1
|
Germelli L, Angeloni E, Da Pozzo E, Tremolanti C, De Felice M, Giacomelli C, Marchetti L, Muscatello B, Barresi E, Taliani S, Da Settimo Passetti F, Trincavelli ML, Martini C, Costa B. 18 kDa TSPO targeting drives polarized human microglia towards a protective and restorative neurosteroidome profile. Cell Mol Life Sci 2025; 82:34. [PMID: 39757281 DOI: 10.1007/s00018-024-05544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity. Here, the role of neurosteroidogenesis in the modulation of microgliosis was explored in human microglia cells. In particular, CYP11A1 inhibition or TSPO pharmacological stimulation, crucial proteins involved in the rate limiting step of the neurosteroidogenic cascade, were employed. CYP11A1 inhibition led microglia to acquire a dysfunctional and hyperreactive phenotype, while selective TSPO ligands promoted the establishment of an anti-inflammatory one. Analysis of specific neurosteroid levels (neurosteroidome) identified allopregnanolone/pregnanolone as crucial metabolites allowing controlled activation of microglia. Importantly, the neurosteroid shift towards a greater androgenic/estrogenic profile supported the transition from pro-inflammatory to neuroprotective microglia, suggesting the therapeutic potential of de novo microglial neurosteroidogenesis stimulation for neuroinflammatory-related disorders.
Collapse
Affiliation(s)
- Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy.
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martina De Felice
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Beatrice Muscatello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Federico Da Settimo Passetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Maria Letizia Trincavelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| |
Collapse
|
2
|
Li X, Zhou G, Sun X, Qu S, Lai H, Wu Y, Li D, Liu L, Zhang G, Yang J, Huang X. NLRP12 Senses the SARS-CoV-2 Membrane Protein and Promotes an Inflammatory Response. J Infect Dis 2024; 229:660-670. [PMID: 37976229 DOI: 10.1093/infdis/jiad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Indexed: 11/19/2023] Open
Abstract
COVID-19 is an acute respiratory disorder that is caused by SARS-CoV-2, in which excessive systemic inflammation is associated with adverse patient clinical outcomes. Here, we observed elevated expression levels of NLRP12 (nucleotide-binding leucine-rich repeat-containing receptor 12) in human peripheral monocytes and lung tissue during infection with SARS-CoV-2. Co-immunoprecipitation analysis revealed that NLRP12 directly interacted with the M protein through its leucine-rich repeat domain. Moreover, in vitro studies demonstrated that NLRP12 interacted with TRAF3 and promoted its ubiquitination and degradation, which counteracted the inhibitory effect of TRAF3 on the NF-κB/MAPK signaling pathway and promoted the production of inflammatory cytokines. Furthermore, an in vivo study revealed that NLRP12 knockout mice displayed attenuated tissue injury and ameliorated inflammatory responses in the lungs when infected with a SARS-CoV-2 M protein-reconstituted pseudovirus and mouse coronavirus. Taken together, these findings suggest that NLRP12 mediates the inflammatory responses during coronavirus infection.
Collapse
Affiliation(s)
- Xingyu Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Guangde Zhou
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen
| | - Xingzi Sun
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai
| | - Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai
| | - Hongzhi Lai
- Medical Intensive Care Unit, The Third People's Hospital of Shantou, Shantou
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai
| | - Dechang Li
- Tuberculosis Prevention and Control Institution, Yuebei Second People's Hospital, Shaoguan
| | - Lei Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen
| | - Jingwen Yang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xi Huang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| |
Collapse
|
3
|
Carlson CG, Stein L, Dole E, Potter RM, Bayless D. Agents Which Inhibit NF-κB Signaling Block Spontaneous Contractile Activity and Negatively Influence Survival of Developing Myotubes. J Cell Physiol 2017; 231:788-97. [PMID: 26130066 DOI: 10.1002/jcp.25085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/25/2015] [Indexed: 01/06/2023]
Abstract
Inhibiting the NF-κB signaling pathway provides morphological and functional benefits for the mdx mouse, a model for Duchenne muscular dystrophy characterized by chronic elevations in the nuclear expression of p65, the transactivating component of the NF-κB complex. The purpose of this study was to examine p65 expression in nondystrophic and mdx myotubes using confocal immunofluorescence, and determine whether inhibitors of the NF-κB pathway alter myotube development. Primary cultures of nondystrophic and mdx myotubes had identical levels of nuclear and cytosolic p65 expression and exhibited equivalent responses to TNF-α, thus excluding the hypothesis that the lack of dystrophin is sufficient to induce increases in NF-κB signaling. The NF-κB inhibitors pyrrolidine dithiocarbamate (PDTC) and sulfasalazine decreased spontaneous contractile activity and reduced myotube viability in a dose- and time-dependent manner. Similarly, a vivo-morpholino designed to block translation of murine p65 (m-p65tb-vivomorph1) rapidly abolished spontaneous contractile activity, reduced p65 expression measured by confocal immunofluorescence, and induced cell death in primary cultures of nondystrophic and mdx myotubes. Similar effects on p65 immunofluorescence and cell viability were observed following m-p65tb-vivomorph1 exposure to spontaneously inactive C2C12 myotubes, while exposure to a control scrambled vivo morpholino had no effect. These results indicate a direct role of the NF-κB pathway in myotube development and identify a potential therapeutic limitation to the use of NF-κB inhibitors in treating Duchenne and related muscular dystrophies. J. Cell. Physiol. 231: 788-797, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- C George Carlson
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona.,Department of Physiology, Kirksville College Osteopathic Medicine, Kirksville, Missouri
| | - Lauren Stein
- Department of Physiology, Kirksville College Osteopathic Medicine, Kirksville, Missouri
| | - Elizabeth Dole
- Department of Physiology, Kirksville College Osteopathic Medicine, Kirksville, Missouri
| | - Ross M Potter
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona
| | - David Bayless
- Department of Physiology, Kirksville College Osteopathic Medicine, Kirksville, Missouri
| |
Collapse
|
4
|
Hammers DW, Sleeper MM, Forbes SC, Coker CC, Jirousek MR, Zimmer M, Walter GA, Sweeney HL. Disease-modifying effects of orally bioavailable NF- κB inhibitors in dystrophin-deficient muscle. JCI Insight 2016; 1:e90341. [PMID: 28018975 DOI: 10.1172/jci.insight.90341] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle disease characterized by progressive muscle deterioration and replacement with an aberrant fatty, fibrous matrix. Chronic upregulation of nuclear factor κB (NF-κB) is implicated as a driver of the dystrophic pathogenesis. Herein, 2 members of a novel class of NF-κB inhibitors, edasalonexent (formerly CAT-1004) and CAT-1041, were evaluated in both mdx mouse and golden retriever muscular dystrophy (GRMD) dog models of DMD. These orally bioavailable compounds consist of a polyunsaturated fatty acid conjugated to salicylic acid and potently suppress the pathogenic NF-κB subunit p65/RelA in vitro. In vivo, CAT-1041 effectively improved the phenotype of mdx mice undergoing voluntary wheel running, in terms of activity, muscle mass and function, damage, inflammation, fibrosis, and cardiac pathology. We identified significant increases in dysferlin as a possible contributor to the protective effect of CAT-1041 to sarcolemmal damage. Furthermore, CAT-1041 improved the more severe GRMD phenotype in a canine case study, where muscle mass and diaphragm function were maintained in a treated GRMD dog. These results demonstrate that NF-κB modulation by edasalonexent and CAT-1041 is effective in ameliorating the dystrophic process and these compounds are candidates for new treatments for DMD patients.
Collapse
Affiliation(s)
- David W Hammers
- Department of Physiology and.,Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Pharmacology and Therapeutics.,Myology Institute and
| | - Margaret M Sleeper
- Myology Institute and.,Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA.,Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine
| | - Sean C Forbes
- Myology Institute and.,Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Cora C Coker
- Department of Pharmacology and Therapeutics.,Myology Institute and
| | | | - Michael Zimmer
- Catabasis Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Glenn A Walter
- Myology Institute and.,Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - H Lee Sweeney
- Department of Physiology and.,Department of Pharmacology and Therapeutics.,Myology Institute and
| |
Collapse
|
5
|
Hering T, Braubach P, Landwehrmeyer GB, Lindenberg KS, Melzer W. Fast-to-Slow Transition of Skeletal Muscle Contractile Function and Corresponding Changes in Myosin Heavy and Light Chain Formation in the R6/2 Mouse Model of Huntington's Disease. PLoS One 2016; 11:e0166106. [PMID: 27820862 PMCID: PMC5098792 DOI: 10.1371/journal.pone.0166106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
Huntington´s disease (HD) is a hereditary neurodegenerative disease resulting from an expanded polyglutamine sequence (poly-Q) in the protein huntingtin (HTT). Various studies report atrophy and metabolic pathology of skeletal muscle in HD and suggest as part of the process a fast-to-slow fiber type transition that may be caused by the pathological changes in central motor control or/and by mutant HTT in the muscle tissue itself. To investigate muscle pathology in HD, we used R6/2 mice, a common animal model for a rapidly progressing variant of the disease expressing exon 1 of the mutant human gene. We investigated alterations in the extensor digitorum longus (EDL), a typical fast-twitch muscle, and the soleus (SOL), a slow-twitch muscle. We focussed on mechanographic measurements of excised muscles using single and repetitive electrical stimulation and on the expression of the various myosin isoforms (heavy and light chains) using dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of whole muscle and single fiber preparations. In EDL of R6/2, the functional tests showed a left shift of the force-frequency relation and decrease in specific force. Moreover, the estimated relative contribution of the fastest myosin isoform MyHC IIb decreased, whereas the contribution of the slower MyHC IIx isoform increased. An additional change occurred in the alkali MyLC forms showing a decrease in 3f and an increase in 1f level. In SOL, a shift from fast MyHC IIa to the slow isoform I was detectable in male R6/2 mice only, and there was no evidence of isoform interconversion in the MyLC pattern. These alterations point to a partial remodeling of the contractile apparatus of R6/2 mice towards a slower contractile phenotype, predominantly in fast glycolytic fibers.
Collapse
Affiliation(s)
- Tanja Hering
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Department of Neurology, Ulm University, Ulm, Germany
| | - Peter Braubach
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | | | - Werner Melzer
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- * E-mail:
| |
Collapse
|
6
|
Cerveró C, Montull N, Tarabal O, Piedrafita L, Esquerda JE, Calderó J. Chronic Treatment with the AMPK Agonist AICAR Prevents Skeletal Muscle Pathology but Fails to Improve Clinical Outcome in a Mouse Model of Severe Spinal Muscular Atrophy. Neurotherapeutics 2016; 13:198-216. [PMID: 26582176 PMCID: PMC4720671 DOI: 10.1007/s13311-015-0399-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder characterized by spinal and brainstem motor neuron (MN) loss and skeletal muscle paralysis. Currently, there is no effective treatment other than supportive care to ameliorate the quality of life of patients with SMA. Some studies have reported that physical exercise, by improving muscle strength and motor function, is potentially beneficial in SMA. The adenosine monophosphate-activated protein kinase agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) has been reported to be an exercise mimetic agent that is able to regulate muscle metabolism and increase endurance both at rest and during exercise. Chronic AICAR administration has been shown to ameliorate the dystrophic muscle phenotype and motor behavior in the mdx mouse, a model of Duchenne muscular dystrophy. Here, we investigated whether chronic AICAR treatment was able to elicit beneficial effects on motor abilities and neuromuscular histopathology in a mouse model of severe SMA (the SMNΔ7 mouse). We report that AICAR improved skeletal muscle atrophy and structural changes found in neuromuscular junctions of SMNΔ7 animals. However, although AICAR prevented the loss of glutamatergic excitatory synapses on MNs, this compound was not able to mitigate MN loss or the microglial and astroglial reaction occurring in the spinal cord of diseased mice. Moreover, no improvement in survival or motor performance was seen in SMNΔ7 animals treated with AICAR. The beneficial effects of AICAR in SMA found in our study are SMN-independent, as no changes in the expression of this protein were seen in the spinal cord and skeletal muscle of diseased animals treated with this compound.
Collapse
Affiliation(s)
- Clàudia Cerveró
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Neus Montull
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
7
|
Carlson CG, Potter R, Yu V, Luo K, Lavin J, Nielsen C. In vivo
treatment with the NF-κB inhibitor ursodeoxycholic acid (UDCA) improves tension development in the isolated mdx
costal diaphragm. Muscle Nerve 2015; 53:431-7. [DOI: 10.1002/mus.24755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 11/09/2022]
Affiliation(s)
- C. George Carlson
- Department of Physiology; Midwestern University Glendale; Glendale Arizona 85308
| | - Ross Potter
- Department of Physiology; Midwestern University Glendale; Glendale Arizona 85308
| | - Vivien Yu
- Department of Physiology; Midwestern University Glendale; Glendale Arizona 85308
| | - Kevin Luo
- Department of Physiology; Midwestern University Glendale; Glendale Arizona 85308
| | - Jesse Lavin
- Department of Physiology; Midwestern University Glendale; Glendale Arizona 85308
| | - Cory Nielsen
- Department of Physiology; Midwestern University Glendale; Glendale Arizona 85308
| |
Collapse
|
8
|
Braubach P, Orynbayev M, Andronache Z, Hering T, Landwehrmeyer GB, Lindenberg KS, Melzer W. Altered Ca(2+) signaling in skeletal muscle fibers of the R6/2 mouse, a model of Huntington's disease. ACTA ACUST UNITED AC 2015; 144:393-413. [PMID: 25348412 PMCID: PMC4210430 DOI: 10.1085/jgp.201411255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat within the gene encoding the protein huntingtin. The resulting elongated glutamine (poly-Q) sequence of mutant huntingtin (mhtt) affects both central neurons and skeletal muscle. Recent reports suggest that ryanodine receptor-based Ca(2+) signaling, which is crucial for skeletal muscle excitation-contraction coupling (ECC), is changed by mhtt in HD neurons. Consequently, we searched for alterations of ECC in muscle fibers of the R6/2 mouse, a mouse model of HD. We performed fluorometric recordings of action potentials (APs) and cellular Ca(2+) transients on intact isolated toe muscle fibers (musculi interossei), and measured L-type Ca(2+) inward currents on internally dialyzed fibers under voltage-clamp conditions. Both APs and AP-triggered Ca(2+) transients showed slower kinetics in R6/2 fibers than in fibers from wild-type mice. Ca(2+) removal from the myoplasm and Ca(2+) release flux from the sarcoplasmic reticulum were characterized using a Ca(2+) binding and transport model, which indicated a significant reduction in slow Ca(2+) removal activity and Ca(2+) release flux both after APs and under voltage-clamp conditions. In addition, the voltage-clamp experiments showed a highly significant decrease in L-type Ca(2+) channel conductance. These results indicate profound changes of Ca(2+) turnover in skeletal muscle of R6/2 mice and suggest that these changes may be associated with muscle pathology in HD.
Collapse
Affiliation(s)
- Peter Braubach
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| | - Murat Orynbayev
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| | - Zoita Andronache
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| | - Tanja Hering
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| | | | - Katrin S Lindenberg
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| | - Werner Melzer
- Institute of Applied Physiology and Department of Neurology, Ulm University, D-89081 Ulm, Germany
| |
Collapse
|
9
|
Buttgereit A, Weber C, Friedrich O. A novel quantitative morphometry approach to assess regeneration in dystrophic skeletal muscle. Neuromuscul Disord 2014; 24:596-603. [DOI: 10.1016/j.nmd.2014.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
|
10
|
Compared with that of MUFA, a high dietary intake of n-3 PUFA does not reduce the degree of pathology in mdx mice. Br J Nutr 2014; 111:1791-800. [PMID: 24524266 DOI: 10.1017/s0007114514000129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle disease that affects afflicted males from a young age, and the mdx mouse is an animal model of this disease. Although new drugs are in development, it is also essential to assess potential dietary therapies that could assist in the management of DMD. In the present study, we compared two diets, high-MUFA diet v. high-PUFA diet, in mdx mice. To generate the high-PUFA diet, a portion of dietary MUFA (oleic acid) was replaced with the dietary essential n-3 PUFA α-linolenic acid (ALA). We sought to determine whether ALA, compared with oleic acid, was beneficial in mdx mice. Consumption of the high-PUFA diet resulted in significantly higher n-3 PUFA content and reduced arachidonic acid content in skeletal muscle phospholipids (PL), while the high-MUFA diet led to higher oleate content in PL. Mdx mice on the high-MUFA diet exhibited 2-fold lower serum creatine kinase activity than those on the high-PUFA diet (P< 0·05) as well as a lower body fat percentage (P< 0·05), but no significant difference in skeletal muscle histopathology results. There was no significant difference between the dietary groups with regard to phosphorylated p65 (an inflammatory marker) in skeletal muscle. In conclusion, alteration of PL fatty acid (FA) composition by the high-PUFA diet made mdx muscle more susceptible to sarcolemmal leakiness, while the high-MUFA diet exhibited a more favourable impact. These results may be important for designing dietary treatments for DMD patients, and future work on dietary FA profiles, such as comparing other FA classes and dose effects, is needed.
Collapse
|
11
|
Altamirano F, López JR, Henríquez C, Molinski T, Allen PD, Jaimovich E. Increased resting intracellular calcium modulates NF-κB-dependent inducible nitric-oxide synthase gene expression in dystrophic mdx skeletal myotubes. J Biol Chem 2012; 287:20876-87. [PMID: 22549782 DOI: 10.1074/jbc.m112.344929] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by dystrophin mutations, characterized by chronic inflammation and severe muscle wasting. Dystrophic muscles exhibit activated immune cell infiltrates, up-regulated inflammatory gene expression, and increased NF-κB activity, but the contribution of the skeletal muscle cell to this process has been unclear. The aim of this work was to study the pathways that contribute to the increased resting calcium ([Ca(2+)](rest)) observed in mdx myotubes and its possible link with up-regulation of NF-κB and pro-inflammatory gene expression in dystrophic muscle cells. [Ca(2+)](rest) was higher in mdx than in WT myotubes (308 ± 6 versus 113 ± 2 nm, p < 0.001). In mdx myotubes, both the inhibition of Ca(2+) entry (low Ca(2+) solution, Ca(2+)-free solution, and Gd(3+)) and blockade of either ryanodine receptors or inositol 1,4,5-trisphosphate receptors reduced [Ca(2+)](rest). Basal activity of NF-κB was significantly up-regulated in mdx versus WT myotubes. There was an increased transcriptional activity and p65 nuclear localization, which could be reversed when [Ca(2+)](rest) was reduced. Levels of mRNA for TNFα, IL-1β, and IL-6 were similar in WT and mdx myotubes, whereas inducible nitric-oxide synthase (iNOS) expression was increased 5-fold. Reducing [Ca(2+)](rest) using different strategies reduced iNOS gene expression presumably as a result of decreased activation of NF-κB. We propose that NF-κB, modulated by increased [Ca(2+)](rest), is constitutively active in mdx myotubes, and this mechanism can account for iNOS overexpression and the increase in reactive nitrogen species that promote damage in dystrophic skeletal muscle cells.
Collapse
Affiliation(s)
- Francisco Altamirano
- From the Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8389100, Chile
| | | | | | | | | | | |
Collapse
|
12
|
Ljubicic V, Khogali S, Renaud JM, Jasmin BJ. Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle. Am J Physiol Cell Physiol 2011; 302:C110-21. [PMID: 21940670 DOI: 10.1152/ajpcell.00183.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we evaluated how a pharmacologically induced phenotype shift in dystrophic skeletal muscle would affect subsequent intracellular signaling in response to a complementary, adaptive physiological stimulus. mdx mice were treated with the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR; 500 mg·kg(-1)·day(-1)) for 30 days, and then one-half of the animals were subjected to a bout of treadmill running to induce acute AMPK and p38 MAPK signaling. The mRNA levels of phenotypic modifiers, including peroxisome proliferator-activated receptor-δ (PPARδ), PPARγ coactivator-1α (PGC-1α), receptor interacting protein 140 (RIP 140), and silent information regulator two ortholog 1 (SIRT1) were assessed in skeletal muscle, as well as the expression of the protein arginine methyltransferase genes PRMT1 and CARM1. We found unique AMPK and p38 phosphorylation and expression signatures between dystrophic and healthy muscle. In dystrophic skeletal muscle, treadmill running induced PPARδ, PGC-1α, and SIRT1 mRNAs, three molecules that promote the slow, oxidative myogenic program. In the mdx animals that received the chronic AICAR treatment, running-elicited AMPK and p38 phosphorylation was attenuated compared with vehicle-treated mice. Similarly, acute stress-evoked expression of PPARδ, PGC-1α, and SIRT1 was also blunted by chronic pharmacological AMPK stimulation. Skeletal muscle PRMT1 and CARM1 protein contents were higher in mdx mice compared with wild-type littermates. The acute running-evoked induction of PRMT1 and CARM1 mRNAs was also attenuated by the AICAR treatment. Our data demonstrate that prior pharmacological conditioning is a salient determinant in how dystrophic muscle adapts to subsequent complementary, acute physiological stress stimuli. These results provide insight into possible therapeutic applications of synthetic agonists in neuromuscular diseases, such as during chronic administration to Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
13
|
Miles MT, Cottey E, Cottey A, Stefanski C, Carlson CG. Reduced resting potentials in dystrophic (mdx) muscle fibers are secondary to NF-κB-dependent negative modulation of ouabain sensitive Na+-K+ pump activity. J Neurol Sci 2011; 303:53-60. [PMID: 21306738 DOI: 10.1016/j.jns.2011.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/28/2010] [Accepted: 01/12/2011] [Indexed: 12/11/2022]
Abstract
To examine potential mechanisms for the reduced resting membrane potentials (RPs) of mature dystrophic (mdx) muscle fibers, the Na(+)-K(+) pump inhibitor ouabain was added to freshly isolated nondystrophic and mdx fibers. Ouabain produced a 71% smaller depolarization in mdx fibers than in nondystrophic fibers, increased the [Na(+)](i) in nondystrophic fibers by 40%, but had no significant effect on the [Na(+)](i) of mdx fibers, which was approximately double that observed in untreated nondystrophic fibers. Western blots indicated no difference in total and phosphorylated Na(+)-K(+) ATPase catalytic α1 subunit between nondystrophic and mdx muscle. Examination of the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) indicated that direct application of the drug slowly hyperpolarized mdx fibers (7 mV in 90 min) but had no effect on nondystrophic fibers. Pretreatment with ouabain abolished this hyperpolarization, and pretreatment with PDTC restored ouabain-induced depolarization and reduced [Na(+)](i). Administration of an NF-κB inhibitor that utilizes a different mechanism for reducing nuclear NF-κB activation, ursodeoxycholic acid (UDCA), also hyperpolarized mdx fibers. These results suggest that in situ Na(+)-K(+) pump activity is depressed in mature dystrophic fibers by NF-κB dependent modulators, and that this reduced pump activity contributes to the weakness characteristic of dystrophic muscle.
Collapse
Affiliation(s)
- M T Miles
- Dept. of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501-1497, USA
| | | | | | | | | |
Collapse
|
14
|
Siegel AS, Henley S, Zimmerman A, Miles M, Plummer R, Kurz J, Balch F, Rhodes JA, Shinn GL, Carlson CG. The influence of passive stretch and NF-κB inhibitors on the morphology of dystrophic muscle fibers. Anat Rec (Hoboken) 2010; 294:132-44. [PMID: 21157924 DOI: 10.1002/ar.21294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/13/2010] [Indexed: 11/12/2022]
Abstract
The triangularis sterni (TS) is an expiratory muscle that is passively stretched during inspiration. The magnitude of passive stretch depends upon the location of individual fibers within the TS muscle, with fibers located more caudally being stretched ∼ 5% to 10% more than fibers in the cephalad region. In the mdx mouse model for muscular dystrophy, the TS exhibits severe pathological alterations that are ameliorated by treatment with inhibitors of the NF-κB pathway. The purpose of this study was to assess the influence of passive stretch in vivo on fiber morphology in nondystrophic and mdx TS muscles, and the morphological benefits of treating mdx mice with two distinct NF-κB inhibitors, pyrrolidine dithiocarbamate (PDTC), and ursodeoxycholic acid (UDCA). Transmission electron microscopy revealed Z-line streaming, hypercontraction, and disassociation of the plasma membrane from the basal lamina in mdx fibers. In both nondystrophic and mdx TS muscles, fiber density was larger in more caudal regions. In comparison with nondystrophic TS, fibers in the mdx TS exhibited substantial reductions in diameter throughout all regions. In vivo treatment with either PDTC or UDCA tended to increase fiber diameter in the middle and decrease fiber diameter in the caudal TS, while reducing centronucleation in the middle region. These results suggest that passive stretch induces hypercontraction and plasma membrane abnormalities in dystrophic muscle, and that differences in the magnitude of passive stretch may influence fiber morphology and the actions of NF-κB inhibitors on dystrophic morphology.
Collapse
Affiliation(s)
- A S Siegel
- Department of Physiology, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, Missouri
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Graham KM, Singh R, Millman G, Malnassy G, Gatti F, Bruemmer K, Stefanski C, Curtis H, Sesti J, Carlson CG. Excessive collagen accumulation in dystrophic (mdx) respiratory musculature is independent of enhanced activation of the NF-kappaB pathway. J Neurol Sci 2010; 294:43-50. [PMID: 20471037 DOI: 10.1016/j.jns.2010.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/02/2010] [Accepted: 04/16/2010] [Indexed: 11/19/2022]
Abstract
Skeletal muscle fibrosis is present in the diaphragm of the mdx mouse, a model for Duchenne dystrophy. In both the mouse and human, dystrophic muscle exhibits pronounced increases in NF-kappa B signaling. Various inhibitors of this pathway, such as pyrrolidine dithiocarbamate (PDTC) and ursodeoxycholic acid (UDCA), have been shown to have beneficial effects on dystrophic (mdx) muscle. The present study characterizes the development of fibrosis in the mdx musculature, and determines the fibrolytic efficacy of PDTC and UDCA. The results indicate that collagen accumulation and the expression of fibrogenic (TGF-beta1) and fibrolytic (MMP-9) mediators are dependent on muscle origin in both nondystrophic and mdx mice. Excessive collagen accumulation is observed in the mdx respiratory musculature prior to substantial muscle degeneration and cellular infiltration, and is associated with dystrophic increases in the expression of TGF-beta1 with no corresponding increases in MMP-9 expression. Treatment with PDTC or UDCA did not influence collagen deposition or TGF-beta1 expression in the mdx respiratory musculature. These results indicate that dystrophic increases in collagen are the result of NF-kappaB-independent signaling abnormalities, and that efforts to reduce excessive collagen accumulation will require treatments to more specifically reduce TGF-beta1 signaling or enhance the expression and/or activity of matrix metalloproteases.
Collapse
Affiliation(s)
- K M Graham
- Dept. of Physiology, Kirksville College of Osteopathic Medicine, AT Still University, 800 W. Jefferson St. Kirksville, MO 63501-1497, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|