1
|
Longarzo ML, Vázquez RF, Bellini MJ, Zamora RA, Redondo-Morata L, Giannotti MI, Oliveira Jr ON, Fanani ML, Maté SM. Understanding the effects of omega-3 fatty acid supplementation on the physical properties of brain lipid membranes. iScience 2024; 27:110362. [PMID: 39071883 PMCID: PMC11277689 DOI: 10.1016/j.isci.2024.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/24/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
A deficiency in omega-3 fatty acids (ω3 FAs) in the brain has been correlated with cognitive impairment, learning deficiencies, and behavioral changes. In this study, we provided ω3 FAs as a supplement to spontaneously hypertensive rats (SHR+ ω3). Our focus was on examining the impact of dietary supplementation on the physicochemical properties of the brain-cell membranes. Significant increases in ω3 levels in the cerebral cortex of SHR+ ω3 were observed, leading to alterations in brain lipid membranes molecular packing, elasticity, and lipid miscibility, resulting in an augmented phase disparity. Results from synthetic lipid mixtures confirmed the disordering effect introduced by ω3 lipids, showing its consequences on the hydration levels of the monolayers and the organization of the membrane domains. These findings suggest that dietary ω3 FAs influence the organization of brain membranes, providing insight into a potential mechanism for the broad effects of dietary fat on brain health and disease.
Collapse
Affiliation(s)
- María L. Longarzo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - Romina F. Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - María J. Bellini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - Ricardo A. Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Instituto de Investigación Interdisciplinaria (I³), Vicerrectoría Académica, and Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay, Talca 3460000, Chile
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Marina I. Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- CIBER-BBN, ISCIII, 08028 Barcelona, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Osvaldo N. Oliveira Jr
- São Carlos Institute of Physics (IFSC-USP), University of São Paulo, 13566-590 São Carlos, São Paulo, Brazil
| | - María L. Fanani
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Cordoba, Argentina
- Departamento de Química Biológica Raquel Caputto, Facultad de Cs. Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Sabina M. Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| |
Collapse
|
2
|
Abu-Elfotuh K, Ragab GM, Salahuddin A, Jamil L, Abd Al Haleem EN. Attenuative Effects of Fluoxetine and Triticum aestivum against Aluminum-Induced Alzheimer's Disease in Rats: The Possible Consequences on Hepatotoxicity and Nephrotoxicity. Molecules 2021; 26:molecules26216752. [PMID: 34771159 PMCID: PMC8588015 DOI: 10.3390/molecules26216752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurological illness that causes considerable cognitive impairment. Hepatic and renal dysfunction may worsen AD by disrupting β-amyloid homeostasis at the periphery and by causing metabolic dysfunction. Wheatgrass (Triticum aestivum) has been shown to have antioxidant and anti-inflammatory properties. This work aims to study the effect of aluminum on neuronal cells, its consequences on the liver and kidneys, and the possible role of fluoxetine and wheatgrass juice in attenuating these pathological conditions. METHOD Rats were divided into five groups. Control, AD (AlCl3), Fluoxetine (Fluoxetine and AlCl3), Wheatgrass (Wheatgrass and AlCl3), and combination group (fluoxetine, wheatgrass, and AlCl3). All groups were assigned daily to different treatments for five weeks. CONCLUSIONS AlCl3 elevated liver and kidney enzymes, over-production of oxidative stress, and inflammatory markers. Besides, accumulation of tau protein and Aβ, the elevation of ACHE and GSK-3β, down-regulation of BDNF, and β-catenin expression in the brain. Histopathological examinations of the liver, kidney, and brain confirmed this toxicity, while treating AD groups with fluoxetine, wheatgrass, or a combination alleviates toxic insults. CONCLUSION Fluoxetine and wheatgrass combination demonstrated a more significant neuroprotective impact in treating AD than fluoxetine alone and has protective effects on liver and kidney tissues.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt; (K.A.-E.); (E.N.A.A.H.)
| | - Ghada M. Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Ahmad Salahuddin
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
- Correspondence: ; Tel.: +20-100-518-2320
| | - Lubna Jamil
- Department of Histology, Faculty of Medicine, October 6 University, Giza 12585, Egypt;
| | - Ekram Nemr Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt; (K.A.-E.); (E.N.A.A.H.)
| |
Collapse
|
3
|
Assessing the DOPC-cholesterol interactions and their influence on fullerene C60 partitioning in lipid bilayers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Ermilova I, Lyubartsev AP. Cholesterol in phospholipid bilayers: positions and orientations inside membranes with different unsaturation degrees. SOFT MATTER 2018; 15:78-93. [PMID: 30520494 DOI: 10.1039/c8sm01937a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cholesterol is an essential component of all animal cell membranes and plays an important role in maintaining the membrane structure and physical-chemical properties necessary for correct cell functioning. The presence of cholesterol is believed to be responsible for domain formation (lipid rafts) due to different interactions of cholesterol with saturated and unsaturated lipids. In order to get detailed atomistic insight into the behaviour of cholesterol in bilayers composed of lipids with varying degrees of unsaturation, we have carried out a series of molecular dynamics simulations of saturated and polyunsaturated lipid bilayers with different contents of cholesterol, as well as well-tempered metadynamics simulations with a single cholesterol molecule in these bilayers. From these simulations we have determined distributions of cholesterol across the bilayer, its orientational properties, free energy profiles, and specific interactions of molecular groups able to form hydrogen bonds. Both molecular dynamics and metadynamics simulations showed that the most unsaturated bilayer with 22:6 fatty acid chains shows behaviour which is most different from other lipids. In this bilayer, cholesterol is relatively often found in a "flipped" configuration with the hydroxyl group oriented towards the membrane middle plane. This bilayer has also the highest (least negative) binding free energy among liquid phase bilayers, and the lowest reorientation barrier. Furthermore, cholesterol molecules in this bilayer are often found to form head-to-tail contacts which may lead to specific clustering behaviour. Overall, our simulations support ideas that there can be a subtle interconnection between the contents of highly unsaturated fatty acids and cholesterol, deficiency or excess of each of them is related to many human afflictions and diseases.
Collapse
Affiliation(s)
- Inna Ermilova
- Department of Materials and Environmental Chemistry, Stockholm Universtity, Stockholm, Sweden.
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm Universtity, Stockholm, Sweden.
| |
Collapse
|
5
|
Colin J, Thomas MH, Gregory-Pauron L, Pinçon A, Lanhers MC, Corbier C, Claudepierre T, Yen FT, Oster T, Malaplate-Armand C. Maintenance of membrane organization in the aging mouse brain as the determining factor for preventing receptor dysfunction and for improving response to anti-Alzheimer treatments. Neurobiol Aging 2017; 54:84-93. [PMID: 28347928 DOI: 10.1016/j.neurobiolaging.2017.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
Although a major risk factor for Alzheimer's disease (AD), the "aging" parameter is not systematically considered in preclinical validation of anti-AD drugs. To explore how aging affects neuronal reactivity to anti-AD agents, the ciliary neurotrophic factor (CNTF)-associated pathway was chosen as a model. Comparison of the neuroprotective properties of CNTF in 6- and 18-month old mice revealed that CNTF resistance in the older animals is associated with the exclusion of the CNTF-receptor subunits from rafts and their subsequent dispersion to non-raft cortical membrane domains. This age-dependent membrane remodeling prevented both the formation of active CNTF-receptor complexes and the activation of prosurvival STAT3 and ERK1/2 pathways, demonstrating that age-altered membranes impaired the reactivity of potential therapeutic targets. CNTF-receptor distribution and CNTF signaling responses were improved in older mice receiving dietary docosahexaenoic acid, with CNTF-receptor functionality being similar to those of younger mice, pointing toward dietary intervention as a promising adjuvant strategy to maintain functional neuronal membranes, thus allowing the associated receptors to respond appropriately to anti-AD agents.
Collapse
Affiliation(s)
- Julie Colin
- UR AFPA - INRA USC 340, EA 3998, Équipe Biodisponibilité et Fonctionnalité des Lipides Alimentaires (BFLA), Université de Lorraine, Nancy, France
| | - Mélanie H Thomas
- UR AFPA - INRA USC 340, EA 3998, Équipe Biodisponibilité et Fonctionnalité des Lipides Alimentaires (BFLA), Université de Lorraine, Nancy, France
| | - Lynn Gregory-Pauron
- UR AFPA - INRA USC 340, EA 3998, Équipe Biodisponibilité et Fonctionnalité des Lipides Alimentaires (BFLA), Université de Lorraine, Nancy, France
| | - Anthony Pinçon
- UR AFPA - INRA USC 340, EA 3998, Équipe Biodisponibilité et Fonctionnalité des Lipides Alimentaires (BFLA), Université de Lorraine, Nancy, France
| | - Marie-Claire Lanhers
- UR AFPA - INRA USC 340, EA 3998, Équipe Biodisponibilité et Fonctionnalité des Lipides Alimentaires (BFLA), Université de Lorraine, Nancy, France
| | - Catherine Corbier
- UR AFPA - INRA USC 340, EA 3998, Équipe Biodisponibilité et Fonctionnalité des Lipides Alimentaires (BFLA), Université de Lorraine, Nancy, France
| | - Thomas Claudepierre
- UR AFPA - INRA USC 340, EA 3998, Équipe Biodisponibilité et Fonctionnalité des Lipides Alimentaires (BFLA), Université de Lorraine, Nancy, France
| | - Frances T Yen
- UR AFPA - INRA USC 340, EA 3998, Équipe Biodisponibilité et Fonctionnalité des Lipides Alimentaires (BFLA), Université de Lorraine, Nancy, France
| | - Thierry Oster
- UR AFPA - INRA USC 340, EA 3998, Équipe Biodisponibilité et Fonctionnalité des Lipides Alimentaires (BFLA), Université de Lorraine, Nancy, France
| | - Catherine Malaplate-Armand
- UR AFPA - INRA USC 340, EA 3998, Équipe Biodisponibilité et Fonctionnalité des Lipides Alimentaires (BFLA), Université de Lorraine, Nancy, France; Laboratoire de Biochimie et Biologie Moléculaire, UF Oncologie - Endocrinologie - Neurobiologie, Hôpital Central, Centre Hospitalier Universitaire, Nancy, France.
| |
Collapse
|
6
|
Colin J, Gregory-Pauron L, Lanhers MC, Claudepierre T, Corbier C, Yen FT, Malaplate-Armand C, Oster T. Membrane raft domains and remodeling in aging brain. Biochimie 2016; 130:178-187. [DOI: 10.1016/j.biochi.2016.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
|
7
|
Neuroprotective effect of Picholine virgin olive oil and its hydroxycinnamic acids component against β-amyloid-induced toxicity in SH-SY5Y neurotypic cells. Cytotechnology 2016; 68:2567-2578. [PMID: 27155966 DOI: 10.1007/s10616-016-9980-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022] Open
Abstract
The health benefits of Mediterranean diet has long been reported and attributed to the consumption of virgin olive oil (VOO). Here, we evaluated the neuroprotective effect of VOO against Alzheimer's disease by determining its effect on β-amyloid (Aβ)-induced cytotoxicity and oxidative stress, and explored the possibility that its hydroxycinnamic acids (Hc acids) content contribute significantly to this effect. SH-SY5Y cells treated with or without Aβ and with VOO or Hc acids (mixture of p-coumaric acid, ferulic acid, vanillic acid, and caffeic acid) were subjected to MTT assay and the results showed that both samples alleviated Aβ-induced cytotoxicity. Furthermore, both VOO and Hc acids decreased the reactive oxygen species level. Using western blot to determine the effect of these samples on Aβ-induced activation of pERK1/2, p38, and JNK MAPKs, results revealed that both VOO and Hc acids inhibited the activation of pERK1/2 and p-p38 MAPK, but not JNK. Moreover, VOO upregulated the glycolytic enzymes genes hexokinase (HK1), and phosphofructokinase (PFKM) expression which means that VOO enhanced the energy metabolism of the neurotypic cells, and therefore suggests another mechanism by which VOO could provide protection against Aβ-induced cytotoxicity. The findings in this study suggest that VOO has a neuroprotective effect, attributable to its hydroxycinnamic acids component, against Aβ-induced cytotoxicity and oxidative stress through the inhibition of the activation of MAPKs ERK and p38 and by enhancing the energy metabolism of the neurotypic cells.
Collapse
|
8
|
Manoharan S, Essa MM, Vinoth A, Kowsalya R, Manimaran A, Selvasundaram R. Alzheimer's Disease and Medicinal Plants: An Overview. ADVANCES IN NEUROBIOLOGY 2016; 12:95-105. [PMID: 27651250 DOI: 10.1007/978-3-319-28383-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Alzheimer's disease (AD) is progressive neurodegenerative disorder and identified as a major health concern globally. Individuals with AD and their care givers are affected in personal, emotional, financial, and social levels. Due to its significant impact and heavy burden on the individual, the patients' families, and society, it is highly needed to search for cost effective, long-time retention therapeutic targets. In recent decades, there are lots of research conducted the possible benefit of natural products and their active components on AD and other neurodegenerative disease, which are discussed here.
Collapse
Affiliation(s)
- S Manoharan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India.
| | - M Mohamed Essa
- Department of Food Science and Nutrition, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - A Vinoth
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India
| | - R Kowsalya
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India
| | - A Manimaran
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India
| | - R Selvasundaram
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, India
| |
Collapse
|
9
|
Metabotyping of docosahexaenoic acid - treated Alzheimer's disease cell model. PLoS One 2014; 9:e90123. [PMID: 24587236 PMCID: PMC3937442 DOI: 10.1371/journal.pone.0090123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022] Open
Abstract
Background Despite the significant amount of work being carried out to investigate the therapeutic potential of docosahexaenoic acid (DHA) in Alzheimer’s disease (AD), the mechanism by which DHA affects amyloid-β precursor protein (AβPP)-induced metabolic changes has not been studied. Objective To elucidate the metabolic phenotypes (metabotypes) associated with DHA therapy via metabonomic profiling of an AD cell model using gas chromatography time-of-flight mass spectrometry (GC/TOFMS). Methods The lysate and supernatant samples of CHO-wt and CHO-AβPP695 cells treated with DHA and vehicle control were collected and prepared for GC/TOFMS metabonomics profiling. The metabolic profiles were analyzed by multivariate data analysis techniques using SIMCA-P+ software. Results Both principal component analysis and subsequent partial least squares discriminant analysis revealed distinct metabolites associated with the DHA-treated and control groups. A list of statistically significant marker metabolites that characterized the metabotypes associated with DHA treatment was further identified. Increased levels of succinic acid, citric acid, malic acid and glycine and decreased levels of zymosterol, cholestadiene and arachidonic acid correlated with DHA treatment effect. DHA levels were also found to be increased upon treatment. Conclusion Our study shows that DHA plays a role in mitigating AβPP-induced impairment in energy metabolism and inflammation by acting on tricarboxylic acid cycle, cholesterol biosynthesis pathway and fatty acid metabolism. The perturbations of these metabolic pathways by DHA in CHO-wt and CHO-AβPP695 cells shed further mechanistic insights on its neuroprotective actions.
Collapse
|
10
|
Giles GE, Mahoney CR, Kanarek RB. Omega-3 fatty acids influence mood in healthy and depressed individuals. Nutr Rev 2013; 71:727-41. [PMID: 24447198 DOI: 10.1111/nure.12066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Depression is one of the most prevalent disorders in the United States, and rates of depression are higher for women than men. Despite their widespread use, drugs used in the treatment of depression are only moderately more effective than placebo in treating the disorder. Effective treatment of perinatal depression is of particular concern as treatment can influence both the mother and the developing child. Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation may reduce symptoms of major depressive disorder and perinatal depression. The aim of the present review was to evaluate epidemiological studies examining PUFA intake and depressive symptoms in the general population, as well as double-blind, placebo-controlled trials assessing the influence of n-3 PUFA in healthy individuals and those with depression; specific consideration was given to perinatal depression and potential gender differences in the relationship. Although there is some evidence to suggest that n-3 PUFA intake is associated with reduced depressive symptoms, particularly in females, these results are generally limited to epidemiological studies, whereas results from randomized controlled trials are mixed.
Collapse
Affiliation(s)
- Grace E Giles
- Department of Psychology, Tufts University, Medford, Massachusetts, USA
| | | | | |
Collapse
|
11
|
Huangfu J, Liu J, Peng C, Suen YL, Wang M, Jiang Y, Chen ZY, Chen F. DHA-rich marine microalga Schizochytrium mangrovei possesses anti-ageing effects on Drosophila melanogaster. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Tan ZS, Harris WS, Beiser AS, Au R, Himali JJ, Debette S, Pikula A, Decarli C, Wolf PA, Vasan RS, Robins SJ, Seshadri S. Red blood cell ω-3 fatty acid levels and markers of accelerated brain aging. Neurology 2012; 78:658-64. [PMID: 22371413 DOI: 10.1212/wnl.0b013e318249f6a9] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Higher dietary intake and circulating levels of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been related to a reduced risk for dementia, but the pathways underlying this association remain unclear. We examined the cross-sectional relation of red blood cell (RBC) fatty acid levels to subclinical imaging and cognitive markers of dementia risk in a middle-aged to elderly community-based cohort. METHODS We related RBC DHA and EPA levels in dementia-free Framingham Study participants (n = 1575; 854 women, age 67 ± 9 years) to performance on cognitive tests and to volumetric brain MRI, with serial adjustments for age, sex, and education (model A, primary model), additionally for APOE ε4 and plasma homocysteine (model B), and also for physical activity and body mass index (model C), or for traditional vascular risk factors (model D). RESULTS Participants with RBC DHA levels in the lowest quartile (Q1) when compared to others (Q2-4) had lower total brain and greater white matter hyperintensity volumes (for model A: β ± SE = -0.49 ± 0.19; p = 0.009, and 0.12 ± 0.06; p = 0.049, respectively) with persistence of the association with total brain volume in multivariable analyses. Participants with lower DHA and ω-3 index (RBC DHA+EPA) levels (Q1 vs. Q2-4) also had lower scores on tests of visual memory (β ± SE = -0.47 ± 0.18; p = 0.008), executive function (β ± SE = -0.07 ± 0.03; p = 0.004), and abstract thinking (β ± SE = -0.52 ± 0.18; p = 0.004) in model A, the results remaining significant in all models. CONCLUSION Lower RBC DHA levels are associated with smaller brain volumes and a "vascular" pattern of cognitive impairment even in persons free of clinical dementia.
Collapse
Affiliation(s)
- Z S Tan
- Department of Medicine, Division of Geriatric Medicine, Easton Center for Alzheimer’s Disease Research, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sadli N, Ackland ML, De Mel D, Sinclair AJ, Suphioglu C. Effects of zinc and DHA on the epigenetic regulation of human neuronal cells. Cell Physiol Biochem 2012; 29:87-98. [PMID: 22415078 DOI: 10.1159/000337590] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2011] [Indexed: 12/14/2022] Open
Abstract
Dietary intake of zinc and omega-3 fatty acids (DHA) have health benefits for a number of human diseases. However, the molecular basis of these health benefits remains unclear. Recently, we reported that zinc and DHA affect expression levels of histones H3 and H4 in human neuronal M17 cells. Here, using immunoblotting and densitometric analysis, we aimed to investigate the effect of zinc and DHA on post-translational modifications of histone H3 in M17 cells. In response to increase in zinc concentration, we observed increase in deacetylation, methylation and phosphorylation of H3 and decrease in acetylation. We also investigated the role of zinc in apoptosis, and found that zinc reduced the levels of the anti-apoptotic marker Bcl-2 while increasing the apoptotic marker caspase-3 levels, correlating with cell viability assays. Conversely, DHA treatment resulted in increase in acetylation of H3 and Bcl-2 levels and decrease in deacetylation, methylation, phosphorylation of H3 and caspase-3 levels, suggesting that DHA promotes gene expression and neuroprotection. Our novel findings show the opposing effects of zinc and DHA on the epigenetic regulation of human neuronal cells and highlight the potential benefit of dietary intake of DHA for management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Sadli
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | | | | | | | | |
Collapse
|
14
|
Jeon S, Hur J, Jeong HJ, Koo BS, Pak SC. SuHeXiang Wan essential oil alleviates amyloid beta induced memory impairment through inhibition of tau protein phosphorylation in mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 39:917-32. [PMID: 21905282 DOI: 10.1142/s0192415x11009305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SuHeXiang Wan (SHXW), a traditional Chinese medicine, has been used orally for the treatment of seizures, infantile convulsions and stroke. Previously, we reported the effects of a modified SHXW essential oil in terms of sedative effect, anticonvulsant activity and antioxidative activity. The purpose of this study was to evaluate the potential beneficial effects of SHXW essential oil in neurodegenerative diseases such as Alzheimer's disease (AD). SHXW essential oil was extracted from nine herbs. The mouse AD model was induced by a single injection of amyloid β protein (Aβ(1-42)) into the hippocampus. The animals were divided into four groups, the negative control group injected with Aβ(42-1), the Aβ group injected with Aβ(1-42), the SHXW group inhaled SHXW essential oil and received Aβ(1-42) injection, and the positive control group administered with docosahexaenoic acid (DHA, 10 mg/kg) and with subsequent Aβ(1-42) injection. Mice were analyzed by behavioral tests and immunological examination in the hippocampus. An additional in vitro investigation was performed to examine whether SHXW essential oil inhibits Aβ(1-42) induced neurotoxicity in a human neuroblastoma cell line, SH-SY5Y cells. Pre-inhalation of SHXW essential oil improved the Aβ(1-42) induced memory impairment and suppressed Aβ(1-42) induced JNK, p38 and Tau phosphorylation in the hippocampus. SHXW essential oil suppressed Aβ-induced apoptosis and ROS production via an up-regulation of HO-1 and Nrf2 expression in SH-SY5Y cells. The present study suggests that SHXW essential oil may have potential as a therapeutic inhalation drug for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Songhee Jeon
- Dongguk University Research Institute of Biotechnology, Seoul 100-715, Republic of Korea.
| | | | | | | | | |
Collapse
|
15
|
Kuller LH, Lopez OL. Dementia and Alzheimer's disease: a new direction.The 2010 Jay L. Foster Memorial Lecture. Alzheimers Dement 2011; 7:540-50. [PMID: 21889117 PMCID: PMC3197274 DOI: 10.1016/j.jalz.2011.05.901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/03/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND The modern era of Alzheimer's disease (AD) research began in the early 1980s with the establishment of AD research centers and expanded research programs at the National Institute on Aging. METHODS Over the past 30 years, there has been success in defining criteria for AD and dementia, association of important genetic disorders related to premature dementia in families, the association of apolipoprotein-E(4), and measurement of incidence and prevalence and selected risk factors. However, prevention and treatment have been elusive. RESULTS The development of new technologies, especially magnetic resonance imaging, positron emission tomography to measure amyloid in vivo in the brain and glucose metabolism, cerebrospinal fluid examination, better genetic markers, large-scale longitudinal epidemiology studies, and preventive clinical trials has rapidly begun a new era of research that offers opportunities to better understand etiology, that is, determinants of amyloid biology in the brain, neurofibrillary tangles, synaptic loss, and dementia. CONCLUSIONS There are three major hypotheses related to dementia: amyloid deposition and secondary synaptic loss as a unique disease, vascular injury, and "aging." New research must be hypothesis-driven and lead to testable approaches for treatment and prevention.
Collapse
Affiliation(s)
- Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, PA, USA.
| | | |
Collapse
|
16
|
Hashimoto M, Hossain S. Neuroprotective and Ameliorative Actions of Polyunsaturated Fatty Acids Against Neuronal Diseases: Beneficial Effect of Docosahexaenoic Acid on Cognitive Decline in Alzheimer’s Disease. J Pharmacol Sci 2011; 116:150-62. [DOI: 10.1254/jphs.10r33fm] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Dietary fatty acids in dementia and predementia syndromes: epidemiological evidence and possible underlying mechanisms. Ageing Res Rev 2010; 9:184-99. [PMID: 19643207 DOI: 10.1016/j.arr.2009.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/19/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
Drugs currently used in the treatment of cognitive impairment and dementia have a very limited therapeutic value, suggesting the necessity to potentially individualize new strategies able to prevent and to slow down the progression of predementia and dementia syndromes. An increasing body of epidemiological evidence suggested that elevated saturated fatty acids (SFA) could have negative effects on age-related cognitive decline (ARCD) and mild cognitive impairment (MCI). Furthermore, a clear reduction of risk for cognitive decline has been found in population samples with elevated fish consumption, high intake of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), particularly n-3 PUFA. Epidemiological findings demonstrated that high PUFA intake appeared to have borderline non-significant trend for a protective effect against the development of MCI. Several hypotheses could explain the association between dietary unsaturated fatty acids and cognitive functioning, including mechanisms through the co-presence of antioxidant compounds in food groups rich in fatty acids, via atherosclerosis and thrombosis, inflammation, accumulation of b-amyloid, or via an effect in maintaining the structural integrity of neuronal membranes, determining the fluidity of synaptosomal membranes that thereby regulate neuronal transmission. However, recent findings from clinical trials with n-3 PUFA supplementation showed efficacy on depressive symptoms only in non-apolipoprotein E (APOE) epsilon4 carriers, and on cognitive symptoms only in very mild Alzheimer's disease (AD) subgroups, MCI patients, and cognitively unimpaired subjects non-APOE epsilon4 carriers. These data together with epidemiological evidence support a possible role of fatty acid intake in maintaining adequate cognitive functioning and possibly for the prevention and management of cognitive decline and dementia, but not when the AD process has already taken over.
Collapse
|
18
|
Jang JH, Kim CY, Lim SH, Yang CH, Song KS, Han HS, Lee HK, Lee J. Neuroprotective effects of Triticum aestivum L. against beta-amyloid-induced cell death and memory impairments. Phytother Res 2010; 24:76-84. [PMID: 19441012 DOI: 10.1002/ptr.2871] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
beta-Amyloid (A beta) is a key component of senile plaques, neuropathological hallmarks of Alzheimer's disease (AD) and has been reported to induce cell death via oxidative stress. This study investigated the protective effects of Triticum aestivum L. (TAL) on A beta-induced apoptosis in SH-SY5Y cells and cognitive dysfunctions in Sprague-Dawley (SD) rats. Cells treated with A beta exhibited decreased viability and apoptotic features, such as DNA fragmentation, alterations in mitochondria and an increased Bax/Bcl-2 ratio, which were attenuated by TAL extract (TALE) pretreatment. To elucidate the neuroprotective mechanisms of TALE, the study examined A beta-induced oxidative stress and cellular defense. TALE pretreatment suppressed A beta-increased intracellular accumulation of reactive oxygen species (ROS) via up-regulation of glutathione, an essential endogenous antioxidant. To further verify the effect of TALE on memory impairments, A beta or scopolamine was injected in SD rats and a water maze task conducted as a spatial memory test. A beta or scopolamine treatment increased the time taken to find the platform during training trials, which was decreased by TALE pretreatment. Furthermore, one of the active components of TALE, total dietary fiber also effectively inhibited A beta-induced cytotoxicity and scopolamine-caused memory deficits. These results suggest that TALE may have preventive and/or therapeutic potential in the management of AD.
Collapse
Affiliation(s)
- Jung-Hee Jang
- College of Oriental Medicine, Daegu Haany University, Sang-dong, Suseong-gu, Daegu 706-060, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Promoting successful cognitive aging is a topic of major importance to individuals and the field of public health. This review presents a coherent framework not only for evaluating factors, protective activities, and enhancing agents that have already been proposed, but also ones that will be put forward in the future. The promotion of successful cognitive aging involves the dual goals of preventing loss of information processing capacity and cognitive reserve, and enhancing brain capacity and cognitive reserve. Four major lines of evidence are available for evaluating whether a proposed factor promotes successful cognitive aging: 1) epidemiologic/cohort studies; 2) animal/basic science studies; 3) human "proof-of-concept" studies; and 4) human intervention studies. Each line of evidence has advantages and limitations that will be discussed. Through illustrative examples, we trace the ways in which each method informs us about the potential value of several proposed factors. Currently, lines of converging evidence allow the strongest case to be made for physical and cognitively stimulating activities. Although epidemiological data seem to favor the use of statins to lower the risk of dementia, more definitive recommendations await further randomized controlled studies. There is presently no clear evidence that antioxidants or Ginkgo biloba promote successful cognitive aging. The impact of resveratrol, fish oil, and a long list of other proposed agents needs to be determined. Clinicians remain well-positioned to identify and aggressively treat vascular risk factors, diabetes, sleep disorders, and other conditions that may reduce brain capacity, and to encourage activities that can build cognitive reserve.
Collapse
Affiliation(s)
- Kirk R Daffner
- Brigham Behavioral Neurology Group, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Robinson JG, Ijioma N, Harris W. Omega-3 fatty acids and cognitive function in women. WOMEN'S HEALTH (LONDON, ENGLAND) 2010; 6:119-34. [PMID: 20088735 PMCID: PMC2826215 DOI: 10.2217/whe.09.75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Omega-3 fatty acids (FAs) could play an important role in maintaining cognitive function in aging individuals. The omega-3 FA docosahexaenoic acid is a major constituent of neuronal membranes and, along with the other long-chain omega-3 FAs from fish such as eicosapentaentoic acid, has been shown to have a wide variety of beneficial effects on neuronal functioning, inflammation, oxidation and cell death, as well as on the development of the characteristic pathology of Alzheimer's disease. Omega-3 FAs may prevent vascular dementia via salutary effects on lipids, inflammation, thrombosis and vascular function. Epidemiologic studies have generally supported a protective association between fish and omega-3 FA levels and cognitive decline. Some of the small, short-term, randomized trials of docosahexaenoic acid and/or eicosapentaentoic acid supplementation have found positive effects on some aspects of cognition in older adults who were cognitively intact or had mild cognitive impairment, although little effect was found in participants with Alzheimer's disease. Large, long-term trials in this area are needed.
Collapse
Affiliation(s)
- Jennifer G Robinson
- Lipid Research Clinic, 200 Hawkins Drive, SE 226 GH, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
21
|
Umhau JC, Zhou W, Carson RE, Rapoport SI, Polozova A, Demar J, Hussein N, Bhattacharjee AK, Ma K, Esposito G, Majchrzak S, Herscovitch P, Eckelman WC, Kurdziel KA, Salem N. Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. J Lipid Res 2009; 50:1259-68. [PMID: 19112173 PMCID: PMC2694326 DOI: 10.1194/jlr.m800530-jlr200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 12/22/2008] [Indexed: 11/20/2022] Open
Abstract
Docosahexaenoic acid (DHA; 22:6n-3) is a critical constituent of the brain, but its metabolism has not been measured in the human brain in vivo. In monkeys, using positron emission tomography (PET), we first showed that intravenously injected [1-(11)C]DHA mostly entered nonbrain organs, with approximately 0.5% entering the brain. Then, using PET and intravenous [1-(11)C]DHA in 14 healthy adult humans, we quantitatively imaged regional rates of incorporation (K*) of DHA. We also imaged regional cerebral blood flow (rCBF) using PET and intravenous [(15)O]water. Values of K* for DHA were higher in gray than white matter regions and correlated significantly with values of rCBF in 12 of 14 subjects despite evidence that rCBF does not directly influence K*. For the entire human brain, the net DHA incorporation rate J(in), the product of K*, and the unesterified plasma DHA concentration equaled 3.8 +/- 1.7 mg/day. This net rate is equivalent to the net rate of DHA consumption by brain and, considering the reported amount of DHA in brain, indicates that the half-life of DHA in the human brain approximates 2.5 years. Thus, PET with [1-(11)C]DHA can be used to quantify regional and global human brain DHA metabolism in relation to health and disease.
Collapse
Affiliation(s)
- John C Umhau
- Laboratory of Clinical Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cunnane SC, Plourde M, Pifferi F, Bégin M, Féart C, Barberger-Gateau P. Fish, docosahexaenoic acid and Alzheimer's disease. Prog Lipid Res 2009; 48:239-56. [PMID: 19362576 DOI: 10.1016/j.plipres.2009.04.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/19/2009] [Accepted: 04/01/2009] [Indexed: 12/20/2022]
Abstract
Cognitive decline in the elderly, particularly Alzheimer's disease (AD), is a major socio-economic and healthcare concern. We review here the literature on one specific aspect of diet affecting AD, that of the omega3 fatty acids, particularly the brain's principle omega3 fatty acid - docosahexaenoic acid (DHA). DHA has deservedly received wide attention as a nutrient supporting both optimal brain development and for cardiovascular health. Our aim here is to critically assess the quality of the present literature as well as the potential of omega3 fatty acids to treat or delay the onset of AD. We start with a brief description of cognitive decline in the elderly, followed by an overview of well recognized biological functions of DHA. We then turn to epidemiological studies, which are largely supportive of protective effects of fish and DHA against risk of AD. However, biological studies, including blood and brain DHA analyses need careful interpretation and further investigation, without which the success of clinical trials with DHA may continue to struggle. We draw attention to some of the methodological issues that need resolution as well as an emerging mechanism that may explain how DHA could be linked to protecting brain function in the elderly.
Collapse
Affiliation(s)
- S C Cunnane
- Department of Medicine and Research Center on Aging, CSSS-IUGS, Université de Sherbrooke, QC, Canada.
| | | | | | | | | | | |
Collapse
|
23
|
Florent-Béchard S, Desbène C, Garcia P, Allouche A, Youssef I, Escanyé MC, Koziel V, Hanse M, Malaplate-Armand C, Stenger C, Kriem B, Yen-Potin FT, Olivier JL, Pillot T, Oster T. The essential role of lipids in Alzheimer's disease. Biochimie 2009; 91:804-9. [PMID: 19303044 DOI: 10.1016/j.biochi.2009.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/10/2009] [Indexed: 11/18/2022]
Abstract
In the absence of efficient diagnostic and therapeutic tools, Alzheimer's disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Although the precise cause of AD is still unknown, soluble beta-amyloid (Abeta) oligomers are considered the proximate effectors of the synaptic injury and neuronal death occurring in the early stages of AD. Abeta oligomers may directly interact with the synaptic membrane, leading to impairment of synaptic functions and subsequent signalling pathways triggering neurodegeneration. Therefore, membrane structure and lipid status should be considered determinant factors in Abeta-oligomer-induced synaptic and cell injuries, and therefore AD progression. Numerous epidemiological studies have highlighted close relationships between AD incidence and dietary patterns. Among the nutritional factors involved, lipids significantly influence AD pathogenesis. It is likely that maintenance of adequate membrane lipid content could prevent the production of Abeta peptide as well as its deleterious effects upon its interaction with synaptic membrane, thereby protecting neurons from Abeta-induced neurodegeneration. As major constituents of neuronal lipids, n-3 polyunsaturated fatty acids are of particular interest in the prevention of AD valuable diet ingredients whose neuroprotective properties could be essential for designing preventive nutrition-based strategies. In this review, we discuss the functional relevance of neuronal membrane features with respect to susceptibility to Abeta oligomers and AD pathogenesis, as well as the prospective capacities of lipids to prevent or to delay the disease.
Collapse
|
24
|
Plourde M, Fortier M, Vandal M, Tremblay-Mercier J, Freemantle E, Bégin M, Pifferi F, Cunnane SC. Unresolved issues in the link between docosahexaenoic acid and Alzheimer's disease. Prostaglandins Leukot Essent Fatty Acids 2007; 77:301-8. [PMID: 18036804 DOI: 10.1016/j.plefa.2007.10.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Lower consumption of docosahexaenoic acid (DHA) is commonly but not always associated with higher risk of cognitive decline and diagnosis of Alzheimer's disease (AD). We review here the available data relating DHA to AD, with emphasis on DHA content of plasma and brain. Our assessment of this literature is that low DHA is not consistently observed in AD plasma or brain. However, in dietary and population studies, low DHA intake is usually associated with low plasma DHA. Therefore, at present, there is no clear explanation of why the usual low DHA intake-low plasma DHA relationship appears not to exist in AD. Adding to the confusion, preliminary and inconclusive reports tentatively suggest that dietary DHA could potentially reduce cognitive deterioration in AD. These inconsistencies between dietary DHA, plasma/tissue DHA, and possible DHA efficacy in AD may be more methodological than biological, and may arise in part because only one study to date has reported both DHA intake and plasma DHA values in the same AD patients. Studies reporting DHA intake and plasma levels while also undertaking a DHA intervention in AD would presumably help resolve these issues.
Collapse
Affiliation(s)
- Mélanie Plourde
- Research Center on Aging, 1036 Belvedere South, Sherbrooke, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|