1
|
Perrier S, Michell-Robinson MA, Bernard G. POLR3-Related Leukodystrophy: Exploring Potential Therapeutic Approaches. Front Cell Neurosci 2021; 14:631802. [PMID: 33633543 PMCID: PMC7902007 DOI: 10.3389/fncel.2020.631802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Leukodystrophies are a class of rare inherited central nervous system (CNS) disorders that affect the white matter of the brain, typically leading to progressive neurodegeneration and early death. Hypomyelinating leukodystrophies are characterized by the abnormal formation of the myelin sheath during development. POLR3-related or 4H (hypomyelination, hypodontia, and hypogonadotropic hypogonadism) leukodystrophy is one of the most common types of hypomyelinating leukodystrophy for which no curative treatment or disease-modifying therapy is available. This review aims to describe potential therapies that could be further studied for effectiveness in pre-clinical studies, for an eventual translation to the clinic to treat the neurological manifestations associated with POLR3-related leukodystrophy. Here, we discuss the therapeutic approaches that have shown promise in other leukodystrophies, as well as other genetic diseases, and consider their use in treating POLR3-related leukodystrophy. More specifically, we explore the approaches of using stem cell transplantation, gene replacement therapy, and gene editing as potential treatment options, and discuss their possible benefits and limitations as future therapeutic directions.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Mackenzie A. Michell-Robinson
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, Montréal Children’s Hospital and McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
2
|
Stroobants S, Van Acker NGG, Verheijen FW, Goris I, Daneels GFT, Schot R, Verbeek E, Knaapen MWM, De Bondt A, Göhlmann HW, Crauwels MLA, Mancini GMS, Andries LJ, Moechars DWE, D'Hooge R. Progressive leukoencephalopathy impairs neurobehavioral development in sialin-deficient mice. Exp Neurol 2017; 291:106-119. [PMID: 28189729 DOI: 10.1016/j.expneurol.2017.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 11/18/2022]
Abstract
Slc17a5-/- mice represent an animal model for the infantile form of sialic acid storage disease (SASD). We analyzed genetic and histological time-course expression of myelin and oligodendrocyte (OL) lineage markers in different parts of the CNS, and related this to postnatal neurobehavioral development in these mice. Sialin-deficient mice display a distinct spatiotemporal pattern of sialic acid storage, CNS hypomyelination and leukoencephalopathy. Whereas few genes are differentially expressed in the perinatal stage (p0), microarray analysis revealed increased differential gene expression in later postnatal stages (p10-p18). This included progressive upregulation of neuroinflammatory genes, as well as continuous down-regulation of genes that encode myelin constituents and typical OL lineage markers. Age-related histopathological analysis indicates that initial myelination occurs normally in hindbrain regions, but progression to more frontal areas is affected in Slc17a5-/- mice. This course of progressive leukoencephalopathy and CNS hypomyelination delays neurobehavioral development in sialin-deficient mice. Slc17a5-/- mice successfully achieve early neurobehavioral milestones, but exhibit progressive delay of later-stage sensory and motor milestones. The present findings may contribute to further understanding of the processes of CNS myelination as well as help to develop therapeutic strategies for SASD and other myelination disorders.
Collapse
Affiliation(s)
| | | | - Frans W Verheijen
- Dept. Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ilse Goris
- Research and Early Development Europe, J&J Pharmaceutical Research & Development, Beerse, Belgium
| | - Guy F T Daneels
- Research and Early Development Europe, J&J Pharmaceutical Research & Development, Beerse, Belgium
| | - Rachel Schot
- Dept. Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elly Verbeek
- Dept. Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - An De Bondt
- Research and Early Development Europe, J&J Pharmaceutical Research & Development, Beerse, Belgium
| | - Hinrich W Göhlmann
- Research and Early Development Europe, J&J Pharmaceutical Research & Development, Beerse, Belgium
| | | | - Grazia M S Mancini
- Dept. Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Dieder W E Moechars
- Research and Early Development Europe, J&J Pharmaceutical Research & Development, Beerse, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Belgium
| |
Collapse
|
3
|
Torres LH, Annoni R, Balestrin NT, Coleto PL, Duro SO, Garcia RCT, Pacheco-Neto M, Mauad T, Camarini R, Britto LRG, Marcourakis T. Environmental tobacco smoke in the early postnatal period induces impairment in brain myelination. Arch Toxicol 2014; 89:2051-8. [PMID: 25182420 DOI: 10.1007/s00204-014-1343-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/14/2014] [Indexed: 02/01/2023]
Abstract
Environmental tobacco smoke (ETS) is associated with high morbidity and mortality, mainly in children. However, few studies focus on the brain development effects of ETS exposure. Myelination mainly occurs in the early years of life in humans and the first three postnatal weeks in rodents and is sensitive to xenobiotics exposure. This study investigated the effects of early postnatal ETS exposure on myelination. BALB/c mice were exposed to ETS generated from 3R4F reference research cigarettes from the third to the fourteenth days of life. The myelination of nerve fibers in the optic nerve by morphometric analysis and the levels of Olig1 and myelin basic protein (MBP) were evaluated in the cerebellum, diencephalon, telencephalon, and brainstem in infancy, adolescence, and adulthood. Infant mice exposed to ETS showed a decrease in the percentage of myelinated fibers in the optic nerve, compared with controls. ETS induced a decrease in Olig1 protein levels in the cerebellum and brainstem and an increase in MBP levels in the cerebellum at infant. It was also found a decrease in MBP levels in the telencephalon and brainstem at adolescence and in the cerebellum and diencephalon at adulthood. The present study demonstrates that exposure to ETS, in a critical phase of development, affects the percentage of myelinated fibers and myelin-specific proteins in infant mice. Although we did not observe differences in the morphological analysis in adolescence and adulthood, there was a decrease in MBP levels in distinctive brain regions suggesting a delayed effect in adolescence and adulthood.
Collapse
Affiliation(s)
- Larissa H Torres
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580 Bl 13B, São Paulo, SP, CEP 05508-000, Brazil
| | - Raquel Annoni
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Natalia T Balestrin
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580 Bl 13B, São Paulo, SP, CEP 05508-000, Brazil
| | - Priscila L Coleto
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580 Bl 13B, São Paulo, SP, CEP 05508-000, Brazil
| | - Stephanie O Duro
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580 Bl 13B, São Paulo, SP, CEP 05508-000, Brazil
| | - Raphael C T Garcia
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580 Bl 13B, São Paulo, SP, CEP 05508-000, Brazil
| | - Maurílio Pacheco-Neto
- Department of Clinical Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Thais Mauad
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luiz R G Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, Faculdade de Ciências Farmacêuticas, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580 Bl 13B, São Paulo, SP, CEP 05508-000, Brazil.
| |
Collapse
|
4
|
Yasuda A, Tsuji O, Shibata S, Nori S, Takano M, Kobayashi Y, Takahashi Y, Fujiyoshi K, Hara CM, Miyawaki A, Okano HJ, Toyama Y, Nakamura M, Okano H. Significance of Remyelination by Neural Stem/Progenitor Cells Transplanted into the Injured Spinal Cord. Stem Cells 2011; 29:1983-94. [DOI: 10.1002/stem.767] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Eckardt S, McLaughlin KJ, Willenbring H. Mouse chimeras as a system to investigate development, cell and tissue function, disease mechanisms and organ regeneration. Cell Cycle 2011; 10:2091-9. [PMID: 21606677 DOI: 10.4161/cc.10.13.16360] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chimeras are organisms composed of at least two genetically distinct cell lineages originating from different zygotes. In the laboratory, mouse chimeras can be produced experimentally; various techniques allow combining different early stage mouse embryos with each other or with pluripotent stem cells. Identification of the progeny of the different lineages in chimeras permits to follow cell fate and function, enabling correlation of genotype with phenotype. Mouse chimeras have become a tool to investigate critical developmental processes, including cell specification, differentiation, patterning, and the function of specific genes. In addition, chimeras can also be generated to address biological processes in the adult, including mechanisms underlying diseases or tissue repair and regeneration. This review summarizes the different types of chimeras and how they have been generated and provides examples of how mouse chimeras offer a unique and powerful system to investigate questions pertaining to cell and tissue function in the developing and adult organism.
Collapse
Affiliation(s)
- Sigrid Eckardt
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | | | | |
Collapse
|
6
|
Zhao Q, Beck A, Vitale JM, Schneider JS, Terzic A, Fraidenraich D. Rescue of developmental defects by blastocyst stem cell injection: towards elucidation of neomorphic corrective pathways. J Cardiovasc Transl Res 2010; 3:66. [PMID: 20151025 DOI: 10.1007/s12265-009-9140-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Stem cell-based therapy is an exciting area of high potential for regenerative medicine. To study disease prevention, we inject mouse embryonic stem cells (ESCs) into a variety of mouse blastocysts, most of which harbor mutations. Mice derived from these mutant blastocysts develop human-like diseases, either at developmental stages or in the adult, but blastocyst injection of ESCs prevents disease from occurring. Rather than entirely repopulating the affected organs, with just 20% of chimerism, the ESCs replenish protein levels that are absent in mutant mice, and induce novel or "neomorphic" signals that help circumvent the requirements for the mutations. We also show data indicating that the "neomorphic" mechanisms arise as a result of blastocyst injection of ESCs, regardless of the nature of the host blastocyst (mutant or wild-type). Thus, blastocyst injection of ESCs not only allows the study of disease prevention, but also unveils novel pathways whose activation may aid in the correction of congenital or acquired disease.
Collapse
Affiliation(s)
- Qingshi Zhao
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07107, USA
| | | | | | | | | | | |
Collapse
|
7
|
Miller RH, Fyffe-Maricich SL. Restoring the balance between disease and repair in multiple sclerosis: insights from mouse models. Dis Model Mech 2010; 3:535-9. [PMID: 20647413 DOI: 10.1242/dmm.001958] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple sclerosis (MS) is considered an autoimmune-mediated demyelinating disease that targets the central nervous system (CNS). Despite considerable research efforts over multiple decades, our understanding of the basic biological processes that are targeted in the disease and the mechanisms of pathogenesis are poorly understood. Consequently, current therapies directed at controlling the progression of the disease are limited in their effectiveness. Historically, the primary focus of MS research has been to define the cellular and molecular basis of the immunological pathogenic mechanisms. Recently, however, it has become clear that long-term functional recovery in MS will require the development of strategies that facilitate myelin repair in lesion areas. The emerging evidence that the adult vertebrate CNS retains the capacity to regenerate neural cells that have been lost to disease or damage has provoked intensive research focused on defining the mechanisms of myelin repair. Unfortunately, the existing animal models of MS are poorly equipped to assess myelin repair, and new validated strategies to identify therapeutics targeted at promoting myelin repair are badly needed. This Commentary will review established murine models of MS, and discuss emerging technologies that promise to provide insights into the mechanisms of myelin repair.
Collapse
Affiliation(s)
- Robert H Miller
- Department of Neurosciences, Center for Translational Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | | |
Collapse
|
8
|
Kemp K, Mallam E, Scolding N, Wilkins A. Stem cells in genetic myelin disorders. Regen Med 2010; 5:425-39. [DOI: 10.2217/rme.10.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genetic myelin disorders are a range of diseases that manifest with severe neurological problems, often from infancy. It has been postulated for some time that stem cells might be an effective treatment for these disorders, primarily as agents to restore dysfunctional or lost myelin. Stem cells, however, may offer a wider range of therapeutic potential, for instance as vehicles to replace abnormal enzymes or genes, or to provide trophic support for residual CNS tissue. This article will review several of the more common genetic myelin disorders and currently available therapies, including bone marrow transplantation for adrenoleukodystrophy. Specific stem cell subtypes and their relevance to potential therapeutic use will be discussed and stem cell transplantation in animal model studies will also be reviewed.
Collapse
Affiliation(s)
- Kevin Kemp
- MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK
- Department of Neurology, Frenchay Hospital, Bristol, UK
| | - Elizabeth Mallam
- MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK
- Department of Neurology, Frenchay Hospital, Bristol, UK
| | - Neil Scolding
- MS & Stem Cell Laboratories, Burden Centre, Frenchay Hospital, Bristol, UK
- Department of Neurology, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
9
|
Munoz-Sanjuan I. Glial progenitor cell transplantation and the generation of chimeric animal models with human brain cells: implications for novel therapeutics. Expert Opin Ther Pat 2009; 19:1639-46. [PMID: 19939186 DOI: 10.1517/13543770903443105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The potential of exogenous stem cell or progenitor cell transplantation as a novel therapeutic strategy to address unmet medical needs is a vast and important area of investigation. A recent US patent has been issued to Goldman from the University of Rochester based on pioneering studies with human fetal and adult-derived glial progenitor cells (GPCs), covering the generation of chimeric mouse/human animals. OBJECTIVE/METHOD In this patent and associated manuscript, extensive chimerism due to grafting of human GPCs is associated with remyelination and functional rescue of mice congenitally deficient in oligodendrocyte survival and myelination, due to a deletion in the myelin basic protein gene (the shiverer mouse). This review highlights the implications of generating human/mouse chimeric animals for the study of human brain physiology, preclinical studies and the clinical application of progenitor cells towards the development of novel therapeutics for the treatment of demyelinating disorders. CONCLUSION The use of GPCs offers promise for remyelination disorders, and the ability of these cells to repopulate the entire rodent nervous system should allow for the investigation of the physiological properties of human glial derivatives in an in vivo context, enhancing the understanding of mechanisms with a primary effect through the modulation of human glial cell biology.
Collapse
|
10
|
Blastocyst injection of embryonic stem cells: a simple approach to unveil mechanisms of corrections in mouse models of human disease. Stem Cell Rev Rep 2009; 5:369-77. [PMID: 19705303 DOI: 10.1007/s12015-009-9089-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
Embryonic stem cell (ESC) research is a promising area of investigation with enormous therapeutic potential. We have injected murine wild type (WT) ESCs into a variety of mutant murine blastocysts, which are predisposed to develop a human-like disease, such as muscular dystrophy or the embryonic lethal "thin myocardial syndrome". In this review, we summarize data indicating that partial incorporation of ESCs is sufficient to prevent disease from occurring. We also present data indicating that blastocyst incorporation of ESCs may aid in the prevention of heart failure in stressed WT mice. In some cases, the rescue observed is predominantly non-cell autonomous and relies on the production of secreted factors from the ES-derived cells, but in others, cell replacement is required. Thus, congenital or acquired disease can be pre-emptively averted in mice by developmental injection of ESCs.
Collapse
|