1
|
Long AM, Lee G, Demonbreun AR, McNally EM. Extracellular matrix contribution to disease progression and dysfunction in myopathy. Am J Physiol Cell Physiol 2023; 325:C1244-C1251. [PMID: 37746696 PMCID: PMC10855263 DOI: 10.1152/ajpcell.00182.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Myopathic processes affect skeletal muscle and heart. In the muscular dystrophies, which are a subset of myopathies, muscle cells are gradually replaced by fibrosis and fat, impairing muscle function as well as regeneration and repair. In addition to skeletal muscle, these genetic disorders often also affect the heart, where fibrofatty infiltration progressively accumulates in the myocardium, impairing heart function. Although considerable effort has focused on gene-corrective and gene-replacement approaches to stabilize myofibers and cardiomyocytes, the continual and ongoing deposition of extracellular matrix itself contributes to tissue and organ dysfunction. Transcriptomic and proteomic profiling, along with high-resolution imaging and biophysical measurements, have been applied to define extracellular matrix components and their role in contributing to cardiac and skeletal muscle weakness. More recently, decellularization methods have been adapted to an on-slide format to preserve the spatial geography of the extracellular matrix, allowing new insight into matrix remodeling and its direct role in suppressing regeneration in muscle. This review highlights recent literature with focus on the extracellular matrix and molecular mechanisms that contribute to muscle and heart fibrotic disorders. We will also compare how the myopathic matrix differs from healthy matrix, emphasizing how the pathological matrix contributes to disease.
Collapse
Affiliation(s)
- Ashlee M Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
2
|
Cruz-Soca M, Faundez-Contreras J, Córdova-Casanova A, Gallardo FS, Bock-Pereda A, Chun J, Casar JC, Brandan E. Activation of skeletal muscle FAPs by LPA requires the Hippo signaling via the FAK pathway. Matrix Biol 2023; 119:57-81. [PMID: 37137584 DOI: 10.1016/j.matbio.2023.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a lysophospholipid that signals through six G-protein coupled receptors (LPARs), LPA1 to LPA6. LPA has been described as a potent modulator of fibrosis in different pathologies. In skeletal muscle, LPA increases fibrosis-related proteins and the number of fibro/adipogenic progenitors (FAPs). FAPs are the primary source of ECM-secreting myofibroblasts in acute and chronic damage. However, the effect of LPA on FAPs activation in vitro has not been explored. This study aimed to investigate FAPs' response to LPA and the downstream signaling mediators involved. Here, we demonstrated that LPA mediates FAPs activation by increasing their proliferation, expression of myofibroblasts markers, and upregulation of fibrosis-related proteins. Pretreatment with the LPA1/LPA3 antagonist Ki16425 or genetic deletion of LPA1 attenuated the LPA-induced FAPs activation, resulting in decreased expression of cyclin e1, α-SMA, and fibronectin. We also evaluated the activation of the focal adhesion kinase (FAK) in response to LPA. Our results showed that LPA induces FAK phosphorylation in FAPs. Treatment with the P-FAK inhibitor PF-228 partially prevented the induction of cell responses involved in FAPs activation, suggesting that this pathway mediates LPA signaling. FAK activation controls downstream cell signaling within the cytoplasm, such as the Hippo pathway. LPA induced the dephosphorylation of the transcriptional coactivator YAP (Yes-associated protein) and promoted direct expression of target pathway genes such as Ctgf/Ccn2 and Ccn1. The blockage of YAP transcriptional activity with Super-TDU further confirmed the role of YAP in LPA-induced FAPs activation. Finally, we demonstrated that FAK is required for LPA-dependent YAP dephosphorylation and the induction of Hippo pathway target genes. In conclusion, LPA signals through LPA1 to regulate FAPs activation by activating FAK to control the Hippo pathway.
Collapse
Affiliation(s)
- Meilyn Cruz-Soca
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jennifer Faundez-Contreras
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Adriana Córdova-Casanova
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Felipe S Gallardo
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Alexia Bock-Pereda
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
3
|
Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets. Pharmacol Ther 2023; 243:108357. [PMID: 36764462 DOI: 10.1016/j.pharmthera.2023.108357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Skeletal muscle contraction is essential for the movement of our musculoskeletal system. Tendons and ligaments that connect the skeletal muscles to bones in the correct position at the appropriate time during development are also required for movement to occur. Since the musculoskeletal system is essential for maintaining basic bodily functions as well as enabling interactions with the environment, dysfunctions of these tissues due to disease can significantly reduce quality of life. Unfortunately, as people live longer, skeletal muscle and tendon/ligament diseases are becoming more common. Sarcopenia, a disease in which skeletal muscle function declines, and tendinopathy, which involves chronic tendon dysfunction, are particularly troublesome because there have been no significant advances in their treatment. In this review, we will summarize previous reports on the development and regeneration/healing of skeletal muscle and tendon tissues, including a discussion of the molecular and cellular mechanisms involved that may be used as potential therapeutic targets.
Collapse
|
4
|
Wang X, Chen J, Homma ST, Wang Y, Smith GR, Ruf-Zamojski F, Sealfon SC, Zhou L. Diverse effector and regulatory functions of fibro/adipogenic progenitors during skeletal muscle fibrosis in muscular dystrophy. iScience 2022; 26:105775. [PMID: 36594034 PMCID: PMC9804115 DOI: 10.1016/j.isci.2022.105775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Fibrosis is a prominent pathological feature of skeletal muscle in Duchenne muscular dystrophy (DMD). The commonly used disease mouse model, mdx 5cv , displays progressive fibrosis in the diaphragm but not limb muscles. We use single-cell RNA sequencing to determine the cellular expression of the genes involved in extracellular matrix (ECM) production and degradation in the mdx 5cv diaphragm and quadriceps. We find that fibro/adipogenic progenitors (FAPs) are not only the primary source of ECM but also the predominant cells that express important ECM regulatory genes, including Ccn2, Ltbp4, Mmp2, Mmp14, Timp1, Timp2, and Loxs. The effector and regulatory functions are exerted by diverse FAP clusters which are different between diaphragm and quadriceps, indicating their activation by different tissue microenvironments. FAPs are more abundant in diaphragm than in quadriceps. Our findings suggest that the development of anti-fibrotic therapy for DMD should target not only the ECM production but also the pro-fibrogenic regulatory functions of FAPs.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Jianming Chen
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Sachiko T. Homma
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Yinhang Wang
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Gregory R. Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Frederique Ruf-Zamojski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Lan Zhou
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA,Corresponding author
| |
Collapse
|
5
|
Alonso-Pérez J, Carrasco-Rozas A, Borrell-Pages M, Fernández-Simón E, Piñol-Jurado P, Badimon L, Wollin L, Lleixà C, Gallardo E, Olivé M, Díaz-Manera J, Suárez-Calvet X. Nintedanib Reduces Muscle Fibrosis and Improves Muscle Function of the Alpha-Sarcoglycan-Deficient Mice. Biomedicines 2022; 10:2629. [PMID: 36289891 PMCID: PMC9599168 DOI: 10.3390/biomedicines10102629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Sarcoglycanopathies are a group of recessive limb-girdle muscular dystrophies, characterized by progressive muscle weakness. Sarcoglycan deficiency produces instability of the sarcolemma during muscle contraction, leading to continuous muscle fiber injury eventually producing fiber loss and replacement by fibro-adipose tissue. Therapeutic strategies aiming to reduce fibro-adipose expansion could be effective in muscular dystrophies. We report the positive effect of nintedanib in a murine model of alpha-sarcoglycanopathy. We treated 14 Sgca-/- mice, six weeks old, with nintedanib 50 mg/kg every 12 h for 10 weeks and compared muscle function and histology with 14 Sgca-/- mice treated with vehicle and six wild-type littermate mice. Muscle function was assessed using a treadmill and grip strength. A cardiac evaluation was performed by echocardiography and histological study. Structural analysis of the muscles, including a detailed study of the fibrotic and inflammatory processes, was performed using conventional staining and immunofluorescence. In addition, proteomics and transcriptomics studies were carried out. Nintedanib was well tolerated by the animals treated, although we observed weight loss. Sgca-/- mice treated with nintedanib covered a longer distance on the treadmill, compared with non-treated Sgca-/- mice, and showed higher strength in the grip test. Moreover, nintedanib improved the muscle architecture of treated mice, reducing the degenerative area and the fibrotic reaction that was associated with a reversion of the cytokine expression profile. Nintedanib improved muscle function and muscle architecture by reducing muscle fibrosis and degeneration and reverting the chronic inflammatory environment suggesting that it could be a useful therapy for patients with alpha-sarcoglycanopathy.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Ana Carrasco-Rozas
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Esther Fernández-Simón
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Patricia Piñol-Jurado
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Lina Badimon
- Cardiovascular Program ICCC, Hospital de la Santa Creu i Sant Pau Research Institute, IIB-Sant Pau, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Lutz Wollin
- Boehringer Ingelheim, 88400 Biberach, Germany
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Montse Olivé
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 3BZ, UK
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Departament of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28222 Madrid, Spain
| |
Collapse
|
6
|
Anderson B, Ordaz A, Zlomislic V, Allen RT, Garfin SR, Schuepbach R, Farshad M, Schenk S, Ward SR, Shahidi B. Paraspinal Muscle Health is Related to Fibrogenic, Adipogenic, and Myogenic Gene Expression in Patients with Lumbar Spine Pathology. BMC Musculoskelet Disord 2022; 23:608. [PMID: 35739523 PMCID: PMC9229083 DOI: 10.1186/s12891-022-05572-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lumbar spine pathology is a common feature of lower back and/or lower extremity pain and is associated with observable degenerative changes in the lumbar paraspinal muscles that are associated with poor clinical prognosis. Despite the commonly observed phenotype of muscle degeneration in this patient population, its underlying molecular mechanisms are not well understood. The aim of this study was to investigate the relationships between groups of genes within the atrophic, myogenic, fibrogenic, adipogenic, and inflammatory pathways and multifidus muscle health in individuals undergoing surgery for lumbar spine pathology. METHODS Multifidus muscle biopsies were obtained from patients (n = 59) undergoing surgery for lumbar spine pathology to analyze 42 genes from relevant adipogenic/metabolic, atrophic, fibrogenic, inflammatory, and myogenic gene pathways using quantitative polymerase chain reaction. Multifidus muscle morphology was examined preoperatively in these patients at the level and side of biopsy using T2-weighted magnetic resonance imaging to determine whole muscle compartment area, lean muscle area, fat cross-sectional areas, and proportion of fat within the muscle compartment. These measures were used to investigate the relationships between gene expression patterns and muscle size and quality. RESULTS Relationships between gene expression and imaging revealed significant associations between decreased expression of adipogenic/metabolic gene (PPARD), increased expression of fibrogenic gene (COL3A1), and lower fat fraction on MRI (r = -0.346, p = 0.018, and r = 0.386, p = 0.047 respectively). Decreased expression of myogenic gene (mTOR) was related to greater lean muscle cross-sectional area (r = 0.388, p = 0.045). CONCLUSION Fibrogenic and adipogenic/metabolic genes were related to pre-operative muscle quality, and myogenic genes were related to pre-operative muscle size. These findings provide insight into molecular pathways associated with muscle health in the presence of lumbar spine pathology, establishing a foundation for future research that addresses how these changes impact outcomes in this patient population.
Collapse
Affiliation(s)
- Brad Anderson
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Angel Ordaz
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA.
| | - Vinko Zlomislic
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - R Todd Allen
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Steven R Garfin
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Regula Schuepbach
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Samuel R Ward
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| | - Bahar Shahidi
- Department of Orthopaedic Surgery, University of California San Diego, 350 Dickinson Street, Suite 121, Mail Code 8894, San Diego, CA, 92103-8894, USA
| |
Collapse
|
7
|
Hettinger ZR, Wen Y, Peck BD, Hamagata K, Confides AL, Van Pelt DW, Harrison DA, Miller BF, Butterfield TA, Dupont-Versteegden EE. Mechanotherapy Reprograms Aged Muscle Stromal Cells to Remodel the Extracellular Matrix during Recovery from Disuse. FUNCTION 2022; 3:zqac015. [PMID: 35434632 PMCID: PMC9009398 DOI: 10.1093/function/zqac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
Aging is accompanied by reduced remodeling of skeletal muscle extracellular matrix (ECM), which is exacerbated during recovery following periods of disuse atrophy. Mechanotherapy has been shown to promote ECM remodeling through immunomodulation in adult muscle recovery, but not during the aged recovery from disuse. In order to determine if mechanotherapy promotes ECM remodeling in aged muscle, we performed single cell RNA sequencing (scRNA-seq) of all mononucleated cells in adult and aged rat gastrocnemius muscle recovering from disuse, with (REM) and without mechanotherapy (RE). We show that fibroadipogenic progenitor cells (FAPs) in aged RE muscle are highly enriched in chemotaxis genes (Csf1), but absent in ECM remodeling genes compared to adult RE muscle (Col1a1). Receptor-ligand (RL) network analysis of all mononucleated cell populations in aged RE muscle identified chemotaxis-enriched gene expression in numerous stromal cell populations (FAPs, endothelial cells, pericytes), despite reduced enrichment of genes related to phagocytic activity in myeloid cell populations (macrophages, monocytes, antigen presenting cells). Following mechanotherapy, aged REM mononuclear cell gene expression resembled adult RE muscle as evidenced by RL network analyses and KEGG pathway activity scoring. To validate our transcriptional findings, ECM turnover was measured in an independent cohort of animals using in vivo isotope tracing of intramuscular collagen and histological scoring of the ECM, which confirmed mechanotherapy-mediated ECM remodeling in aged RE muscle. Our results highlight age-related cellular mechanisms underpinning the impairment to complete recovery from disuse, and also promote mechanotherapy as an intervention to enhance ECM turnover in aged muscle recovering from disuse.
Collapse
Affiliation(s)
- Zachary R Hettinger
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Bailey D Peck
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Kyoko Hamagata
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Amy L Confides
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Douglas W Van Pelt
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Douglas A Harrison
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky; Lexington, KY 40536, USA
| | - Esther E Dupont-Versteegden
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Kuraoka M, Aoki Y, Takeda S. Development of outcome measures according to dystrophic phenotypes in canine X-linked muscular dystrophy in Japan. Exp Anim 2021; 70:419-430. [PMID: 34135266 PMCID: PMC8614006 DOI: 10.1538/expanim.21-0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Shin'ichi Takeda
- National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|
9
|
Rodriguez-Gonzalez M, Lubian-Gutierrez M, Cascales-Poyatos HM, Perez-Reviriego AA, Castellano-Martinez A. Role of the Renin-Angiotensin-Aldosterone System in Dystrophin-Deficient Cardiomyopathy. Int J Mol Sci 2020; 22:356. [PMID: 33396334 PMCID: PMC7796305 DOI: 10.3390/ijms22010356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
Dystrophin-deficient cardiomyopathy (DDC) is currently the leading cause of death in patients with dystrophinopathies. Targeting myocardial fibrosis (MF) has become a major therapeutic goal in order to prevent the occurrence of DDC. We aimed to review and summarize the current evidence about the role of the renin-angiotensin-aldosterone system (RAAS) in the development and perpetuation of MF in DCC. We conducted a comprehensive search of peer-reviewed English literature on PubMed about this subject. We found increasing preclinical evidence from studies in animal models during the last 20 years pointing out a central role of RAAS in the development of MF in DDC. Local tissue RAAS acts directly mainly through its main fibrotic component angiotensin II (ANG2) and its transducer receptor (AT1R) and downstream TGF-b pathway. Additionally, it modulates the actions of most of the remaining pro-fibrotic factors involved in DDC. Despite limited clinical evidence, RAAS blockade constitutes the most studied, available and promising therapeutic strategy against MF and DDC. Conclusion: Based on the evidence reviewed, it would be recommendable to start RAAS blockade therapy through angiotensin converter enzyme inhibitors (ACEI) or AT1R blockers (ARBs) alone or in combination with mineralocorticoid receptor antagonists (MRa) at the youngest age after the diagnosis of dystrophinopathies, in order to delay the occurrence or slow the progression of MF, even before the detection of any cardiovascular alteration.
Collapse
Affiliation(s)
- Moises Rodriguez-Gonzalez
- Pediatric Cardiology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
| | - Manuel Lubian-Gutierrez
- Pediatric Neurology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Pediatric Division of Doctor Cayetano Roldan Primary Care Center, 11100 San Fernando, Spain
| | | | | | - Ana Castellano-Martinez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain;
- Pediatric Nephrology Division of Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
| |
Collapse
|
10
|
Al-Khalili Szigyarto C. Duchenne Muscular Dystrophy: recent advances in protein biomarkers and the clinical application. Expert Rev Proteomics 2020; 17:365-375. [PMID: 32713262 DOI: 10.1080/14789450.2020.1773806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Early biomarker discovery studies have praised the value of their emerging results, predicting an unprecedented impact on health care. Biomarkers are expected to provide tests with increased specificity and sensitivity compared to existing measures, improve the decision-making process, and accelerate the development of therapies. For rare disorders, like Duchenne Muscular Dystrophy (DMD) such biomarkers can assist the development of therapies, therefore also helping to find a cure for the disease. AREA COVERED State-of-the-art technologies have been used to identify blood biomarkers for DMD and efforts have been coordinated to develop and promote translation of biomarkers for clinical practice. Biomarker translation to clinical practice is however, adjoined by challenges related to the complexity of the disease, involving numerous biological processes, and the limited sample resources. This review highlights the current progress on the development of biomarkers, describing the proteomics technologies used, the most promising findings and the challenges encountered. EXPERT OPINION Strategies for effective use of samples combined with orthogonal proteomics methods for protein quantification are essential for translating biomarkers to the patient's bed side. Progress is achieved only if strong evidence is provided that the biomarker constitutes a reliable indicator of the patient's health status for a specific context of use.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Science for Life Laboratory, KTH - Royal Institute of Technology , Solna, Sweden.,School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology , Stockholm, Sweden
| |
Collapse
|
11
|
Alameddine HS, Morgan JE. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles. J Neuromuscul Dis 2018; 3:455-473. [PMID: 27911334 PMCID: PMC5240616 DOI: 10.3233/jnd-160183] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs' overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis.
Collapse
Affiliation(s)
- Hala S Alameddine
- Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, UK
| |
Collapse
|
12
|
Smith LR, Barton ER. Regulation of fibrosis in muscular dystrophy. Matrix Biol 2018; 68-69:602-615. [PMID: 29408413 DOI: 10.1016/j.matbio.2018.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 02/08/2023]
Abstract
The production of force and power are inherent properties of skeletal muscle, and regulated by contractile proteins within muscle fibers. However, skeletal muscle integrity and function also require strong connections between muscle fibers and their extracellular matrix (ECM). A well-organized and pliant ECM is integral to muscle function and the ability for many different cell populations to efficiently migrate through ECM is critical during growth and regeneration. For many neuromuscular diseases, genetic mutations cause disruption of these cytoskeletal-ECM connections, resulting in muscle fragility and chronic injury. Ultimately, these changes shift the balance from myogenic pathways toward fibrogenic pathways, culminating in the loss of muscle fibers and their replacement with fatty-fibrotic matrix. Hence a common pathological hallmark of muscular dystrophy is prominent fibrosis. This review will cover the salient features of muscular dystrophy pathogenesis, highlight the signals and cells that are important for myogenic and fibrogenic actions, and discuss how fibrosis alters the ECM of skeletal muscle, and the consequences of fibrosis in developing therapies.
Collapse
Affiliation(s)
- Lucas R Smith
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
13
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic serum biomarkers for neuromuscular diseases. Expert Rev Proteomics 2018; 15:277-291. [DOI: 10.1080/14789450.2018.1429923] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn, Germany
| | | | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
14
|
Wang JZ, Wu P, Shi ZM, Xu YL, Liu ZJ. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev 2017; 39:547-556. [PMID: 28390761 DOI: 10.1016/j.braindev.2017.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In brief, adeno-associated virus (AAV) vectors transport guided RNAs (gRNAs) and Cas9 into mdx mouse model, gRNAs recognize the mutated Dmd exon 23 (having a stop codon), and Cas9 cut the mutated exon 23 off the Dmd gene. These manipulations restored expression of truncated but partially functional dystrophin, improved skeletal and cardiac muscle function, and increased survival of mdx mice significantly. This review concisely summarized the related advancements and discussed their primary implications in the future gene therapy of DMD, including AAV-vector selection, gRNA designing, Cas9 optimization, dystrophin-restoration efficiency, administration routes, and systemic and long-term therapeutic efficacy. Future orientations, including off-target effects, safety concerns, immune responses, precision medicine, and Dmd-editing in the brain (potentially blocked by the blood-brain barrier) were also elucidated briefly. Collectively, the AAV-mediated and RNA-guided CRISPR/Cas9 system has major superiorities compared with traditional gene therapy, and might contribute to the treatment of DMD and BMD substantially in the near future.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Peng Wu
- Department of Social Science, Hebei University of Engineering, Handan 056038, PR China
| | - Zhi-Min Shi
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yan-Li Xu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Zhi-Jun Liu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| |
Collapse
|
15
|
Murphy S, Dowling P, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic profiling of mdx-4cv serum reveals highly elevated levels of the inflammation-induced plasma marker haptoglobin in muscular dystrophy. Int J Mol Med 2017; 39:1357-1370. [PMID: 28440464 PMCID: PMC5428965 DOI: 10.3892/ijmm.2017.2952] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022] Open
Abstract
X-linked muscular dystrophy is caused by primary abnormalities in the Dmd gene and is characterized by the almost complete loss of the membrane cytoskeletal protein dystrophin, which triggers sarcolemmal instability, abnormal calcium homeostasis, increased proteolysis and impaired excitation-contraction coupling. In addition to progressive necrosis, crucial secondary pathologies are represented by myofibrosis and the invasion of immune cells in damaged muscle fibres. In order to determine whether these substantial changes within the skeletal musculature are reflected by an altered rate of protein release into the circulatory system or other plasma fluctuations, we used label-free mass spectrometry to characterize serum from the mdx-4cv model of Duchenne muscular dystrophy. Comparative proteomics revealed a large number of increased vs. decreased protein species in mdx-4cv serum. A serum component with greatly elevated levels was identified as the inflammation-inducible plasma marker haptoglobin. This acute phase response protein is usually secreted in relation to tissue damage and sterile inflammation. Both immunoblot analyses and enzyme-linked immunosorbent assays confirmed the increased concentration of haptoglobin in crude mdx-4cv serum. This suggests that haptoglobin, in conjunction with other altered serum proteins, represents a novel diagnostic, prognostic and/or therapy-monitoring biomarker candidate to evaluate the inflammatory response in the mdx-4cv animal model of dystrophinopathy.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, D‑53115 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Rustam R Mundegar
- Department of Physiology II, University of Bonn, D‑53115 Bonn, Germany
| | - Dieter Swandulla
- Department of Physiology II, University of Bonn, D‑53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
16
|
Cali-Daylan AE, Dincer P. Gene co-expression network analysis of dysferlinopathy: Altered cellular processes and functional prediction of TOR1AIP1, a novel muscular dystrophy gene. Neuromuscul Disord 2016; 27:269-277. [PMID: 28110863 DOI: 10.1016/j.nmd.2016.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022]
Abstract
Dysferlinopathy, caused by a dysferlin gene mutation, is a clinically heterogeneous autosomal recessive muscle disease characterized by progressive muscle degeneration. The dysferlin protein's functions and dysferlinopathy disease pathogenesis are not fully explored, and there is no specific treatment available that can alter the disease progression. This study uses publicly available dysferlinopathy patient microarray data to construct a gene co-expression network and investigates significant cellular pathways and their key players in dysferlinopathy pathogenesis. Extracellular matrix deposition, inflammation, mitochondrial abnormalities and protein degradation were found to be important in dysferlinopathy. Out of the hub genes, OXR1 and TIMP1 were selected through literature search as candidate genes for possible biomarker and molecular therapeutic target studies. A recently identified muscular dystrophy gene TOR1AIP1 was detected as a hub gene in dysferlinopathy. Co-expression and protein sequence feature analysis were adopted to predict TOR1AIP1's function. Our results suggest that LAP1 protein encoded by TOR1AIP1 may play a role in protein degradation possibly through transcriptional regulation in muscle tissue. These findings extend dysferlinopathy pathogenesis by presenting key genes and also suggest a novel function for a poorly characterized gene.
Collapse
Affiliation(s)
- Ayse Ece Cali-Daylan
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
| | - Pervin Dincer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| |
Collapse
|
17
|
Kuraoka M, Kimura E, Nagata T, Okada T, Aoki Y, Tachimori H, Yonemoto N, Imamura M, Takeda S. Serum Osteopontin as a Novel Biomarker for Muscle Regeneration in Duchenne Muscular Dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1302-12. [PMID: 26963343 DOI: 10.1016/j.ajpath.2016.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/25/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy is a lethal X-linked muscle disorder. We have already reported that osteopontin (OPN), an inflammatory cytokine and myogenic factor, is expressed in the early dystrophic phase in canine X-linked muscular dystrophy in Japan, a dystrophic dog model. To further explore the possibility of OPN as a new biomarker for disease activity in Duchenne muscular dystrophy, we monitored serum OPN levels in dystrophic and wild-type dogs at different ages and compared the levels to other serum markers, such as serum creatine kinase, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1. Serum OPN levels in the dystrophic dogs were significantly elevated compared with those in wild-type dogs before and 1 hour after a cesarean section birth and at the age of 3 months. The serum OPN level was significantly correlated with the phenotypic severity of dystrophic dogs at the period corresponding to the onset of muscle weakness, whereas other serum markers including creatine kinase were not. Immunohistologically, OPN was up-regulated in infiltrating macrophages and developmental myosin heavy chain-positive regenerating muscle fibers in the dystrophic dogs, whereas serum OPN was highly elevated. OPN expression was also observed during the synergic muscle regeneration process induced by cardiotoxin injection. In conclusion, OPN is a promising biomarker for muscle regeneration in dystrophic dogs and can be applicable to boys with Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - En Kimura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Okada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hisateru Tachimori
- Department of Mental Health Policy and Evaluation, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naohiro Yonemoto
- Department of Psychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Michihiro Imamura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
18
|
Almeida CF, Martins PC, Vainzof M. Comparative transcriptome analysis of muscular dystrophy models Large(myd), Dmd(mdx)/Large(myd) and Dmd(mdx): what makes them different? Eur J Hum Genet 2016; 24:1301-9. [PMID: 26932192 DOI: 10.1038/ejhg.2016.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 11/09/2022] Open
Abstract
Muscular dystrophies (MD) are a clinically and genetically heterogeneous group of Mendelian diseases. The underlying pathophysiology and phenotypic variability in each form are much more complex, suggesting the involvement of many other genes. Thus, here we studied the whole genome expression profile in muscles from three mice models for MD, at different time points: Dmd(mdx) (mutation in dystrophin gene), Large(myd-/-) (mutation in Large) and Dmd(mdx)/Large(myd-/-) (both mutations). The identification of altered biological functions can contribute to understand diseases and to find prognostic biomarkers and points for therapeutic intervention. We identified a substantial number of differentially expressed genes (DEGs) in each model, reflecting diseases' complexity. The main biological process affected in the three strains was immune system, accounting for the majority of enriched functional categories, followed by degeneration/regeneration and extracellular matrix remodeling processes. The most notable differences were in 21-day-old Dmd(mdx), with a high proportion of DEGs related to its regenerative capacity. A higher number of positive embryonic myosin heavy chain (eMyHC) fibers confirmed this. The new Dmd(mdx)/Large(myd-/-) model did not show a highly different transcriptome from the parental lineages, with a profile closer to Large(myd-/-), but not bearing the same regenerative potential as Dmd(mdx). This is the first report about transcriptome profile of a mouse model for congenital MD and Dmd(mdx)/Large(myd). By comparing the studied profiles, we conclude that alterations in biological functions due to the dystrophic process are very similar, and that the intense regeneration in Dmd(mdx) involves a large number of activated genes, not differentially expressed in the other two strains.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Poliana Cm Martins
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Holland A, Murphy S, Dowling P, Ohlendieck K. Pathoproteomic profiling of the skeletal muscle matrisome in dystrophinopathy associated myofibrosis. Proteomics 2015; 16:345-66. [PMID: 26256116 DOI: 10.1002/pmic.201500158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
The gradual accumulation of collagen and associated proteins of the extracellular matrix is a crucial myopathological parameter of many neuromuscular disorders. Progressive tissue damage and fibrosis play a key pathobiochemical role in the dysregulation of contractile functions and often correlates with poor motor outcome in muscular dystrophies. Following a brief introduction into the role of the extracellular matrix in skeletal muscles, we review here the proteomic profiling of myofibrosis and its intrinsic role in X-linked muscular dystrophy. Although Duchenne muscular dystrophy is primarily a disease of the membrane cytoskeleton, one of its most striking histopathological features is a hyperactive connective tissue and tissue scarring. We outline the identification of novel factors involved in the modulation of the extracellular matrix in muscular dystrophy, such as matricellular proteins. The establishment of novel proteomic markers will be helpful in improving the diagnosis, prognosis, and therapy monitoring in relation to fibrotic substitution of contractile tissue. In the future, the prevention of fibrosis will be crucial for providing optimum conditions to apply novel pharmacological treatments, as well as establish cell-based approaches or gene therapeutic interventions. The elimination of secondary abnormalities in the matrisome promises to reduce tissue scarring and the loss of skeletal muscle elasticity.
Collapse
Affiliation(s)
- Ashling Holland
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
20
|
Anaya-Segura MA, García-Martínez FA, Montes-Almanza LA, Díaz BG, Avila-Ramírez G, Alvarez-Maya I, Coral-Vazquez RM, Mondragón-Terán P, Escobar-Cedillo RE, García-Calderón N, Vazquez-Cardenas NA, García S, López-Hernandez LB. Non-Invasive Biomarkers for Duchenne Muscular Dystrophy and Carrier Detection. Molecules 2015; 20:11154-72. [PMID: 26091074 PMCID: PMC6272409 DOI: 10.3390/molecules200611154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 01/16/2023] Open
Abstract
Non-invasive biological indicators of the absence/presence or progress of the disease that could be used to support diagnosis and to evaluate the effectiveness of treatment are of utmost importance in Duchenne Muscular Dystrophy (DMD). This neuromuscular disorder affects male children, causing weakness and disability, whereas female relatives are at risk of being carriers of the disease. A biomarker with both high sensitivity and specificity for accurate prediction is preferred. Until now creatine kinase (CK) levels have been used for DMD diagnosis but these fail to assess disease progression. Herein we examined the potential applicability of serum levels of matrix metalloproteinase 9 (MMP-9) and matrix metalloproteinase 2 (MMP-2), tissue inhibitor of metalloproteinases 1 (TIMP-1), myostatin (GDF-8) and follistatin (FSTN) as non-invasive biomarkers to distinguish between DMD steroid naïve patients and healthy controls of similar age and also for carrier detection. Our data suggest that serum levels of MMP-9, GDF-8 and FSTN are useful to discriminate DMD from controls (p < 0.05), to correlate with some neuromuscular assessments for DMD, and also to differentiate between Becker muscular dystrophy (BMD) and Limb-girdle muscular dystrophy (LGMD) patients. In DMD individuals under steroid treatment, GDF-8 levels increased as FSTN levels decreased, resembling the proportions of these proteins in healthy controls and also the baseline ratio of patients without steroids. GDF-8 and FSTN serum levels were also useful for carrier detection (p < 0.05). Longitudinal studies with larger cohorts are necessary to confirm that these molecules correlate with disease progression. The biomarkers presented herein could potentially outperform CK levels for carrier detection and also harbor potential for monitoring disease progression.
Collapse
Affiliation(s)
- Monica Alejandra Anaya-Segura
- Research Center in Technology and Design Assistance of Jalisco State (CIATEJ, AC), National Council of Science and Technology (CONACYT), Guadalajara 44270, Mexico.
| | | | - Luis Angel Montes-Almanza
- National Medical Centre \"20 de Noviembre\", Institute for Social Security of State Workers, Mexico City 03100, Mexico.
| | | | | | - Ikuri Alvarez-Maya
- Research Center in Technology and Design Assistance of Jalisco State (CIATEJ, AC), National Council of Science and Technology (CONACYT), Guadalajara 44270, Mexico.
| | - Ramón Mauricio Coral-Vazquez
- Studies Section of Postgraduate and Research, School of Medicine, National Polytechnic Institute, Mexico City 11340, Mexico.
| | - Paul Mondragón-Terán
- National Medical Centre \"20 de Noviembre\", Institute for Social Security of State Workers, Mexico City 03100, Mexico.
| | | | - Noemí García-Calderón
- Asociación de Distrofia Muscular de Occidente A.C., Guadalajara 44380, Mexico.
- Mexican Institute of Social Security-CMNO, Guadalajara 44340, Mexico.
| | | | - Silvia García
- National Medical Centre \"20 de Noviembre\", Institute for Social Security of State Workers, Mexico City 03100, Mexico.
| | - Luz Berenice López-Hernandez
- National Medical Centre \"20 de Noviembre\", Institute for Social Security of State Workers, Mexico City 03100, Mexico.
| |
Collapse
|
21
|
Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: Proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteomics Clin Appl 2014; 8:875-95. [DOI: 10.1002/prca.201400015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/24/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth Co. Kildare Ireland
| |
Collapse
|
22
|
Alameddine HS. Matrix metalloproteinases in skeletal muscles: Friends or foes? Neurobiol Dis 2012; 48:508-18. [DOI: 10.1016/j.nbd.2012.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/28/2012] [Accepted: 07/25/2012] [Indexed: 12/13/2022] Open
|
23
|
Escolar DM, Zimmerman A, Bertorini T, Clemens PR, Connolly AM, Mesa L, Gorni K, Kornberg A, Kolski H, Kuntz N, Nevo Y, Tesi-Rocha C, Nagaraju K, Rayavarapu S, Hache LP, Mayhew JE, Florence J, Hu F, Arrieta A, Henricson E, Leshner RT, Mah JK. Pentoxifylline as a rescue treatment for DMD: a randomized double-blind clinical trial. Neurology 2012; 78:904-13. [PMID: 22402864 DOI: 10.1212/wnl.0b013e31824c46be] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether pentoxifylline (PTX) slows the decline of muscle strength and function in ambulatory boys with Duchenne muscular dystrophy (DMD). METHODS This was a multicenter, randomized, double-blinded, controlled trial comparing 12 months of daily treatment with PTX or placebo in corticosteroid-treated boys with DMD using a slow-release PTX formulation (~20 mg/kg/day). The primary outcome was the change in mean total quantitative muscle testing (QMT) score. Secondary outcomes included changes in QMT subscales, manual muscle strength, pulmonary function, and timed function tests. Outcomes were compared using Student t tests and a linear mixed-effects model. Adverse events (AEs) were compared using the Fisher exact test. RESULTS A total of 64 boys with DMD with a mean age of 9.9 ± 2.9 years were randomly assigned to PTX or placebo in 11 participating Cooperative International Neuromuscular Research Group centers. There was no significant difference between PTX and the placebo group in total QMT scores (p = 0.14) or in most of the secondary outcomes after a 12-month treatment. The use of PTX was associated with mild to moderate gastrointestinal or hematologic AEs. CONCLUSION The addition of PTX to corticosteroid-treated boys with DMD at a moderate to late ambulatory stage of disease did not improve or halt the deterioration of muscle strength and function over a 12-month study period. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that treatment with PTX does not prevent deterioration in muscle function or strength in corticosteroid-treated boys with DMD.
Collapse
Affiliation(s)
- D M Escolar
- Children’s National Medical Center, Washington, DC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD). Neuromuscul Disord 2011; 21:569-78. [DOI: 10.1016/j.nmd.2011.05.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/24/2011] [Accepted: 05/27/2011] [Indexed: 11/19/2022]
|