combination with ischemic insult, and/or with the preischemic challenge on the extent of neuronal degeneration as well as the intracellular signaling and the regulation of DNA methylation. The review also highlights that identification of the effects of co-morbid factors in the mechanisms of ischemic tolerance mechanisms would lead to improved therapeutics, especially the brain tissue.
Collapse
Affiliation(s)
- Jan Lehotsky
- Jessenius Faculty of Medicine, Institute of Medical Biochemistry, Comenius University, Mala Hora 4, 036 01, Martin, Slovakia,
| | | | | | | | | | | |
Collapse
|
5
|
Park S, Kang S, Kim DS, Shin BK, Moon NR, Daily JW. Ebselen pretreatment attenuates ischemia/reperfusion injury and prevents hyperglycemia by improving hepatic insulin signaling and β-cell survival in gerbils. Free Radic Res 2014; 48:864-74. [PMID: 24807533 DOI: 10.3109/10715762.2014.917410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transient carotid artery occlusion causes ischemia/reperfusion (I/R) injury resulting in neuron and pancreatic β-cell death with consequential post-stroke hyperglycemia, which can lead to diabetes and may accelerate the development of Alzheimer's disease. Antioxidants have been shown to protect against the I/R injury and destruction of neurons. However, it is unknown whether the protection against I/R injury extends to the pancreatic β-cells. Therefore, we investigated whether treatment with ebselen, a glutathione peroxidase mimic, prevents neuronal and β-cell death following I/R in gerbils susceptible to stroke. After 28 days post artery occlusion, there was widespread neuronal cell death in the CA1 of the hippocampus and elevated IL-1β and TNF-α levels. Pretreatment with ebselen prevented the death by 56% and attenuated neurological damage (abnormal eyelid drooping, hair bristling, muscle tone, flexor reflex, posture, and walking patterns). Ischemic gerbils also exhibited impaired glucose tolerance and insulin sensitivity which induced post-stroke hyperglycemia associated with decreased β-cell mass due to increased β-cell apoptosis. Ebselen prevented the increased β-cell apoptosis, possibly by decreasing IL-1β and TNF-α in islets. Ischemia also attenuated hepatic insulin signaling, and expression of GLUT2 and glucokinase, whereas ebselen prevented the attenuation and suppressed gluconeogenesis by decreasing PEPCK expression. In conclusion, antioxidant protection by ebselen attenuated I/R injury of neurons and pancreatic β-cells and prevented subsequent impairment of glucose regulation that could lead to diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- S Park
- Department of Food and Nutrition, College of Natural Science, Obesity/Diabetes Research Institutes, Hoseo University , Asan-Si , Republic of Korea
| | | | | | | | | | | |
Collapse
|
6
|
Bradykinin preconditioning affects the number of degenerated neurons and the level of antioxidant enzymes in spinal cord ischemia in rabbits. Acta Histochem 2014; 116:252-7. [PMID: 23981244 DOI: 10.1016/j.acthis.2013.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
Bradykinin preconditioning has been used for acquisition of tolerance after spinal cord ischemia. Rabbits were preconditioned intraperitoneally with bradykinin 48 h prior to 20 min of abdominal aorta ligation followed by 24 and 48 h of reperfusion. The activities of SOD and catalase were measured and Fluoro Jade B (FJB)-positive degenerated neurons were evaluated. The outcomes of Tarlov scoring system used to assess neurological functions showed significant improvement in bradykinin groups compared to the ischemic group. The number of FJB-positive degenerated neurons was decreased in ventral horns of both bradykinin groups. Significantly decreased activities of total SOD and mitochondrial Mn-SOD were also detected in both bradykinin groups versus ischemic group while CuZn-SOD and catalase activities were significantly decreased only in the bradykinin group after 24h of reperfusion versus ischemic group. These findings suggest that one of the possibilities of the neuroprotective effect of delayed bradykinin preconditioning against spinal cord ischemic injury could be realized by mitochondrial protection and decreased synthesis of Mn-SOD as well as by promotion of neuronal survival.
Collapse
|
7
|
Nam HGW, Kim W, Yoo DY, Choi JH, Won MH, Hwang IK, Jeong JH, Hwang HS, Moon SM. Chronological changes and effects of AMP-activated kinase in the hippocampal CA1 region after transient forebrain ischemia in gerbils. Neurol Res 2013; 35:395-405. [DOI: 10.1179/1743132813y.0000000158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Han Ga Wi Nam
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| | - Woosuk Kim
- Department of Anatomy and Cell BiologyCollege of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea,
| | - Dae Young Yoo
- Department of Anatomy and Cell BiologyCollege of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea,
| | - Jung Hoon Choi
- Department of AnatomyCollege of Veterinary Medicine, Kangwon National University, Chuncheon, South Korea,
| | - Moo-Ho Won
- Department of NeurobiologySchool of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell BiologyCollege of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea,
| | - Je Hoon Jeong
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| | - Hyung Sik Hwang
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| | - Seung-Myung Moon
- Department of NeurosurgeryHangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, South Korea,
| |
Collapse
|
8
|
Lee TH, Park JH, Kim JD, Lee JC, Kim IH, Yim Y, Lee SK, Yan BC, Ahn JH, Lee CH, Yoo KY, Choi JH, Hwang IK, Park JH, Won MH. Protective effects of a novel synthetic α-lipoic acid-decursinol hybrid compound in experimentally induced transient cerebral ischemia. Cell Mol Neurobiol 2012; 32:1209-21. [PMID: 22814803 PMCID: PMC11498609 DOI: 10.1007/s10571-012-9861-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 07/02/2012] [Indexed: 11/29/2022]
Abstract
Alpha-lipoic acid (ALA), a natural antioxidant, is widely used for the treatment of some diseases including diabetes, and decursinol (DA), a constituent of root of Angelica gigas Nakai, has some pharmacological activities including anti-inflammatory function. In this study, we synthesized a novel synthetic alpha-lipoic acid-decursinol (ALA-DA) hybrid compound, and compared neuroprotective effects of ALA, DA or ALA-DA against ischemic damage in the gerbil hippocampal CA1 region induced by 5 min of transient cerebral ischemia. In the 10 and 20 mg/kg ALA-, DA- and 10 mg/kg ALA-DA-pre-treated-ischemia-groups, there were no neuroprotective effects against ischemic damage 4 days after ischemic injury. However, 20 mg/kg ALA-DA pre-treatment protected pyramidal neurons from ischemic damage in the CA1 region. In addition, 20 mg/kg ALA-DA pre-treatment markedly decreased the activation of astrocytes and microglia in the CA1 region 4 days after ischemic injury. On the other hand, post-treatment with the same dosages of them did not show any neuroprotective effect against ischemic damage. In brief, these findings indicate that pre-treatment with ALA-DA, not ALA or DA alone, can protect neurons from ischemic damage in the hippocampus induced by transient cerebral ischemia via the decrease of glial activation.
Collapse
Affiliation(s)
- Tae Hun Lee
- Department of Emergency Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Yongbae Yim
- Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon, 305-719 South korea
| | - Seul Ki Lee
- Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon, 305-719 South korea
| | - Bing Chun Yan
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Ji Hyeon Ahn
- Laboratory of Neuroscience, Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Gyeongsan, 712-714 South Korea
| | - Choong Hyun Lee
- Department of Anatomy and Physiology, College of Pharmacy, Dankook University, Cheonan, 330-714 South Korea
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry and Research Institute of Oral Biology, Gangneung-Wonju National University, Gangneung, 210-702 South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Jeong Ho Park
- Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon, 305-719 South korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|
9
|
Neuroprotective effect of fucoidin on lipopolysaccharide accelerated cerebral ischemic injury through inhibition of cytokine expression and neutrophil infiltration. J Neurol Sci 2012; 318:25-30. [PMID: 22560605 DOI: 10.1016/j.jns.2012.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 03/25/2012] [Accepted: 04/11/2012] [Indexed: 11/22/2022]
Abstract
In our previous study, we reported that lipopolysaccharide (LPS) activated microglia and accelerated cerebral ischemic injury in the rat brain through the overexpression of cytokines in microglia. In the present study, we investigated the effect of the intraperitoneal administration of fucoidin, a potent inhibitor of leukocyte rolling and anti-inflammatory agent, against accelerated cerebral ischemic injury by LPS pretreatment using rats. We found that fucoidin treatment inhibited the expressions of some brain cytokine or chemokine mRNA such as IL-8, TNF-α and iNOS in the brain of the rats treated only with LPS. We also observed that fucoidin treatment dramatically decreased the infarct size in accelerated cerebral ischemic injury induced by LPS treatment at an early time after ischemic injury. In addition, the immunoreactivity of myleoperoxidase (MPO), a marker for quantifying neutrophil accumulation, was distinctively decreased in the ischemic brain of the fucoidin-treated rat. In brief, our results indicate that fucoidin showed a neuroprotective effect on LPS accelerated cerebral ischemic injury through inhibiting the expression of some cytokine/chemokine and neutrophil recruitments.
Collapse
|
10
|
Cordycepin protects against cerebral ischemia/reperfusion injury in vivo and in vitro. Eur J Pharmacol 2011; 664:20-8. [PMID: 21554870 DOI: 10.1016/j.ejphar.2011.04.052] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 04/12/2011] [Accepted: 04/18/2011] [Indexed: 12/23/2022]
Abstract
Cordycepin, (3'-deoxyadenosine), a bioactive compound of Cordyceps militaris, has been shown to exhibit many pharmacological actions, such as anti-inflammatory, antioxidative and anticancer activities. Little is known about the neuroprotective action of cordycepin as well as its molecular mechanisms. In this study, cordycepin was investigated for its neuroprotective potential in mice with ischemia following 15 min of the bilateral common carotid artery occlusion and 4h of reperfusion. The effect of cordycepin was also studied in mice brain slices treated with oxygen-glucose deprivation (OGD) injury. Our results showed that cordycepin was able to prevent postischemic neuronal degeneration and brain slice injury. Excitatory amino acids such as glutamate and aspartate in brain homogenized supernatant, which were increased in ischemia/reperfusion group, were detected by high performance liquid chromatography (HPLC). The results showed that cordycepin was able to decrease the extracellular level of glutamate and aspartate significantly. Moreover, cordycepin was able to increase the activity of superoxide dismutase (SOD) and decrease the level of malondialdehyde (MDA), ameliorating the extent of oxidation. Furthermore, matrix metalloproteinase-3(MMP-3), a key enzyme involved in inflammatory reactions, was markedly increased after ischemia reperfusion, whereas cordycepin was able to inhibit its expression obviously. In conclusion, our in vivo and in vitro study showed that cordycepin was able to exert a potent neuroprotective function after cerebral ischemia/reperfusion.
Collapse
|
11
|
Wang W, Xu J, Li L, Wang P, Ji X, Ai H, Zhang L, Li L. Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res Bull 2010; 83:196-201. [DOI: 10.1016/j.brainresbull.2010.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 01/14/2023]
|
12
|
ArunaDevi R, Lata S, Bhadoria BK, Ramteke VD, Kumar S, Sankar P, Kumar D, Tandan SK. Neuroprotective effect of 5,7,3′,4′,5′-pentahydroxy dihdroflavanol-3-O-(2″-O-galloyl)-β-d-glucopyranoside, a polyphenolic compound in focal cerebral ischemia in rat. Eur J Pharmacol 2010; 626:205-12. [DOI: 10.1016/j.ejphar.2009.09.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 11/29/2022]
|
13
|
Seo JY, Lee CH, Cho JH, Choi JH, Yoo KY, Kim DW, Park OK, Li H, Choi SY, Hwang IK, Won MH. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes. J Neurol Sci 2009; 285:88-94. [DOI: 10.1016/j.jns.2009.05.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
|
14
|
Mechírová E, Domoráková I, Danková M, Danielisová V, Burda J. Effect of noradrenalin and EGb 761 pretreatment on the ischemia-reperfusion injured spinal cord neurons in rabbits. Cell Mol Neurobiol 2009; 29:991-8. [PMID: 19291391 PMCID: PMC11505823 DOI: 10.1007/s10571-009-9386-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/27/2009] [Indexed: 01/07/2023]
Abstract
Short term sublethal ischemia or ischemic preconditioning gives protection to the neurons against subsequent lethal ischemic attack. This so-called ischemic tolerance can also be provided by certain drugs. We examined the effect of noradrenalin and EGb 761 on the spinal cord neurons injured by 30 min occlusion of abdominal aorta in rabbits. The animals survived 48 and 72 h. Degenerated neurons were visualized by Fluoro Jade B method, viable neurons were demonstrated immunohistochemically with NeuN and ubiquitin antibodies. The rabbits with noradrenalin administration 48 h before 30 min of ischemia and 48/72 h of reperfusion, showed significant increase of degenerated Fluoro Jade B labeled neurons. Animals of both groups were paraplegic. Rabbits pretreated 7 days with EGb 761 prior to 30 min of ischemia and with 48/72 h of reperfusion revealed significant decrease of Fluoro Jade B-positive neurons when compared with the groups with 30 min of ischemia followed by 48/72 h of reperfusion. In the NeuN sections, the number of viable neurons was moderately decreased. These animals showed no paraplegia. Ubiquitin aggregates occurred in the cytoplasm of degenerated neurons in the sections of rabbits preconditioned with noradrenalin 48 h prior to 30 min of ischemia and followed by 48 h of reperfusion while after 72 h of reperfusion, shrunk light shadows without ubiquitin reaction were visible. Our results indicate that EGb 761 could be involved in protection of spinal cord neurons against ischemic injury while effect of noradrenalin is not unambiguous.
Collapse
Affiliation(s)
- Eva Mechírová
- Department of Histology and Embryology, Faculty of Medicine, PJ Safárik University in Kosice, 04180 Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
15
|
Ding JY, Kreipke CW, Speirs SL, Schafer P, Schafer S, Rafols JA. Hypoxia-inducible factor-1alpha signaling in aquaporin upregulation after traumatic brain injury. Neurosci Lett 2009; 453:68-72. [PMID: 19429018 DOI: 10.1016/j.neulet.2009.01.077] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 01/08/2023]
Abstract
Previous studies have demonstrated that traumatic brain injury (TBI) causes brain edema via aquaporins (AQPs), the water-transporting proteins. In the present study, we determined the role of hypoxia inducible factor-1alpha (HIF-1alpha), which is a transcription factor in response to physiological hypoxia, in regulating expression of AQP4 and AQP9. Adult male Sprague-Dawley rats (400-425g) received a closed head injury using the Marmarou weight drop model with a 450g weight and survived for 1, 4, 24 and 48h. Some animals were administered 30min after injury with 2-methoxyestradiol (2ME2), a naturally occurring metabolite of estradiol which is known to post-transcriptionally down-regulate HIF-1alpha expression, and sacrificed 4h after injury. Real-time PCR and Western blot were used, respectively, to detect gene and protein expressions of manganese superoxide dismutase (MnSOD, showing hypoxic stress), HIF-1alpha, AQP4, and AQP9. ANOVA analysis demonstrated a significant (p<0.05) increase in gene expression of MnSOD, HIF-1alpha, AQP4, and AQP9, starting at 1h after injury through 48h. Western blot analysis further indicated a significant (p<0.05) increase in protein expression of these molecules at the same time points. Pharmacological inhibition of HIF-1alpha by 2ME2 reduced the up-regulated levels of AQP4 and AQP9 after TBI. The present study suggests that hypoxic conditions determined by MnSOD expression after closed head injury contribute to HIF-1alpha expression. HIF-1alpha, in turn, up-regulates expression of AQP4 and AQP9. These results characterize the pathophysiological mechanisms, and suggest possible therapeutic targets for TBI patients.
Collapse
Affiliation(s)
- Jamie Y Ding
- Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, United States
| | | | | | | | | | | |
Collapse
|