1
|
Fu SJ, Cheng KM, Hsiao CT, Fang YC, Jeng CJ, Tang CY. Pin1 promotes human Ca V2.1 channel polyubiquitination by RNF138: pathophysiological implication for episodic ataxia type 2. Cell Commun Signal 2024; 22:571. [PMID: 39609819 PMCID: PMC11603662 DOI: 10.1186/s12964-024-01960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
Loss-of-function mutations in the human gene encoding the neuron-specific Ca2+ channel CaV2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated CaV2.1 mutants may exhibit defective proteostasis and promote endoplasmic reticulum (ER)-associated degradation of their wild-type (WT) counterpart in a dominant-negative manner. The E3 ubiquitin ligase RNF138 was previously shown to mediate EA2-related aberrant degradation of CaV2.1 at the ER. Herein we aimed to elucidate the ER proteostasis mechanism of CaV2.1. The peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (Pin1) was identified as a novel neuronal CaV2.1 binding partner that promoted polyubiquitination and proteasomal degradation of CaV2.1. Suppression of endogenous Pin1 level with either shRNA knockdown or the Pin1 inhibitor all-trans retinoic acid (ATRA) enhanced endogenous CaV2.1 protein level in neurons, and attenuated ER-associated degradation of CaV2.1 WT and EA2-causing mutants. Detailed mutation analyses suggested that Pin1 interacted with specific phosphorylated serine/threonine-proline motifs in the intracellular II-III loop and the distal carboxy-terminal region of human CaV2.1. We further generated Pin1-insensitive CaV2.1 constructs and demonstrated that, during ER quality control, Pin1 served as an upstream regulator of CaV2.1 polyubiquitination and degradation by RNF138. Pin1 regulation was required for the dominant-negative effect of EA2 missense mutants, but not nonsense mutants, on CaV2.1 WT protein expression. Our data are consistent with the idea that CaV2.1 proteostasis at the ER, as well as dominant-negative suppression of disease-causing loss-of-function mutants on CaV2.1 WT, entail both Pin1/RNF138-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Ssu-Ju Fu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Kai-Min Cheng
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ya-Ching Fang
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
2
|
Mammadova D, Kraus C, Leis T, Popp B, Zweier C, Reis A, Trollmann R. Intrafamilial neurological phenotypic variability due to either biallelic or monoallelic pathogenic variants in CACNA1A. Front Neurol 2024; 15:1458109. [PMID: 39416668 PMCID: PMC11479977 DOI: 10.3389/fneur.2024.1458109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Pathogenic heterozygous variants in CACNA1A are associated with familial hemiplegic migraine, episodic ataxia type 2 and spinocerebellar ataxia type 6, and more recently, neurodevelopmental disorders. We describe a severe, early-onset phenotype including severe muscular hypotonia, early-onset epileptic seizures, apnoea, optic atrophy and dysphagia in three siblings carrying compound heterozygous frameshift variants in CACNA1A. Two male patients died at the age of 5 or 14 months of suspected SIDS or severe developmental epileptic encephalopathy (DEE) with refractory seizures and apnoea. A male child (index patient) developed severe early-onset DEE including seizures and ictal apnoea at the age of 4 weeks. Another male child developed generalized epilepsy and mild intellectual impairment in late infancy, and his mother and his maternal uncle were identified as carriers of a known CACNA1A pathogenic variant [c.2602delG heterozygous, p. (Ala868Profs*24)] with a diagnosis of episodic ataxia type 2. This maternal pathogenic variant c.2602delG was detected in the index patient and child 2. Trio-Exome sequencing identified an additional heterozygous pathogenic variant in the CACNA1A gene, c.5476delC, p.(His1826Thrfs*30) in the index patient and child 2, which was inherited from the asymptomatic father. In conclusion, the novel compound heterozygosity for two frameshift pathogenic variants, maternally [c.2602delG, p.(Ala868Profs*24)] and paternally [c.5476delC, p.(His1826Thrfs*3)] is associated with a severe phenotype of early-onset DEE. This observation highlights the necessity of additional analyses to clarify unusual phenotypes even if a pathogenic variant has already been identified, and expands the clinical spectrum of CACNA1A-related disorders.
Collapse
Affiliation(s)
- Dilbar Mammadova
- Department of Pediatrics, Pediatric Neurology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Leis
- Department of Pediatrics, Pediatric Neurology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Center of Functional Genomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Human Genetics, Inselspital, University of Bern, Bern, Switzerland
| | - Andre Reis
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Disorders Erlangen, University Hospital Erlangen, Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics, Pediatric Neurology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Disorders Erlangen, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Reith RR, Beever JE, Paschal JC, Banta J, Porter BF, Steffen DJ, Hairgrove TB, Petersen JL. A de novo mutation in CACNA1A is associated with autosomal dominant bovine familial convulsions and ataxia in Angus cattle. Anim Genet 2024; 55:344-351. [PMID: 38426585 DOI: 10.1111/age.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Bovine familial convulsions and ataxia (BFCA) is considered an autosomal dominant syndrome with incomplete penetrance. Nine Angus calves from the same herd were diagnosed with BFCA within days of birth. Necropsy revealed cerebellar and spinal cord lesions associated with the condition. Parentage testing confirmed that all affected calves had a common sire. The sire was then bred to 36 cows across two herds using artificial insemination, producing an additional 14 affected calves. The objective of this investigation was to identify hypothesized dominant genetic variation underlying the condition. Whole-genome sequencing was performed on the sire, six affected and seven unaffected paternal half-sibling calves and combined with data from 135 unrelated controls. The sire and five of the six affected calves were heterozygous for a nonsense variant (Chr7 g.12367906C>T, c.5073C>T, p.Arg1681*) in CACNA1A. The other affected calves (N = 8) were heterozygous for the variant but it was absent in the other unaffected calves (N = 7) and parents of the sire. This variant was also absent in sequence data from over 6500 other cattle obtained via public repositories and collaborator projects. The variant in CACNA1A is expressed in the cerebellum of the ataxic calves as detected in the transcriptome and was not differentially expressed compared with controls. The CACNA1A protein is part of a highly expressed cerebellar calcium voltage gated channel. The nonsense variant is proposed to cause haploinsufficiency, preventing proper transmission of neuronal signals through the channel and resulting in BFCA.
Collapse
Affiliation(s)
- Rachel R Reith
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, Nebraska, USA
| | - Jonathan E Beever
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Joe C Paschal
- Texas A&M AgriLife Extension, Texas A&M University, College Station, Texas, USA
| | - Jason Banta
- Texas A&M AgriLife Extension, Texas A&M University, College Station, Texas, USA
| | - Brian F Porter
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - David J Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, USA
| | - Thomas B Hairgrove
- Texas A&M AgriLife Extension, Texas A&M University, College Station, Texas, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
4
|
Kessi M, Chen B, Pang N, Yang L, Peng J, He F, Yin F. The genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders: a small case series and literature reviews. Front Mol Neurosci 2023; 16:1222321. [PMID: 37555011 PMCID: PMC10406136 DOI: 10.3389/fnmol.2023.1222321] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders such as global developmental delay (GDD)/intellectual disability (ID), epileptic encephalopathy (EE), and autism spectrum disorder (ASD) are unknown. We aimed to summarize genotype-phenotype correlations and potential treatment for CACNA1A-related neurodevelopmental disorders. METHODS Six children diagnosed with CACNA1A-related neurodevelopmental disorders at Xiangya Hospital, Central South University from April 2018 to July 2021 were enrolled. The PubMed database was systematically searched for all reported patients with CACNA1A-related neurodevelopmental disorders until February 2023. Thereafter, we divided patients into several groups for comparison. RESULTS Six patients were recruited from our hospital. Three cases presented with epilepsy, five with GDD/ID, five with ataxia, and two with ASD. The variants included p.G701R, p.R279C, p.D1644N, p.Y62C, p.L1422Sfs*8, and p. R1664Q [two gain-of-function (GOF) and four loss-of-function (LOF) variants]. About 187 individuals with GDD/ID harboring 123 variants were found (case series plus data from literature). Of those 123 variants, p.A713T and p.R1664* were recurrent, 37 were LOF, and 7 were GOF. GOF variants were linked with severe-profound GDD/ID while LOF variants were associated with mild-moderate GDD/ID (p = 0.001). The p.A713T variant correlated with severe-profound GDD/ID (p = 0.003). A total of 130 epileptic patients harboring 83 variants were identified. The epileptic manifestations included status epilepticus (n = 64), provoked seizures (n = 49), focal seizures (n = 37), EE (n = 29), absence seizures (n = 26), and myoclonic seizures (n = 10). About 49 (42.20%) patients had controlled seizures while 67 (57.80%) individuals remained with refractory seizures. Status epilepticus correlated with variants located on S4, S5, and S6 (p = 0.000). Among the 83 epilepsy-related variants, 23 were recurrent, 32 were LOF, and 11 were GOF. Status epilepticus was linked with GOF variants (p = 0.000). LOF variants were associated with absence seizures (p = 0.000). Six patients died at an early age (3 months to ≤5 years). We found 18 children with ASD. Thirteen variants including recurrent ones were identified in those 18 cases. GOF changes were more linked to ASD. CONCLUSION The p.A713T variant is linked with severe-profound GDD/ID. More than half of CACNA1A-related epilepsy is refractory. The most common epileptic manifestation is status epilepticus, which correlates with variants located on S4, S5, and S6.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children’s Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Indelicato E, Boesch S. CACNA1A-Related Channelopathies: Clinical Manifestations and Treatment Options. Handb Exp Pharmacol 2023; 279:227-248. [PMID: 36592223 DOI: 10.1007/164_2022_625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the last decade, variants in the Ca2+ channel gene CACNA1A emerged as a frequent aetiology of rare neurological phenotypes sharing a common denominator of variable paroxysmal manifestations and chronic cerebellar dysfunction. The spectrum of paroxysmal manifestations encompasses migraine with hemiplegic aura, episodic ataxia, epilepsy and paroxysmal non-epileptic movement disorders. Additional chronic neurological symptoms range from severe developmental phenotypes in early-onset cases to neurobehavioural disorders and chronic cerebellar ataxia in older children and adults.In the present review we systematically approach the clinical manifestations of CACNA1A variants, delineate genotype-phenotype correlations and elaborate on the emerging concept of an age-dependent phenotypic spectrum in CACNA1A disease. We furthermore reflect on different therapy options available for paroxysmal symptoms in CACNA1A and address open issues to prioritize in the future clinical research.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Lipman AR, Fan X, Shen Y, Chung WK. Clinical and genetic characterization of CACNA1A-related disease. Clin Genet 2022; 102:288-295. [PMID: 35722745 PMCID: PMC9458680 DOI: 10.1111/cge.14180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
Pathogenic variants in the CACNA1A gene have been associated with episodic ataxia type 2, familial hemiplegic migraine, and spinocerebellar ataxia 6. With increasing use of clinical genetic testing, associations have expanded to include developmental delay, epilepsy, paroxysmal dystonia, and neuropsychiatric disorders. We report 47 individuals with 33 unique likely pathogenic or pathogenic CACNA1A variants. A machine learning method, funNCion, was used to predict loss-of-function (LoF)/gain-of-function (GoF) impact of genetic variants, and a heuristic severity score was designed to analyze genotype/phenotype correlations. Commonly reported phenotypes include developmental delay/intellectual disability (96%), hemiplegic migraines (36%), episodic ataxia type 2 (32%), epilepsy (55%), autism spectrum disorder (23%), and paroxysmal tonic upward gaze (36%). Severity score was significantly higher for predicted GoF variants, variants in the S5/S6 helices, and the recurrent p.Val1392Met variant. Seizures/status epilepticus were correlated with GoF and were more frequent in those with the p.Val1392Met variant. Our findings demonstrate a breadth of disease severity in CACNA1A-related disease and suggest that the clinical phenotypic heterogeneity likely reflects diverse molecular phenotypes. A better understanding of the natural history of CACNA1A-related disease and genotype/phenotype correlations will help inform prognosis and prepare for future clinical trials.
Collapse
Affiliation(s)
- Amy R. Lipman
- Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Xiao Fan
- Department of Pediatrics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Batum M, Kısabay Ak A, Çetin G, Çelebi HBG, Çam S, Mavioğlu H. Coincidental occurance of episodic ataxia and multiple sclerosis: a case report and review of the literature. Int J Neurosci 2022; 132:656-661. [DOI: 10.1080/00207454.2020.1835896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Melike Batum
- Neurology Department, Celal Bayar Unıversity, Manisa, Turkey
| | | | - Güldeniz Çetin
- Neurology Department, Celal Bayar Unıversity, Manisa, Turkey
| | | | - Sırrı Çam
- Genetics Department, Celal Bayar Unıversity, Manisa, Turkey
| | - Hatice Mavioğlu
- Neurology Department, Celal Bayar Unıversity, Manisa, Turkey
| |
Collapse
|
8
|
Shen Y, Qi X. Update on diagnosis and differential diagnosis of vestibular migraine. Neurol Sci 2022; 43:1659-1666. [PMID: 35015204 DOI: 10.1007/s10072-022-05872-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Vestibular migraine (VM) is considered the most common cause of spontaneous episodic vertigo and the second most common cause of vertigo. However, without a biomarker or a complete understanding of the pathophysiology, VM remains underrecognized and underdiagnosed. Therefore, definite diagnostic criteria are urgently needed. Meanwhile, VM should be clearly differentiated from other similar diseases. This paper may help clinicians improve the diagnostic rate of VM and reduce the rate of misdiagnosis. A PubMed search was performed using the following terms: vestibular migraine, migraine-associated vertigo/dizziness, migraine-related vertigo, migraine-related vestibulopathy, benign recurrent vertigo, vertiginous migraine, migraine, headache, vertigo, dizziness, and diagnosis. This paper also summarizes the diagnostic criteria and differential diagnoses of VM. The diagnosis of VM is based on the symptoms, degree, frequency, and duration of the vestibular episodes, a history of migraine, and the temporal association of migraine symptoms with vestibular episodes in at least 50% of cases, while ruling out what may be due to other reasons. In addition to vestibular symptoms and migraine, transient auditory symptoms, nausea, vomiting, and susceptibility to motion sickness may also be associated with VM. Thus, VM should be differentiated from other diseases such as Meniere's disease, benign paroxysmal positional vertigo, migraine with brainstem aura, vestibular neuritis, posterior circulation ischemia, multiple lacunar infarction, vestibular paroxysmia, motion sickness, and episodic ataxia type 2. CONCLUSION Only if the diagnostic criteria of VM and differential diagnosis can be mastered clearly, we can make a definite diagnosis and treat patients properly.
Collapse
Affiliation(s)
- Youjin Shen
- Zhujiang Hospital (The Second School of Clinical Medicine), Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Neurology, Deqing County People's Hospital, Zhaoqing, 526600, Guangdong, China.
| | - Xiaokun Qi
- Zhujiang Hospital (The Second School of Clinical Medicine), Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Neurology, The Sixth Medical Center of PLA of Chinese General Hospital, Beijing, 100048, China
| |
Collapse
|
9
|
Choi JH, Oh EH, Choi SY, Kim HJ, Lee SK, Choi JY, Kim JS, Choi KD. Vestibular impairments in episodic ataxia type 2. J Neurol 2021; 269:2687-2695. [PMID: 34709445 DOI: 10.1007/s00415-021-10856-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
Episodic ataxia type 2 (EA2) can present diverse ocular motor abnormalities, but few studies have systematically evaluated vestibular function during the interictal periods. This study aimed to determine vestibular impairments in patients with EA2 during the interictal periods. We recruited 17 patients with genetically confirmed EA2 (10 men, age range = 16-85 years, median = 32 years). We systematically evaluated the vestibular function by measuring the semicircular canals (SCCs) function with bithermal caloric tests, rotatory chair test, and video head impulse test (vHIT), and the otolith function with subjective visual vertical (SVV) tilt and variability, and cervical and ocular vestibular-evoked myogenic potentials (VEMPs). Patients with EA2 commonly showed abnormal VOR responses at least for one SCC with high-acceleration, high-frequency head impulses (14/16, 88%), and impaired visual-vestibular interaction (7/12, 58%). In response to low acceleration and frequency stimuli, the VOR gains were generally normal. The majority of EA2 patients had impairments in at least one of the otolith function tests (13/16, 81%): SVV tilt or variability (7/14, 50%), oVEMP (8/15, 53%), and cVEMP (4/16, 25%). Vestibular impairments are common in EA2 even during the interictal periods. Selective decrease in the VOR responses during higher acceleration stimuli along with impaired visual-vestibular interaction and otolith function suggests degeneration of the vestibulocerebellum or vestibular nuclei.
Collapse
Affiliation(s)
- Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Eun Hye Oh
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Seo Young Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Hyo Jung Kim
- Research Administration Team, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seon Kyung Lee
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, South Korea
| | - Jeong Yoon Choi
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, South Korea
| | - Ji-Soo Kim
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13620, South Korea.
| | - Kwang-Dong Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea. .,Department of Neurology, College of Medicine, Pusan National University Hospital, 1-10 Ami-dong, Seo-gu, Busan, 49241, South Korea.
| |
Collapse
|
10
|
Lauxmann S, Sonnenberg L, Koch NA, Bosselmann C, Winter N, Schwarz N, Wuttke TV, Hedrich UBS, Liu Y, Lerche H, Benda J, Kegele J. Therapeutic Potential of Sodium Channel Blockers as a Targeted Therapy Approach in KCNA1-Associated Episodic Ataxia and a Comprehensive Review of the Literature. Front Neurol 2021; 12:703970. [PMID: 34566847 PMCID: PMC8459024 DOI: 10.3389/fneur.2021.703970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction: Among genetic paroxysmal movement disorders, variants in ion channel coding genes constitute a major subgroup. Loss-of-function (LOF) variants in KCNA1, the gene coding for KV1.1 channels, are associated with episodic ataxia type 1 (EA1), characterized by seconds to minutes-lasting attacks including gait incoordination, limb ataxia, truncal instability, dysarthria, nystagmus, tremor, and occasionally seizures, but also persistent neuromuscular symptoms like myokymia or neuromyotonia. Standard treatment has not yet been developed, and different treatment efforts need to be systematically evaluated. Objective and Methods: Personalized therapeutic regimens tailored to disease-causing pathophysiological mechanisms may offer the specificity required to overcome limitations in therapy. Toward this aim, we (i) reviewed all available clinical reports on treatment response and functional consequences of KCNA1 variants causing EA1, (ii) examined the potential effects on neuronal excitability of all variants using a single compartment conductance-based model and set out to assess the potential of two sodium channel blockers (SCBs: carbamazepine and riluzole) to restore the identified underlying pathophysiological effects of KV1.1 channels, and (iii) provide a comprehensive review of the literature considering all types of episodic ataxia. Results: Reviewing the treatment efforts of EA1 patients revealed moderate response to acetazolamide and exhibited the strength of SCBs, especially carbamazepine, in the treatment of EA1 patients. Biophysical dysfunction of KV1.1 channels is typically based on depolarizing shifts of steady-state activation, leading to an LOF of KCNA1 variant channels. Our model predicts a lowered rheobase and an increase of the firing rate on a neuronal level. The estimated concentration dependent effects of carbamazepine and riluzole could partially restore the altered gating properties of dysfunctional variant channels. Conclusion: These data strengthen the potential of SCBs to contribute to functional compensation of dysfunctional KV1.1 channels. We propose riluzole as a new drug repurposing candidate and highlight the role of personalized approaches to develop standard care for EA1 patients. These results could have implications for clinical practice in future and highlight the need for the development of individualized and targeted therapies for episodic ataxia and genetic paroxysmal disorders in general.
Collapse
Affiliation(s)
- Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Lukas Sonnenberg
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Nils A. Koch
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Christian Bosselmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Natalie Winter
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Niklas Schwarz
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thomas V. Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Ulrike B. S. Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jan Benda
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Na S, Kim T. Efficacy of levetiracetam in patients with episodic ataxia type 2 caused by CACNA1A mutation: three case reports. Neurol Sci 2021; 42:3897-3899. [PMID: 34085110 DOI: 10.1007/s10072-021-05368-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/29/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Seunghee Na
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Taewon Kim
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
12
|
Romozzi M, Primiano G, Rollo E, Travaglini L, Calabresi P, Servidei S, Vollono C. CACNA1A-p.Thr501Met mutation associated with familial hemiplegic migraine: a family report. J Headache Pain 2021; 22:85. [PMID: 34320921 PMCID: PMC8317284 DOI: 10.1186/s10194-021-01297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background and aims Hemiplegic migraine (HM) is a rare form of migraine characterized by the presence of a motor and other types of aura. HM can be sporadic or familial. Familial hemiplegic migraine (FHM) is an autosomal dominant disorder, classified into 3 subtypes, based on the gene involved (CACNA1A in FHM1, ATP1A2 in FHM2 and SCN1A in FHM3). The clinical presentation is highly heterogeneous and some attacks may be severe. We report the clinical characteristics and genetic analysis of 12 patients belonging to a family with CACNA1A-p.Thr501Met gene mutation. Methods We screened for mutations in CACNA1A gene 15 patients belonging to the same family. The exonic sequences of CACNA1A were analyzed using a Tru-seq® Custom Amplicon (TSCA) (Illumina Inc., San Diego, CA) targeted capture and paired end library kit. Sanger sequencing was used to confirm CACNA1A variants and segregation analysis. Results CACNA1A-p.Thr501Met mutation was found in 12 of the 15 patients screened, which was compatible with the diagnosis of FHM1. Attacks of hemiplegic migraine were reported by 10 of the 12 subjects (83.33%). Only one subject developed persistent mild cerebellar symptoms and none of the subjects developed cerebellar atrophy. Discussion The variant p.Thr501Met was described previously in association with episodic ataxia and rarely with FHM related to cerebellar symptoms. FHM1 has a broad clinical spectrum and about half of the families have cerebellar involvement. In our study, only one patient developed persistent cerebellar deficits. These data suggest that CACNA1A-p.Thr501Met mutation can occur prevalently as hemiplegic migraine. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01297-5.
Collapse
Affiliation(s)
- Marina Romozzi
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze dell'invecchiamento, Neurologia, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Guido Primiano
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze dell'invecchiamento, Neurofisiopatologia, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli n° 8 -, 00168, Rome, Italy
| | - Eleonora Rollo
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze dell'invecchiamento, Neurologia, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lorena Travaglini
- Dipartimento di Neuroscienze e Neuroriabilitazione, Unità di Malattie Neuromuscolari e Neurodegenerative, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Paolo Calabresi
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze dell'invecchiamento, Neurologia, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Serenella Servidei
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze dell'invecchiamento, Neurofisiopatologia, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli n° 8 -, 00168, Rome, Italy
| | - Catello Vollono
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy. .,Dipartimento di Scienze dell'invecchiamento, Neurofisiopatologia, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli n° 8 -, 00168, Rome, Italy.
| |
Collapse
|
13
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|
14
|
Verriello L, Pauletto G, Nilo A, Lonigro I, Betto E, Valente M, Curcio F, Gigli GL. Epilepsy and episodic ataxia type 2: family study and review of the literature. J Neurol 2021; 268:4296-4302. [PMID: 33983550 DOI: 10.1007/s00415-021-10555-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Episodic ataxia type 2 (EA2) is a hereditary disorder characterized by paroxysmal attacks of ataxia, vertigo and nausea, due to mutations in the CACNA1A gene, which encodes for α1 subunit of the P/Q-type voltage-gated Ca2+ channel (CaV2.1). Other manifestations may be associated to CACNA1A mutations, such as migraine and epilepsy. The correlation between episodic ataxia and epilepsy is often underestimated and misdiagnosed. Clinical presentation of EA2 varies among patients and within the same family, and the same genetic mutation can lead to different clinical phenotypes. We herewith describe an Italian family presenting with typical EA2 and, in two of the family members (patients II.3 and III.1), epileptic seizures. The sequencing revealed a heterozygous deletion of 6 nucleotides in exon 28 of CACNA1A gene, present in all affected patients. Evidence suggests that mutations of CACNA1A, conferring a loss/reduction of CaV2.1 function, lead to an increase of thalamocortical excitation that contributes to epileptiform discharges. Our description highlights intra-family variability of EA2 phenotype and suggests that mutations in the CACNA1A gene should be suspected in individuals with focal or generalized epilepsy, associated with a family history of episodic ataxia.
Collapse
Affiliation(s)
- Lorenzo Verriello
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Piazzale Santa Maria della Misericordia 15, 33100, Udine, Italy.
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Piazzale Santa Maria della Misericordia 15, 33100, Udine, Italy
| | - Annacarmen Nilo
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Incoronata Lonigro
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Laboratory Medicine, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Elena Betto
- Department of Laboratory Medicine, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Mariarosaria Valente
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Francesco Curcio
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Laboratory Medicine, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, ASUFC, Udine, Italy.,Department of Mathematics, Informatics and Physics (DMIF), University of Udine, Udine, Italy
| |
Collapse
|
15
|
Indelicato E, Boesch S. From Genotype to Phenotype: Expanding the Clinical Spectrum of CACNA1A Variants in the Era of Next Generation Sequencing. Front Neurol 2021; 12:639994. [PMID: 33737904 PMCID: PMC7960780 DOI: 10.3389/fneur.2021.639994] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ion channel dysfunction is a key pathological substrate of episodic neurological disorders. A classical gene associated to paroxysmal movement disorders is CACNA1A, which codes for the pore-forming subunit of the neuronal calcium channel P/Q. Non-polyglutamine CACNA1A variants underlie familial hemiplegic ataxia type 1 (FHM1) and episodic ataxia type 2 (EA2). Classical paroxysmal manifestations of FHM1 are migraine attacks preceded by motor aura consisting of hemiparesis, aphasia, and disturbances of consciousness until coma. Patients with EA2 suffer of recurrent episodes of vertigo, unbalance, diplopia, and vomiting. Beyond these typical presentations, several reports highlighted manifold clinical features associated with P/Q channelopathies, from chronic progressive cerebellar ataxia to epilepsy and psychiatric disturbances. These manifestations may often outlast the burden of classical episodic symptoms leading to pitfalls in the diagnostic work-up. Lately, the spreading of next generation sequencing techniques linked de novo CACNA1A variants to an even broader phenotypic spectrum including early developmental delay, autism spectrum disorders, epileptic encephalopathy, and early onset paroxysmal dystonia. The age-dependency represents a striking new aspect of these phenotypes und highlights a pivotal role for P/Q channels in the development of the central nervous system in a defined time window. While several reviews addressed the clinical presentation and treatment of FHM1 and EA2, an overview of the newly described age-dependent manifestations is lacking. In this Mini-Review we present a clinical update, delineate genotype-phenotype correlations as well as summarize evidence on the pathophysiological mechanisms underlying the expanded phenotype associated with CACNA1A variants.
Collapse
Affiliation(s)
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Indelicato E, Unterberger I, Nachbauer W, Eigentler A, Amprosi M, Zeiner F, Haberlandt E, Kaml M, Gizewski E, Boesch S. The electrophysiological footprint of CACNA1A disorders. J Neurol 2021; 268:2493-2505. [PMID: 33544220 PMCID: PMC8217028 DOI: 10.1007/s00415-021-10415-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/14/2022]
Abstract
Objectives CACNA1A variants underlie three neurological disorders: familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). EEG is applied to study their episodic manifestations, but findings in the intervals did not gain attention up to date. Methods We analyzed repeated EEG recordings performed between 1994 and 2019 in a large cohort of genetically confirmed CACNA1A patients. EEG findings were compared with those of CACNA1A-negative phenocopies. A review of the related literature was performed. Results 85 EEG recordings from 38 patients (19 EA2, 14 FHM1, 5 SCA6) were analyzed. Baseline EEG was abnormal in 55% of cases (12 EA2, 9 FHM1). The most common finding was a lateralized intermittent slowing, mainly affecting the temporal region. Slowing was more pronounced after a recent attack but was consistently detected in the majority of patients also during the follow-up. Interictal epileptic discharges (IEDs) were detected in eight patients (7 EA2,1 FHM1). EEG abnormalities and especially IEDs were significantly associated with younger age at examination (16 ± 9 vs 43 ± 21 years in those without epileptic changes, p = 0.003) and with earlier onset of disease (1 (1–2) vs 12 (5–45) years, p = 0.0009). EEG findings in CACNA1A-negative phenocopies (n = 15) were largely unremarkable (p = 0.03 in the comparison with CACNA1A patients). Conclusions EEG abnormalities between attacks are highly prevalent in episodic CACNA1A disorders and especially associated with younger age at examination and earlier disease onset. Our findings underpin an age-dependent effect of CACNA1A variants, with a more severe impairment when P/Q channel dysfunction manifests early in life.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Iris Unterberger
- Epileptology Division, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Nachbauer
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Andreas Eigentler
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Matthias Amprosi
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Fiona Zeiner
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Edda Haberlandt
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Department of Pediatrics, City Hospital, Dornbirn, Austria
| | - Manuela Kaml
- Epileptology Division, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
17
|
Gur-Hartman T, Berkowitz O, Yosovich K, Roubertie A, Zanni G, Macaya A, Heimer G, Dueñas BP, Sival DA, Pode-Shakked B, López-Laso E, Humbertclaude V, Riant F, Bosco L, Cayron LB, Nissenkorn A, Nicita F, Bertini E, Hassin S, Ben Zeev B, Zerem A, Libzon S, Lev D, Linder I, Lerman-Sagie T, Blumkin L. Clinical phenotypes of infantile onset CACNA1A-related disorder. Eur J Paediatr Neurol 2021; 30:144-154. [PMID: 33349592 DOI: 10.1016/j.ejpn.2020.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND CACNA1A-related disorders present with persistent progressive and non-progressive cerebellar ataxia and paroxysmal events: epileptic seizures and non-epileptic attacks. These phenotypes overlap and co-exist in the majority of patients. OBJECTIVE To describe phenotypes in infantile onset CACNA1A-related disorder and to explore intra-familial variations and genotype-phenotype correlations. MATERIAL AND METHODS This study was a multicenter international collaboration. A retrospective chart review of CACNA1A patients was performed. Clinical, radiological, and genetic data were collected and analyzed in 47 patients with infantile-onset disorder. RESULTS Paroxysmal non-epileptic events (PNEE) were observed in 68% of infants, with paroxysmal tonic upward gaze (PTU) noticed in 47% of infants. Congenital cerebellar ataxia (CCA) was diagnosed in 51% of patients including four patients with developmental delay and only one neurological sign. PNEEs were found in 63% of patients at follow-up, with episodic ataxia (EA) in 40% of the sample. Cerebellar ataxia was found in 58% of the patients at follow-up. Four patients had epilepsy in infancy and nine in childhood. Seven infants had febrile convulsions, three of which developed epilepsy later; all three patients had CCA. Cognitive difficulties were demonstrated in 70% of the children. Cerebellar atrophy was found in only one infant but was depicted in 64% of MRIs after age two. CONCLUSIONS Nearly all of the infants had CCA, PNEE or both. Cognitive difficulties were frequent and appeared to be associated with CCA. Epilepsy was more frequent after age two. Febrile convulsions in association with CCA may indicate risk of epilepsy in later childhood. Brain MRI was normal in infancy. There were no genotype-phenotype correlations found.
Collapse
Affiliation(s)
- Tamar Gur-Hartman
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Pediatric Movement Disorders Service, Wolfson Medical Center, Holon, Israel; School of Psychological Sciences, Tel-Aviv University, Israel
| | - Oren Berkowitz
- Department of Health Systems Management, Ariel University, Ariel, Israel
| | - Keren Yosovich
- Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel
| | - Agathe Roubertie
- Departement de Neuropediatrie, CHU Gui de Chauliac, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu' Children's Hospital, Rome, Italy
| | - Alfons Macaya
- Vall d'Hebron Research Institute, Pediatric Neurology Research Group, Autonomous University of Barcelona, Barcelona, Spain
| | - Gali Heimer
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Belén Pérez Dueñas
- Vall d'Hebron Research Institute, Pediatric Neurology Research Group, Autonomous University of Barcelona, Barcelona, Spain
| | - Deborah A Sival
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital; Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel
| | - Eduardo López-Laso
- University Hospital Reina Sofía, Pediatric Neurology Unit, IMIBIC and CIBERER, Córdoba, Spain
| | - Véronique Humbertclaude
- Service de Médecine Psychologique Enfants et Adolescents, CHU Saint Eloi, Montpellier, France
| | - Florence Riant
- AP-HP, GH Saint Louis-Lariboisière-Fernand Widal, Service de Génétique Moléculaire Neurovasculaire, Paris, France
| | - Luca Bosco
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu' Children's Hospital, Rome, Italy
| | | | - Andreea Nissenkorn
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu' Children's Hospital, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesu' Children's Hospital, Rome, Italy
| | - Sharon Hassin
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Movement Disorders Institute and Department of Neurology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Bruria Ben Zeev
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ayelet Zerem
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Pediatric Neurology Unit TASMC, Tel-Aviv University, Israel
| | | | - Dorit Lev
- Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Ilan Linder
- Pediatric Epilepsy & Neurology Service, Barzilay Medical Center, Ashkelon, Israel
| | - Tally Lerman-Sagie
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lubov Blumkin
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Pediatric Movement Disorders Service, Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
18
|
Penkava J, Ledderose S, Chahrokh-Zadeh S, Munzig A, Eulenburg Z, Huppert D, Strupp M, Becker-Bense S. A novel pathogenic CACNA1A variant causing episodic ataxia type 2 (EA2) spectrum phenotype in four family members and a novel combined therapy. J Neurol 2020; 267:181-184. [PMID: 32910250 PMCID: PMC7718184 DOI: 10.1007/s00415-020-10190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Josef Penkava
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany.
| | - S Ledderose
- Department of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - S Chahrokh-Zadeh
- Center for Human Genetics and Laboratory Diagnostics (CHGLD), Martinsried, Germany
| | - A Munzig
- Center for Human Genetics and Laboratory Diagnostics (CHGLD), Martinsried, Germany
| | - Zu Eulenburg
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - D Huppert
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - M Strupp
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - S Becker-Bense
- German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität München, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
19
|
Jaudon F, Baldassari S, Musante I, Thalhammer A, Zara F, Cingolani LA. Targeting Alternative Splicing as a Potential Therapy for Episodic Ataxia Type 2. Biomedicines 2020; 8:E332. [PMID: 32899500 PMCID: PMC7555146 DOI: 10.3390/biomedicines8090332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Episodic ataxia type 2 (EA2) is an autosomal dominant neurological disorder characterized by paroxysmal attacks of ataxia, vertigo, and nausea that usually last hours to days. It is caused by loss-of-function mutations in CACNA1A, the gene encoding the pore-forming α1 subunit of P/Q-type voltage-gated Ca2+ channels. Although pharmacological treatments, such as acetazolamide and 4-aminopyridine, exist for EA2, they do not reduce or control the symptoms in all patients. CACNA1A is heavily spliced and some of the identified EA2 mutations are predicted to disrupt selective isoforms of this gene. Modulating splicing of CACNA1A may therefore represent a promising new strategy to develop improved EA2 therapies. Because RNA splicing is dysregulated in many other genetic diseases, several tools, such as antisense oligonucleotides, trans-splicing, and CRISPR-based strategies, have been developed for medical purposes. Here, we review splicing-based strategies used for genetic disorders, including those for Duchenne muscular dystrophy, spinal muscular dystrophy, and frontotemporal dementia with Parkinsonism linked to chromosome 17, and discuss their potential applicability to EA2.
Collapse
Affiliation(s)
- Fanny Jaudon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (I.M.); (F.Z.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16126 Genoa, Italy
| | - Lorenzo A. Cingolani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy;
| |
Collapse
|
20
|
Giunti P, Mantuano E, Frontali M. Episodic Ataxias: Faux or Real? Int J Mol Sci 2020; 21:ijms21186472. [PMID: 32899446 PMCID: PMC7555854 DOI: 10.3390/ijms21186472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
The term Episodic Ataxias (EA) was originally used for a few autosomal dominant diseases, characterized by attacks of cerebellar dysfunction of variable duration and frequency, often accompanied by other ictal and interictal signs. The original group subsequently grew to include other very rare EAs, frequently reported in single families, for some of which no responsible gene was found. The clinical spectrum of these diseases has been enormously amplified over time. In addition, episodes of ataxia have been described as phenotypic variants in the context of several different disorders. The whole group is somewhat confused, since a strong evidence linking the mutation to a given phenotype has not always been established. In this review we will collect and examine all instances of ataxia episodes reported so far, emphasizing those for which the pathophysiology and the clinical spectrum is best defined.
Collapse
Affiliation(s)
- Paola Giunti
- Laboratory of Neurogenetics, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC2N 5DU, UK
- Correspondence: (P.G.); (M.F.)
| | - Elide Mantuano
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
| | - Marina Frontali
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
- Correspondence: (P.G.); (M.F.)
| |
Collapse
|
21
|
Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. Int J Mol Sci 2020; 21:ijms21103603. [PMID: 32443735 PMCID: PMC7279391 DOI: 10.3390/ijms21103603] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.
Collapse
|
22
|
Thalhammer A, Jaudon F, Cingolani LA. Emerging Roles of Activity-Dependent Alternative Splicing in Homeostatic Plasticity. Front Cell Neurosci 2020; 14:104. [PMID: 32477067 PMCID: PMC7235277 DOI: 10.3389/fncel.2020.00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Homeostatic plasticity refers to the ability of neuronal networks to stabilize their activity in the face of external perturbations. Most forms of homeostatic plasticity ultimately depend on changes in the expression or activity of ion channels and synaptic proteins, which may occur at the gene, transcript, or protein level. The most extensively investigated homeostatic mechanisms entail adaptations in protein function or localization following activity-dependent posttranslational modifications. Numerous studies have also highlighted how homeostatic plasticity can be achieved by adjusting local protein translation at synapses or transcription of specific genes in the nucleus. In comparison, little attention has been devoted to whether and how alternative splicing (AS) of pre-mRNAs underlies some forms of homeostatic plasticity. AS not only expands proteome diversity but also contributes to the spatiotemporal dynamics of mRNA transcripts. Prominent in the brain where it can be regulated by neuronal activity, it is a flexible process, tightly controlled by a multitude of factors. Given its extensive use and versatility in optimizing the function of ion channels and synaptic proteins, we argue that AS is ideally suited to achieve homeostatic control of neuronal output. We support this thesis by reviewing emerging evidence linking AS to various forms of homeostatic plasticity: homeostatic intrinsic plasticity, synaptic scaling, and presynaptic homeostatic plasticity. Further, we highlight the relevance of this connection for brain pathologies.
Collapse
Affiliation(s)
- Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
23
|
Tyagi S, Ribera AB, Bannister RA. Zebrafish as a Model System for the Study of Severe Ca V2.1 (α 1A) Channelopathies. Front Mol Neurosci 2020; 12:329. [PMID: 32116539 PMCID: PMC7018710 DOI: 10.3389/fnmol.2019.00329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 02/02/2023] Open
Abstract
The P/Q-type CaV2.1 channel regulates neurotransmitter release at neuromuscular junctions (NMJ) and many central synapses. CACNA1A encodes the pore-containing α1A subunit of CaV2.1 channels. In humans, de novo CACNA1A mutations result in a wide spectrum of neurological, neuromuscular, and movement disorders, such as familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2), as well as a more recently discovered class of more severe disorders, which are characterized by ataxia, hypotonia, cerebellar atrophy, and cognitive/developmental delay. Heterologous expression of CaV2.1 channels has allowed for an understanding of the consequences of CACNA1A missense mutations on channel function. In contrast, a mechanistic understanding of how specific CACNA1A mutations lead in vivo to the resultant phenotypes is lacking. In this review, we present the zebrafish as a model to both study in vivo mechanisms of CACNA1A mutations that result in synaptic and behavioral defects and to screen for effective drug therapies to combat these and other CaV2.1 channelopathies.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, United States
| | - Angeles B Ribera
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Roger A Bannister
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Zhang L, Wen Y, Zhang Q, Chen Y, Wang J, Shi K, Du L, Bao X. CACNA1A Gene Variants in Eight Chinese Patients With a Wide Range of Phenotypes. Front Pediatr 2020; 8:577544. [PMID: 33425808 PMCID: PMC7793878 DOI: 10.3389/fped.2020.577544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The CACNA1A gene encodes the voltage-dependent P/Q-type calcium channel subunit alpha-1A, which is widely expressed throughout the CNS. The biological roles of the P/Q channel are diverse and the phenotypic spectrum caused by CACNA1A mutations is wide. The aim of this study is to demonstrate its phenotypic diversity and analyze the genotype-phenotype correlations in a cohort of Chinese patients. Methods: Patients with hemiplegic migraine, cerebellar ataxia, developmental delay, or epilepsy without known causes were tested by trios whole-exome sequencing. Patients with pathogenic CACNA1A gene variants were recruited. The clinical information of the patients was collected, and the association between the genotype and the phenotype was investigated. Results: In total, eight patients (six females and two males) were found to have CACNA1A gene variants. All the variants were de novo including six missense variants and one frameshift variant. Four de novo missense variants were found in five patients located in the S4, S5, or S6 transmembrane segments of Domain II and III (p.R1352Q, p.G701V, p.A713T, p.V1393M). All of them were correlated with severe phenotypes, including three with sporadic hemiplegic migraine type 1 and epilepsy, and two with developmental and epileptic encephalopathy. The other two missense variants, p.Y62C and p.F1814L, located in the cytoplasmic side of the N-terminus and C-terminus, respectively. The variant p.Y62C was associated with severe hemiconvulsion-hemiplegia-epilepsy syndrome, and p.F1814L was associated with relatively mild phenotypes. All the missense variants were speculated as gain-of-function (GOF) mutations. The only frameshift variant, p.Q681Rfs*100, a lose-of-function (LOF) mutation, was found in a patient with episodic ataxia type 2. Meanwhile, all the patients had developmental delay ranging from mild to severe, as well as cerebellar ataxia including one with congenital ataxia, one with episodic ataxia, and six with non-progressive ataxia. Conclusions: CACNA1A variants could lead to a wide spectrum of neurological disorders including epileptic or non-epileptic paroxysmal events, cerebellar ataxia, and developmental delay. The variants could be both GOF and LOF mutations. There appeared to be some correlations between genotypes and phenotypes.
Collapse
Affiliation(s)
- Linxia Zhang
- Department of Pediatric, Peking University First Hospital, Beijing, China.,Department of Neurology, Children's Hospital of Shanxi, Taiyuan, China
| | - Yongxin Wen
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Qingping Zhang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Yan Chen
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Jiaping Wang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Kaili Shi
- Department of Neurology, Children's Hospital of Shanxi, Taiyuan, China
| | - Lijun Du
- Department of Neurology, Children's Hospital of Shanxi, Taiyuan, China
| | - Xinhua Bao
- Department of Pediatric, Peking University First Hospital, Beijing, China
| |
Collapse
|
25
|
Hirasawa-Inoue A, Ishiyama A, Takeshita E, Shimizu-Motohashi Y, Saito T, Komaki H, Nakagawa E, Yuasa S, Saitsu H, Hamanaka K, Miyatake S, Matsumoto N, Sasaki M. Single-fiber electromyography-based diagnosis of CACNA1A mutation in children: A potential role of the electrodiagnosis in the era of whole exome sequencing. Brain Dev 2019; 41:905-909. [PMID: 31288946 DOI: 10.1016/j.braindev.2019.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION A loss-of-function mutation in CACNA1A, which encodes P/Q-type Ca channels, causes various diseases. As most of the Ca channels at neuromuscular junctions are of the P/Q type, patients with loss-of-function CACNA1A mutations exhibit disturbed neuromuscular transmission. The associated jitters and blocking in such patients can be detected by single-fiber electromyography (SFEMG). CASES We report two cases with different phenotypes, which were predicted to harbor loss-of-function mutations of CACNA1A, by using axonal stimulation SFEMG. One case involved a 2-year-old boy with episodic ataxia type 2. The other case involved a 7-year-old girl diagnosed with epileptic encephalopathy. SFEMG results revealed jitters and blocking in both cases. Moreover, whole exome sequencing (WES) revealed a heterozygous CACNA1A mutation, c.5251C>T, p.Arg1751Trp, in the former case and a novel de novo CACNA1A mutation, c.2122G>A, p.Val708Met, in the latter. CONCLUSIONS Our cases indicate that SFEMG is a potentially useful diagnostic tool for patients with CACNA1A mutation, especially in pediatric cases where trio analysis is difficult or novel mutations are present.
Collapse
Affiliation(s)
- Ayaka Hirasawa-Inoue
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Japan.
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Japan
| | - Takashi Saito
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Japan
| | - Shota Yuasa
- Department of Pediatrics, Kameda Medical Center, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Japan
| |
Collapse
|
26
|
Park J, Oh HM, Park HJ, Cho AR, Lee DW, Jang JH, Jang DH. Usefulness of comprehensive targeted multigene panel sequencing for neuromuscular disorders in Korean patients. Mol Genet Genomic Med 2019; 7:e00947. [PMID: 31475473 PMCID: PMC6785438 DOI: 10.1002/mgg3.947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Multigene panel sequencing (MGPS) is the first-line option in diagnostic testing for genetically heterogeneous but clinically similar conditions, such as neuromuscular disorders (NMDs). In this study, we aimed to assess the utility of comprehensive NMD MGPS and the need for updated panels. METHODS All patients were analyzed by either of two versions of the NMD MGPS and by chromosomal microarray and karyotype testing. Four patients with negative NMD MGPS results underwent whole exome sequencing. RESULTS In total, 91 patients were enrolled, and a genetic diagnosis was made in 36 (39.6%); of these, 33 were diagnosed by the comprehensive NMD MGPS, two were confirmed by chromosomal microarray, and one was diagnosed by whole exome sequencing. For MGPS, the diagnostic yield of Version 2 (19/52; 36.5%) was a little higher than that of Version 1 (14/39; 35.9%), and one gene identified in Version 2 was not included in Version 1. A total of 36 definitive and nine possible causative variants were identified, of which 17 were novel. CONCLUSION A more comprehensive panel for NMD MGPS can improve the diagnostic efficiency in genetic testing. The rapid discovery of new disease-causing genes over recent years necessitates updates to existing gene panels.
Collapse
Affiliation(s)
- Jihye Park
- Department of Rehabilitation Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Mi Oh
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Jung Park
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ah-Ra Cho
- Department of Rehabilitation Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Woo Lee
- Department of Rehabilitation Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
27
|
Jinnah H, Sun YV. Dystonia genes and their biological pathways. Neurobiol Dis 2019; 129:159-168. [DOI: 10.1016/j.nbd.2019.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
|
28
|
Jiang X, Raju PK, D'Avanzo N, Lachance M, Pepin J, Dubeau F, Mitchell WG, Bello-Espinosa LE, Pierson TM, Minassian BA, Lacaille JC, Rossignol E. Both gain-of-function and loss-of-function de novo CACNA1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome. Epilepsia 2019; 60:1881-1894. [PMID: 31468518 DOI: 10.1111/epi.16316] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Developmental epileptic encephalopathies (DEEs) are genetically heterogeneous severe childhood-onset epilepsies with developmental delay or cognitive deficits. In this study, we explored the pathogenic mechanisms of DEE-associated de novo mutations in the CACNA1A gene. METHODS We studied the functional impact of four de novo DEE-associated CACNA1A mutations, including the previously described p.A713T variant and three novel variants (p.V1396M, p.G230V, and p.I1357S). Mutant cDNAs were expressed in HEK293 cells, and whole-cell voltage-clamp recordings were conducted to test the impacts on CaV 2.1 channel function. Channel localization and structure were assessed with immunofluorescence microscopy and three-dimensional (3D) modeling. RESULTS We find that the G230V and I1357S mutations result in loss-of-function effects with reduced whole-cell current densities and decreased channel expression at the cell membrane. By contrast, the A713T and V1396M variants resulted in gain-of-function effects with increased whole-cell currents and facilitated current activation (hyperpolarized shift). The A713T variant also resulted in slower current decay. 3D modeling predicts conformational changes favoring channel opening for A713T and V1396M. SIGNIFICANCE Our findings suggest that both gain-of-function and loss-of-function CACNA1A mutations are associated with similarly severe DEEs and that functional validation is required to clarify the underlying molecular mechanisms and to guide therapies.
Collapse
Affiliation(s)
- Xiao Jiang
- Sainte-Justine University Hospital Center, University of Montréal, Montréal, Canada.,Department of Neurosciences, University of Montréal, Montreal, Canada
| | - Praveen K Raju
- Sainte-Justine University Hospital Center, University of Montréal, Montréal, Canada.,Department of Neurosciences, University of Montréal, Montreal, Canada
| | - Nazzareno D'Avanzo
- Department of Pharmacology and Physiology, University of Montréal, Montréal, Canada
| | - Mathieu Lachance
- Sainte-Justine University Hospital Center, University of Montréal, Montréal, Canada
| | - Julie Pepin
- Department of Neurosciences, University of Montréal, Montreal, Canada
| | - François Dubeau
- Department of Neurosciences, The Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Wendy G Mitchell
- Neurology Division, Children's Hospital Los Angeles & Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | | | - Tyler M Pierson
- Departments of Pediatrics and Neurology, The Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | | | | | - Elsa Rossignol
- Sainte-Justine University Hospital Center, University of Montréal, Montréal, Canada.,Department of Neurosciences, University of Montréal, Montreal, Canada
| |
Collapse
|
29
|
De Gusmao CM, Silveira-Moriyama L. Paroxysmal movement disorders - practical update on diagnosis and management. Expert Rev Neurother 2019; 19:807-822. [PMID: 31353980 DOI: 10.1080/14737175.2019.1648211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Paroxysmal dyskinesias and episodic ataxias are often caused by mutations in genes related to cell membrane and synaptic function. Despite the exponential increase in publications of genetically confirmed cases, management remains largely clinical based on non-systematic evidence. Areas covered: The authors provide a historical and clinical review of the main types of paroxysmal dyskinesias and episodic ataxias, with recommendations for diagnosis and management of patients suffering from these conditions. Expert opinion: After secondary paroxysmal dyskinesias, the most common paroxysmal movement disorders are likely to be PRRT2-associated paroxysmal kinesigenic dyskinesias, which respond well to small doses of carbamazepine, and episodic ataxia type 2, which often responds to acetazolamide. Familial paroxysmal non-kinesigenic dyskinesias are largely caused by mutations in PNKD and have poor response to therapy but improve with age. Exercise-induced dyskinesias are genetically heterogeneous, caused by disorders of glucose transport, mitochondrial function, dopaminergic pathways or neurodegenerative conditions amongst others. GNAO1 and ADCY5 mutations can also cause paroxysmal movement disorders, often in the context of ongoing motor symptoms. Although a therapeutic trial is justified for classic cases and in limited resource settings, genetic testing may help direct initial or rescue therapy. Deep brain stimulation may be an option for severe cases.
Collapse
Affiliation(s)
- Claudio M De Gusmao
- Department of Neurology, Harvard Medical School, Boston Children's Hospital , Boston , MA , USA.,Department of Neurology, Universidade Estadual de Campinas (UNICAMP) , São Paulo , Brazil
| | - Laura Silveira-Moriyama
- Department of Neurology, Universidade Estadual de Campinas (UNICAMP) , São Paulo , Brazil.,Education Unit, UCL Institute of Neurology, University College London , London , UK.,Department of Neurology, Hospital Bairral, Fundação Espírita Américo Bairral , Itapira , Brazil
| |
Collapse
|
30
|
Sutherland HG, Albury CL, Griffiths LR. Advances in genetics of migraine. J Headache Pain 2019; 20:72. [PMID: 31226929 PMCID: PMC6734342 DOI: 10.1186/s10194-019-1017-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Background Migraine is a complex neurovascular disorder with a strong genetic component. There are rare monogenic forms of migraine, as well as more common polygenic forms; research into the genes involved in both types has provided insights into the many contributing genetic factors. This review summarises advances that have been made in the knowledge and understanding of the genes and genetic variations implicated in migraine etiology. Findings Migraine is characterised into two main types, migraine without aura (MO) and migraine with aura (MA). Hemiplegic migraine is a rare monogenic MA subtype caused by mutations in three main genes - CACNA1A, ATP1A2 and SCN1A - which encode ion channel and transport proteins. Functional studies in cellular and animal models show that, in general, mutations result in impaired glutamatergic neurotransmission and cortical hyperexcitability, which make the brain more susceptible to cortical spreading depression, a phenomenon thought to coincide with aura symptoms. Variants in other genes encoding ion channels and solute carriers, or with roles in regulating neurotransmitters at neuronal synapses, or in vascular function, can also cause monogenic migraine, hemiplegic migraine and related disorders with overlapping symptoms. Next-generation sequencing will accelerate the finding of new potentially causal variants and genes, with high-throughput bioinformatics analysis methods and functional analysis pipelines important in prioritising, confirming and understanding the mechanisms of disease-causing variants. With respect to common migraine forms, large genome-wide association studies (GWAS) have greatly expanded our knowledge of the genes involved, emphasizing the role of both neuronal and vascular pathways. Dissecting the genetic architecture of migraine leads to greater understanding of what underpins relationships between subtypes and comorbid disorders, and may have utility in diagnosis or tailoring treatments. Further work is required to identify causal polymorphisms and the mechanism of their effect, and studies of gene expression and epigenetic factors will help bridge the genetics with migraine pathophysiology. Conclusions The complexity of migraine disorders is mirrored by their genetic complexity. A comprehensive knowledge of the genetic factors underpinning migraine will lead to improved understanding of molecular mechanisms and pathogenesis, to enable better diagnosis and treatments for migraine sufferers.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Cassie L Albury
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
31
|
Algahtani H, Shirah B, Algahtani R, Al-Qahtani MH, Abdulkareem AA, Naseer MI. A novel mutation in CACNA1A gene in a Saudi female with episodic ataxia type 2 with no response to acetazolamide or 4-aminopyridine. Intractable Rare Dis Res 2019; 8:67-71. [PMID: 30881862 PMCID: PMC6409113 DOI: 10.5582/irdr.2018.01133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Episodic ataxia is a genetically heterogeneous neurological condition characterized by spells of incoordination and imbalance, often associated with progressive ataxia. Episodic ataxia type 2, caused by calcium voltage-gated channel subunit alpha1 A (CACNA1A MIM: 601011) mutation, is the most common form of episodic ataxia. It is characterized by recurrent attacks of imbalance associated with interictal nystagmus lasting hours to days and triggered by emotional stress or exercise. In this article, we report a novel heterozygous intronic variant c.5743+14A>G in the CACNA1A gene in a Saudi family. To the best of our knowledge, this variant has not been described in the literature or reported in public mutation databases. This report indicated that acetazolamide is not beneficial, and it may be even harmful to patients with episodic ataxia type 2 if used in later stages. In addition, treatment with 4-aminopyridine did not show any efficacy to improve walking or balance in our patient, which indicates the importance of early initiation of therapy before the later stages of the disease. Further research is needed to explore potential treatments for this challenging disease.
Collapse
Affiliation(s)
- Hussein Algahtani
- King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Address correspondence to:Dr. Hussein Algahtani, King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Sciences, P.O. Box: 12723, Jeddah 21483, Saudi Arabia. Contact No.: 00966556633130. E-mail:
| | - Bader Shirah
- King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Raghad Algahtani
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mohammad H. Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Ling X, Zhao DH, Zhao J, Shen B, Yang X. Episodic ataxia type 2 characterised by recurrent dizziness/vertigo: a report of four cases. Int J Neurosci 2018; 129:103-109. [PMID: 29883219 DOI: 10.1080/00207454.2018.1486829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
PURPOSE To report the clinical features and gene mutations in four episodic ataxia type 2 (EA2) patients whose main presentation was recurrent dizziness/vertigo. METHODS Clinical data of four EA2 patients (three familial EA2 cases and one sporadic case) with recurrent dizziness/vertigo were collected to assess nystagmus and eye movement. Gene mutations were identified by whole exome sequencing. RESULTS The three patients in family 1 experienced disease onset before 8 years of age, presented with a chief complaint of episodic dizziness, muscle weakness of the lower limbs and the inability to walk. These symptoms lasted a few hours and then subsided. The proband also had gaze-evoked nystagmus during attacks. Videonystagmography demonstrated that the saccade velocity was low, smooth pursuit was type III, and gain was abnormal at 0.1, 0.2 and 0.4 Hz. An optokinetic nystagmus test showed that the left eye optokinetic nystagmus disappeared, and the right eye optokinetic nystagmus weakened. A head-shaking test produced a left horizontal nystagmus. Gene analysis identified a novel c.1558 + 2T > G splice site mutation in the CACNA1A gene in the proband and his mother. The fourth patient was sporadic, with an onset age of 3 years. He mainly suffered from episodic vertigo, accompanied by severe anxiety and depression. He carried a CACNA1A mutation, c.4636C > T, which is a previously reported pathogenic mutation. CONCLUSIONS The onset of symptoms in these EA2 patients was early. The patients mainly presented recurrent dizziness/vertigo, with the absence of characteristic episodic ataxia. Detection of CACNA1A mutations facilitates the diagnosis of EA2.
Collapse
Affiliation(s)
- Xia Ling
- a Peking University Aerospace School of Clinical Medicine , Beijing , PR China
| | - Dan-Hua Zhao
- b Department of Neurology, Aerospace Center Hospital , Peking University Aerospace School of Clinical Medicine , Beijing , PR China
| | - Jing Zhao
- b Department of Neurology, Aerospace Center Hospital , Peking University Aerospace School of Clinical Medicine , Beijing , PR China
| | - Bo Shen
- c Department of Neurology , The First Affiliated Hospital of Jinzhou Medical University , Jinzhou , PR China
| | - Xu Yang
- a Peking University Aerospace School of Clinical Medicine , Beijing , PR China
| |
Collapse
|
33
|
Indelicato E, Nachbauer W, Karner E, Eigentler A, Wagner M, Unterberger I, Poewe W, Delazer M, Boesch S. The neuropsychiatric phenotype in CACNA1A mutations: a retrospective single center study and review of the literature. Eur J Neurol 2018; 26:66-e7. [PMID: 30063100 DOI: 10.1111/ene.13765] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE CACNA1A encodes the α1 subunit of the neuronal calcium channel P/Q. CACNA1A mutations underlie three allelic disorders: familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6). A clear-cut genotype-phenotype correlation is often lacking since clinical manifestations may overlap. Several case reports have described cognitive and behavioral features in CACNA1A disorders, but studies in larger case series are lacking. METHODS Genetically confirmed CACNA1A cases were retrieved from the database of the ataxia outpatient clinic of the Department of Neurology at Innsbruck Medical University. Clinical charts and neuropsychological test results were retrospectively analyzed. In addition, a review of the literature including only genetically confirmed cases was performed. RESULTS Forty-four CACNA1A cases were identified in our database. Delayed psychomotor milestones and poor school performance were described in seven (four FHM1, three EA2) and eight (three FHM1, five EA2) patients, respectively. Psychiatric comorbidities were diagnosed in eight patients (two FHM1, six EA2). Neuropsychological testing was available for 23 patients (11 FHM1, 10 EA2, two SCA6). Various cognitive deficits were documented in 21 cases (all patients except one SCA6). Impairments were predominantly seen in figural memory, visuoconstructive abilities and verbal fluency. In the literature, an early psychomotor delay is described in several children with EA2 and FHM1, whilst reports of cognitive and psychiatric findings from adult cases are scarce. CONCLUSIONS Neuropsychiatric manifestations are common in episodic CACNA1A disorders. In the case of otherwise unexplained developmental delay and a positive family history, CACNA1A mutations should be considered in the differential diagnosis.
Collapse
Affiliation(s)
- E Indelicato
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - W Nachbauer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - E Karner
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - A Eigentler
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - M Wagner
- Department of Neuroradiology, Innsbruck Medical University, Innsbruck, Austria
| | - I Unterberger
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - W Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - M Delazer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - S Boesch
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
34
|
Grieco GS, Gagliardi S, Ricca I, Pansarasa O, Neri M, Gualandi F, Nappi G, Ferlini A, Cereda C. New CACNA1A deletions are associated to migraine phenotypes. J Headache Pain 2018; 19:75. [PMID: 30167989 PMCID: PMC6117225 DOI: 10.1186/s10194-018-0891-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022] Open
Abstract
Background Familial hemiplegic migraine type 1 (FHM1) is a form of migraine with aura caused by heterozygous mutations in 4 genes: CACNA1A, ATP1A2, SNC1A and PRRT2, but further heterogeneity is expected. Here have been described clinical and molecular features in patients suffering from migraine with Aura (MA), without (MO) and hemiplegic migraine attacks. Next Generation Sequencing by TruSeq Custom Amplicon for CACNA1A and ATP1A2 gene has been performed. All genetic variants have been confirmed by Sanger sequencing and all samples were also analyzed with MLPA assay for ATP1A2-CACNA1A genes to detect duplication or deletion. All MLPA data were verified by Real Time PCR. Results Sequencing analysis showed 3 point mutations, two novel variants and one already described in literature. Moreover, MLPA analysis showed 3 deletions in 9 sporadic hemiplegic migraine (18%), in 3 patients with non-hemiplegic migraine (4.1%) and in 3 patients affected by episodic ataxia (20%). Two sporadic patients showed a deletion in exons 41–43, while the rest of HM patients (5) showed a deletion in the terminal part of the CACNA1A gene. About episodic ataxia, we have identified deletions in exon 12–15 and in exon 47. Finally, in migraine patients, we have found different subjects affected by different phenotypes deleted in exon 47. Conclusion This work highlights the importance to complement analysis as direct sequencing with quantitative analysis (MLPA). In fact, intragenic CACNA1A rearrangements have been detected. Our work demonstrated that deletions in CACNA1A gene may be associated also to different migraine phenotypes.
Collapse
Affiliation(s)
- G S Grieco
- IRCCS Mondino Foundation, Genomic and post-Genomic Center, Pavia, Italy
| | - S Gagliardi
- IRCCS Mondino Foundation, Genomic and post-Genomic Center, Pavia, Italy.
| | - I Ricca
- IRCCS Mondino Foundation, Genomic and post-Genomic Center, Pavia, Italy
| | - O Pansarasa
- IRCCS Mondino Foundation, Genomic and post-Genomic Center, Pavia, Italy
| | - M Neri
- Unit of Medical Genetics, S. Anna University-Hospital, Ferrara, Italy
| | - F Gualandi
- Unit of Medical Genetics, S. Anna University-Hospital, Ferrara, Italy
| | - G Nappi
- IRCCS Mondino Foundation, Headache Science Center, Pavia, Italy
| | - A Ferlini
- Unit of Medical Genetics, S. Anna University-Hospital, Ferrara, Italy
| | - C Cereda
- IRCCS Mondino Foundation, Genomic and post-Genomic Center, Pavia, Italy
| |
Collapse
|
35
|
Sun M, Johnson AK, Nelakuditi V, Guidugli L, Fischer D, Arndt K, Ma L, Sandford E, Shakkottai V, Boycott K, Chardon JW, Li Z, Del Gaudio D, Burmeister M, Gomez CM, Waggoner DJ, Das S. Targeted exome analysis identifies the genetic basis of disease in over 50% of patients with a wide range of ataxia-related phenotypes. Genet Med 2018; 21:195-206. [PMID: 29915382 DOI: 10.1038/s41436-018-0007-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/20/2018] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To examine the impact of a targeted exome approach for the molecular diagnosis of patients nationwide with a wide range of ataxia-related phenotypes. METHODS One hundred and seventy patients with ataxia of unknown etiology referred from clinics throughout the United States and Canada were studied using a targeted exome approach. Patients ranged in age from 2 to 88 years. Analysis was focused on 441 curated genes associated with ataxia and ataxia-like conditions. RESULTS Pathogenic and suspected diagnostic variants were identified in 88 of the 170 patients, providing a positive molecular diagnostic rate of 52%. Forty-six different genes were implicated, with the six most commonly mutated genes being SPG7, SYNE1, ADCK3, CACNA1A, ATP1A3, and SPTBN2, which accounted for >40% of the positive cases. In many cases a diagnosis was provided for conditions that were not suspected and resulted in the broadening of the clinical spectrum of several conditions. CONCLUSION Exome sequencing with targeted analysis provides a high-yield approach for the genetic diagnosis of ataxia-related conditions. This is the largest targeted exome study performed to date in patients with ataxia and ataxia-like conditions and represents patients with a wide range of ataxia phenotypes typically encountered in neurology and genetics clinics.
Collapse
Affiliation(s)
- Miao Sun
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Amy Knight Johnson
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | | | - Lucia Guidugli
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - David Fischer
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Kelly Arndt
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Lan Ma
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Erin Sandford
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Vikram Shakkottai
- Department of Neurology, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Kym Boycott
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Jodi Warman Chardon
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.,The Ottawa Hospital/OHRI, Ottawa, ON, Canada
| | - Zejuan Li
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Daniela Del Gaudio
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Margit Burmeister
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Darrel J Waggoner
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Soma Das
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
36
|
Thalhammer A, Contestabile A, Ermolyuk YS, Ng T, Volynski KE, Soong TW, Goda Y, Cingolani LA. Alternative Splicing of P/Q-Type Ca 2+ Channels Shapes Presynaptic Plasticity. Cell Rep 2018; 20:333-343. [PMID: 28700936 DOI: 10.1016/j.celrep.2017.06.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/04/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
Alternative splicing of pre-mRNAs is prominent in the mammalian brain, where it is thought to expand proteome diversity. For example, alternative splicing of voltage-gated Ca2+ channel (VGCC) α1 subunits can generate thousands of isoforms with differential properties and expression patterns. However, the impact of this molecular diversity on brain function, particularly on synaptic transmission, which crucially depends on VGCCs, is unclear. Here, we investigate how two major splice isoforms of P/Q-type VGCCs (Cav2.1[EFa/b]) regulate presynaptic plasticity in hippocampal neurons. We find that the efficacy of P/Q-type VGCC isoforms in supporting synaptic transmission is markedly different, with Cav2.1[EFa] promoting synaptic depression and Cav2.1[EFb] synaptic facilitation. Following a reduction in network activity, hippocampal neurons upregulate selectively Cav2.1[EFa], the isoform exhibiting the higher synaptic efficacy, thus effectively supporting presynaptic homeostatic plasticity. Therefore, the balance between VGCC splice variants at the synapse is a key factor in controlling neurotransmitter release and presynaptic plasticity.
Collapse
Affiliation(s)
- Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy
| | - Andrea Contestabile
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | | | - Teclise Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | | | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Yukiko Goda
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova 16132, Italy.
| |
Collapse
|
37
|
Lynch DR, McCormick A, Schadt K, Kichula E. Pediatric Ataxia: Focus on Chronic Disorders. Semin Pediatr Neurol 2018; 25:54-64. [PMID: 29735117 DOI: 10.1016/j.spen.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evaluation of a pediatric patient presenting with ataxia can be expensive and time consuming. Acute causes tend to have a clear developmental paradigm, but chronic presentations are more likely to be secondary to a genetic disorder, either one that primarily causes ataxia or that presents ataxia as one of a multitude of symptoms. Evaluation should focus on a quick diagnosis for those that have treatment options and for those that require other systemic monitoring. Friedreich ataxia is the most common, and genetic testing can easily confirm the suspicion. Testing for vitamin E (for ataxia with isolated vitamin E deficiency) and alpha fetoprotein (for Ataxia Telangiectasia or AT) are important, as is empiric treatment with coenzyme Q10 for those genetic abnormalities that can lead to coenzyme Q deficiency. Clear family history, disease progression, physical examination focusing on type of ataxia and other associated neurologic features, and investigation of systemic involvement can help in focusing clinical assessment.
Collapse
Affiliation(s)
- David R Lynch
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| | - Ashley McCormick
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kimberly Schadt
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Kichula
- Departments of Pediatrics and Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
38
|
Abstract
The familial episodic ataxias (EAs) are prototypical channelopathies in the central nervous system clinically characterized by attacks of imbalance and incoordination variably associated with progressive ataxia and variable interictal features. EA1, EA2, and EA6 are caused by mutations in ion channel- and transporter-encoding genes that regulate neuronal excitability and neurotransmission.
Collapse
Affiliation(s)
- Joanna C Jen
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| | - Jijun Wan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
39
|
Abstract
Episodic ataxia (EA) is a rare neurological condition characterized by recurrent spells of truncal ataxia and incoordination. Five genes (KCNA1, CACNA1A, CACNB4, SLC1A3, and UBR4) have been linked to EA. Despite extensive efforts to genetically diagnose EA, many patients remain still undiagnosed. Whole-exome sequencing was carried out in 39 Korean patients with EA to identify pathogenic mutations of the five known EA genes. We also evaluated 40 candidate genes that cause EA as a secondary phenotype or cerebellar ataxia. Eighteen patients (46%) revealed genetic information useful for establishing a molecular diagnosis of EA. In 11 patients, 16 pathogenic mutations were detected in three EA genes. These included nine mutations in CACNA1A, three in SLC1A3, and four in UBR4. Three patients had mutations in two genes, either CACNA1A and SLC1A3 or CACNA1A and UBR4, suggesting that SLC1A3 and UBR4 may act as genetic modifiers with synergic effects on the abnormal presynaptic activity caused by CACNA1A mutations. In seven patients with negative results for screening of EA genes, potential pathogenic mutations were identified in the candidate genes ATP1A2, SCN1A, TTBK2, TGM6, FGF14, and KCND3. This study demonstrates the genetic heterogeneity of Korean EA, and indicates that whole-exome sequencing may be useful for molecular genetic diagnosis of EA.
Collapse
|
40
|
Mutation Spectrum in the CACNA1A Gene in 49 Patients with Episodic Ataxia. Sci Rep 2017; 7:2514. [PMID: 28566750 PMCID: PMC5451382 DOI: 10.1038/s41598-017-02554-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/13/2017] [Indexed: 11/08/2022] Open
Abstract
Episodic ataxia is an autosomal dominant ion channel disorder characterized by episodes of imbalance and incoordination. The disease is genetically heterogeneous and is classified as episodic ataxia type 2 (EA2) when it is caused by a mutation in the CACNA1A gene, encoding the α1A subunit of the P/Q-type voltage-gated calcium channel Cav2.1. The vast majority of EA2 disease-causing variants are loss-of-function (LoF) point changes leading to decreased channel currents. CACNA1A exonic deletions have also been reported in EA2 using quantitative approaches. We performed a mutational screening of the CACNA1A gene, including the promoter and 3'UTR regions, in 49 unrelated patients diagnosed with episodic ataxia. When pathogenic variants were not found by sequencing, we performed a copy number variant (CNV) analysis to screen for duplications or deletions. Overall, sequencing screening allowed identification of six different point variants (three nonsense and three missense changes) and two coding indels, one of them found in two unrelated patients. Additionally, CNV analysis identified a deletion in a patient spanning exon 35 as a result of a recombination event between flanking intronic Alu sequences. This study allowed identification of potentially pathogenic alterations in our sample, five of them novel, which cover 20% of the patients (10/49). Our data suggest that most of these variants are disease-causing, although functional studies are required.
Collapse
|
41
|
Isaacs DA, Bradshaw MJ, Brown K, Hedera P. Case report of novel CACNA1A gene mutation causing episodic ataxia type 2. SAGE Open Med Case Rep 2017; 5:2050313X17706044. [PMID: 28540055 PMCID: PMC5431607 DOI: 10.1177/2050313x17706044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Episodic ataxia type 2 (OMIM 108500) is an autosomal dominant channelopathy characterized by paroxysms of ataxia, vertigo, nausea, and other neurologic symptoms. More than 50 mutations of the CACNA1A gene have been discovered in families with episodic ataxia type 2, although 30%-50% of all patients with typical episodic ataxia type 2 phenotype have no detectable mutation of the CACNA1A gene. CASE A 46-year-old Caucasian man, with a long history of bouts of imbalance, vertigo, and nausea, presented to our hospital with 2 weeks of ataxia and headache. Subsequent evaluation revealed a novel mutation in the CACNA1A gene: c.1364 G > A Arg455Gln. Acetazolamide was initiated with symptomatic improvement. CONCLUSION This case report expands the list of known CACNA1A mutations associated with episodic ataxia type 2.
Collapse
Affiliation(s)
| | | | - Kelly Brown
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Hedera
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
42
|
Sutherland HG, Griffiths LR. Genetics of Migraine: Insights into the Molecular Basis of Migraine Disorders. Headache 2017; 57:537-569. [PMID: 28271496 DOI: 10.1111/head.13053] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Migraine is a complex, debilitating neurovascular disorder, typically characterized by recurring, incapacitating attacks of severe headache often accompanied by nausea and neurological disturbances. It has a strong genetic basis demonstrated by rare migraine disorders caused by mutations in single genes (monogenic), as well as familial clustering of common migraine which is associated with polymorphisms in many genes (polygenic). Hemiplegic migraine is a dominantly inherited, severe form of migraine with associated motor weakness. Family studies have found that mutations in three different ion channels genes, CACNA1A, ATP1A2, and SCN1A can be causal. Functional studies of these mutations has shown that they can result in defective regulation of glutamatergic neurotransmission and the excitatory/inhibitory balance in the brain, which lowers the threshold for cortical spreading depression, a wave of cortical depolarization thought to be involved in headache initiation mechanisms. Other putative genes for monogenic migraine include KCKN18, PRRT2, and CSNK1D, which can also be involved with other disorders. There are a number of primarily vascular disorders caused by mutations in single genes, which are often accompanied by migraine symptoms. Mutations in NOTCH3 causes cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebrovascular disease that leads to ischemic strokes and dementia, but in which migraine is often present, sometimes long before the onset of other symptoms. Mutations in the TREX1 and COL4A1 also cause vascular disorders, but often feature migraine. With respect to common polygenic migraine, genome-wide association studies have now identified single nucleotide polymorphisms at 38 loci significantly associated with migraine risk. Functions assigned to the genes in proximity to these loci suggest that both neuronal and vascular pathways also contribute to the pathophysiology of common migraine. Further studies are required to fully understand these findings and translate them into treatment options for migraine patients.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
43
|
Ubiquitin Ligase RNF138 Promotes Episodic Ataxia Type 2-Associated Aberrant Degradation of Human Ca v2.1 (P/Q-Type) Calcium Channels. J Neurosci 2017; 37:2485-2503. [PMID: 28167673 DOI: 10.1523/jneurosci.3070-16.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated CaV2.1 channels comprise a pore-forming α1A subunit with auxiliary α2δ and β subunits. CaV2.1 channels play an essential role in regulating synaptic signaling. Mutations in the human gene encoding the CaV2.1 subunit are associated with the cerebellar disease episodic ataxia type 2 (EA2). Several EA2-causing mutants exhibit impaired protein stability and exert dominant-negative suppression of CaV2.1 wild-type (WT) protein expression via aberrant proteasomal degradation. Here, we set out to delineate the protein degradation mechanism of human CaV2.1 subunit by identifying RNF138, an E3 ubiquitin ligase, as a novel CaV2.1-binding partner. In neurons, RNF138 and CaV2.1 coexist in the same protein complex and display notable subcellular colocalization at presynaptic and postsynaptic regions. Overexpression of RNF138 promotes polyubiquitination and accelerates protein turnover of CaV2.1. Disrupting endogenous RNF138 function with a mutant (RNF138-H36E) or shRNA infection significantly upregulates the CaV2.1 protein level and enhances CaV2.1 protein stability. Disrupting endogenous RNF138 function also effectively rescues the defective protein expression of EA2 mutants, as well as fully reversing EA2 mutant-induced excessive proteasomal degradation of CaV2.1 WT subunits. RNF138-H36E coexpression only partially restores the dominant-negative effect of EA2 mutants on CaV2.1 WT functional expression, which can be attributed to defective membrane trafficking of CaV2.1 WT in the presence of EA2 mutants. We propose that RNF138 plays a critical role in the homeostatic regulation of CaV2.1 protein level and functional expression and that RNF138 serves as the primary E3 ubiquitin ligase promoting EA2-associated aberrant degradation of human CaV2.1 subunits.SIGNIFICANCE STATEMENT Loss-of-function mutations in the human CaV2.1 subunit are linked to episodic ataxia type 2 (EA2), a dominantly inherited disease characterized by paroxysmal attacks of ataxia and nystagmus. EA2-causing mutants may exert dominant-negative effects on the CaV2.1 wild-type subunit via aberrant proteasomal degradation. The molecular nature of the CaV2.1 ubiquitin-proteasome degradation pathway is currently unknown. The present study reports the first identification of an E3 ubiquitin ligase for CaV2.1, RNF138. CaV2.1 protein stability is dynamically regulated by RNF138 and auxiliary α2δ and β subunits. We provide a proof of concept that protecting the human CaV2.1 subunit from excessive proteasomal degradation with specific interruption of endogenous RNF138 function may partially contribute to the future development of a novel therapeutic strategy for EA2 patients.
Collapse
|
44
|
Méneret A, Roze E. Paroxysmal movement disorders: An update. Rev Neurol (Paris) 2016; 172:433-445. [PMID: 27567459 DOI: 10.1016/j.neurol.2016.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/10/2016] [Accepted: 07/08/2016] [Indexed: 01/08/2023]
Abstract
Paroxysmal movement disorders comprise both paroxysmal dyskinesia, characterized by attacks of dystonic and/or choreic movements, and episodic ataxia, defined by attacks of cerebellar ataxia. They may be primary (familial or sporadic) or secondary to an underlying cause. They can be classified according to their phenomenology (kinesigenic, non-kinesigenic or exercise-induced) or their genetic cause. The main genes involved in primary paroxysmal movement disorders include PRRT2, PNKD, SLC2A1, ATP1A3, GCH1, PARK2, ADCY5, CACNA1A and KCNA1. Many cases remain genetically undiagnosed, thereby suggesting that additional culprit genes remain to be discovered. The present report is a general overview that aims to help clinicians diagnose and treat patients with paroxysmal movement disorders.
Collapse
Affiliation(s)
- A Méneret
- Inserm U 1127, CNRS UMR 7225, Sorbonne University Group, UPMC University Paris 06 UMR S 1127, Brain and Spine Institute, ICM, 75013 Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Department of Neurology, 75013 Paris, France
| | - E Roze
- Inserm U 1127, CNRS UMR 7225, Sorbonne University Group, UPMC University Paris 06 UMR S 1127, Brain and Spine Institute, ICM, 75013 Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Department of Neurology, 75013 Paris, France.
| |
Collapse
|
45
|
Reinson K, Õiglane-Shlik E, Talvik I, Vaher U, Õunapuu A, Ennok M, Teek R, Pajusalu S, Murumets Ü, Tomberg T, Puusepp S, Piirsoo A, Reimand T, Õunap K. BiallelicCACNA1Amutations cause early onset epileptic encephalopathy with progressive cerebral, cerebellar, and optic nerve atrophy. Am J Med Genet A 2016; 170:2173-6. [DOI: 10.1002/ajmg.a.37678] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Karit Reinson
- Department of Genetics; United Laboratories; Tartu University Hospital; Tartu Estonia
- Department of Paediatrics; University of Tartu; Tartu Estonia
| | - Eve Õiglane-Shlik
- Department of Paediatrics; University of Tartu; Tartu Estonia
- Children's Clinic; Tartu University Hospital; Tartu Estonia
| | - Inga Talvik
- Department of Paediatrics; University of Tartu; Tartu Estonia
- Children's Clinic; Tartu University Hospital; Tartu Estonia
| | - Ulvi Vaher
- Children's Clinic; Tartu University Hospital; Tartu Estonia
| | - Anne Õunapuu
- Neurology Clinic; Tartu University Hospital; Tartu Estonia
| | - Margus Ennok
- Neurology Clinic; Tartu University Hospital; Tartu Estonia
- Department of Neurology and Neurosurgery; University of Tartu; Tartu Estonia
| | - Rita Teek
- Department of Genetics; United Laboratories; Tartu University Hospital; Tartu Estonia
- Department of Paediatrics; University of Tartu; Tartu Estonia
| | - Sander Pajusalu
- Department of Genetics; United Laboratories; Tartu University Hospital; Tartu Estonia
- Institute of Biomedicine and Translational Medicine; Department of Biomedicine; University of Tartu; Tartu Estonia
| | - Ülle Murumets
- Department of Genetics; United Laboratories; Tartu University Hospital; Tartu Estonia
| | - Tiiu Tomberg
- Radiology Clinic; Tartu University Hospital; Tartu Estonia
| | - Sanna Puusepp
- Department of Genetics; United Laboratories; Tartu University Hospital; Tartu Estonia
| | - Andres Piirsoo
- Institute of Biomedicine and Translational Medicine; Department of Biomedicine; University of Tartu; Tartu Estonia
| | - Tiia Reimand
- Department of Genetics; United Laboratories; Tartu University Hospital; Tartu Estonia
- Department of Paediatrics; University of Tartu; Tartu Estonia
- Institute of Biomedicine and Translational Medicine; Department of Biomedicine; University of Tartu; Tartu Estonia
| | - Katrin Õunap
- Department of Genetics; United Laboratories; Tartu University Hospital; Tartu Estonia
- Department of Paediatrics; University of Tartu; Tartu Estonia
| |
Collapse
|
46
|
Dahimene S, Page KM, Nieto-Rostro M, Pratt WS, D'Arco M, Dolphin AC. A CaV2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant. Neurobiol Dis 2016; 93:243-56. [PMID: 27260834 PMCID: PMC4940211 DOI: 10.1016/j.nbd.2016.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 02/08/2023] Open
Abstract
Episodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide.
Collapse
Affiliation(s)
- Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Karen M Page
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Manuela Nieto-Rostro
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Marianna D'Arco
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
47
|
CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur J Hum Genet 2015; 23:1505-12. [PMID: 25735478 DOI: 10.1038/ejhg.2015.21] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/25/2023] Open
Abstract
CACNA1A loss-of-function mutations classically present as episodic ataxia type 2 (EA2), with brief episodes of ataxia and nystagmus, or with progressive spinocerebellar ataxia (SCA6). A minority of patients carrying CACNA1A mutations develops epilepsy. Non-motor symptoms associated with these mutations are often overlooked. In this study, we report 16 affected individuals from four unrelated families presenting with a spectrum of cognitive impairment including intellectual deficiency, executive dysfunction, ADHD and/or autism, as well as childhood-onset epileptic encephalopathy with refractory absence epilepsy, febrile seizures, downbeat nystagmus and episodic ataxia. Sequencing revealed one CACNA1A gene deletion, two deleterious CACNA1A point mutations including one known stop-gain and one new frameshift variant and a new splice-site variant. This report illustrates the phenotypic heterogeneity of CACNA1A loss-of-function mutations and stresses the cognitive and epileptic manifestations caused by the loss of CaV2.1 channels function, presumably affecting cerebellar, cortical and limbic networks.
Collapse
|
48
|
|
49
|
Kipfer S, Strupp M. The Clinical Spectrum of Autosomal-Dominant Episodic Ataxias. Mov Disord Clin Pract 2014; 1:285-290. [PMID: 30713867 DOI: 10.1002/mdc3.12075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/16/2014] [Accepted: 06/20/2014] [Indexed: 11/06/2022] Open
Abstract
Autosomal-dominant episodic ataxias (EAs) represent a clinically and genetically heterogeneous group of disorders characterized by recurrent episodes of cerebellar ataxia (CA). Ataxia episodes are usually of short duration and often triggered by specific stimuli. There are currently seven classified subtypes of EA. EA types 1 and 2 have the highest prevalence and are therefore the clinically most relevant. Between attacks, EA 1 is associated with myokymia. In EA 2, often an interictal downbeat nystagmus with other cerebellar ocular dysfunctions is present; patients with EA 2 may display slowly progessive ataxia and vermian atrophy. EA 1 and 2 are both channelopathies, affecting the potassium channel gene, KCNA1, in EA 1 and the PQ calcium channel-encoding gene, CACNA1A, in EA 2. The types EA 3 to 7 are very rare and have to be further elucidated. Here, we review the historical, clinical, and genetic aspects of autosomal-dominant EAs and their current treatment, focusing on EA 1 and 2.
Collapse
Affiliation(s)
- Stefan Kipfer
- Department of Neurology Kantonsspital Olten Switzerland
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders University Hospital Munich Munich Germany
| |
Collapse
|
50
|
Episodic ataxia type 2: phenotype characteristics of a novel CACNA1A mutation and review of the literature. J Neurol 2014; 261:983-91. [DOI: 10.1007/s00415-014-7310-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
|