1
|
Ravichandar R, Gadelkarim F, Muthaiah R, Glynos N, Murlanova K, Rai NK, Saraswat D, Polanco JJ, Dutta R, Pal D, Sim FJ. Dysregulated Cholinergic Signaling Inhibits Oligodendrocyte Maturation Following Demyelination. J Neurosci 2024; 44:e0051242024. [PMID: 38749703 PMCID: PMC11236584 DOI: 10.1523/jneurosci.0051-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand-mediated activation hindering myelin repair. Following chronic cuprizone (CPZ)-induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase-/butyrylcholinesterase (BChE)-mediated degradation. Using choline acetyltransferase (ChAT) reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and CPZ demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin-induced demyelination. In CPZ-demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following CPZ demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand-mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand-mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.
Collapse
Affiliation(s)
- Roopa Ravichandar
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Farah Gadelkarim
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Rupadevi Muthaiah
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Nicolas Glynos
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kateryna Murlanova
- Department of Physiology and Biophysics, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Nagendra K Rai
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
| | - Darpan Saraswat
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Jessie J Polanco
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Fraser J Sim
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| |
Collapse
|
2
|
Matsuzaki K, Sugimoto N, Hossain S, Islam R, Sumiyoshi E, Hashimoto M, Kishi H, Shido O. Theobromine improves hyperactivity, inattention, and working memory via modulation of dopaminergic neural function in the frontal cortex of spontaneously hypertensive rats. Food Funct 2024; 15:5579-5595. [PMID: 38713055 DOI: 10.1039/d4fo00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder and dopaminergic dysfunction in the prefrontal cortex (PFC) may play a role. Our previous research indicated that theobromine (TB), a methylxanthine, enhances cognitive function in rodents via the PFC. This study investigates TB's effects on hyperactivity and cognitive function in stroke-prone spontaneously hypertensive rats (SHR), an ADHD animal model. Male SHRs (6-week old) received a diet containing 0.05% TB for 40 days, while control rats received normal diets. Age-matched male Wistar-Kyoto rats (WKY) served as genetic controls. During the TB administration period, we conducted open-field tests and Y-maze tasks to evaluate hyperactivity and cognitive function, then assessed dopamine concentrations and tyrosine hydroxylase (TH), dopamine receptor D1-5 (DRD1-5), dopamine transporter (DAT), vesicular monoamine transporter-2 (VMAT-2), synaptosome-associated protein-25 (SNAP-25), and brain-derived neurotrophic factor (BDNF) expressions in the PFC. Additionally, the binding affinity of TB for the adenosine receptors (ARs) was evaluated. Compared to WKY, SHR exhibited hyperactivity, inattention and working memory deficits. However, chronic TB administration significantly improved these ADHD-like behaviors in SHR. TB administration also normalized dopamine concentrations and expression levels of TH, DRD2, DRD4, SNAP-25, and BDNF in the PFC of SHR. No changes were observed in DRD1, DRD3, DRD5, DAT, and VMAT-2 expression between SHR and WKY rats, and TB intake had minimal effects. TB was found to have affinity binding to ARs. These results indicate that long-term TB supplementation mitigates hyperactivity, inattention and cognitive deficits in SHR by modulating dopaminergic nervous function and BDNF levels in the PFC, representing a potential adjunctive treatment for ADHD.
Collapse
Affiliation(s)
- Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan.
| | - Naotoshi Sugimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan.
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shahdat Hossain
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan.
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh.
| | - Rafiad Islam
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan.
- Department of Psychiatry, Yale University School of Medicine, CT, USA.
| | - Eri Sumiyoshi
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan.
- Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Matsumoto, Japan.
| | - Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan.
| | - Hiroko Kishi
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan.
| | - Osamu Shido
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Japan.
- Shimane Rehabilitation College, Oku-izumo, Shimane, Japan.
| |
Collapse
|
3
|
Rabie MA, Ibrahim HI, Nassar NN, Atef RM. Adenosine A 1 receptor agonist, N6-cyclohexyladenosine, attenuates Huntington's disease via stimulation of TrKB/PI3K/Akt/CREB/BDNF pathway in 3-nitropropionic acid rat model. Chem Biol Interact 2023; 369:110288. [PMID: 36509115 DOI: 10.1016/j.cbi.2022.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by progressive motor, behavioral, and cognitive impairments. Intrastriatal injection of 3- nitropropionic acid (3NP) was used to induce HD-like symptoms by inhibiting succinate dehydrogenase enzyme (SDH) in the mitochondrial complex II. The adenosine A1 receptor has long been known to have a crucial role in neuroprotection, mainly by blocking Ca2+ influx, which causes inhibition of glutamate (Glu) and a decline in its excitatory effects at the postsynaptic level. To this end, this study investigated the possible involvement of TrKB/PI3K/Akt/CREB/BDNF pathway in mediating protection afforded by the central N6-cyclohexyladenosine (CHA), an adenosine A1 receptor agonist. A single intrastriatal CHA injection (6.25 nM/1 μL); 45min after 3-NP injection, attenuated neuronal death, and improved cognitive and motor deficits caused by 3-NP neurotoxin. This effect was shown to parallel an enhanced activation of PI3K/Akt/CREB/BDNF axis as well as boosting pERK1/2 levels. Moreover, CHA attenuated neuroinflammatory and oxidative stress status via reducing NFκB p65, TNFα and iNOS contents and increasing SOD. Furthermore, immunohistochemical data showed a reduction in the glial fibrillary acidic protein (GFAP) immunoreactivity to a marker for astrocyte and microglia activation following CHA treatment. The results of this study suggest that CHA may have protective effect against HD via modulating oxidative stress, excitotoxic and inflammatory pathways.
Collapse
Affiliation(s)
- Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Heba I Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Reham M Atef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt.
| |
Collapse
|
4
|
Duarte-Silva E, Ulrich H, Oliveira-Giacomelli Á, Hartung HP, Meuth SG, Peixoto CA. The adenosinergic signaling in the pathogenesis and treatment of multiple sclerosis. Front Immunol 2022; 13:946698. [PMID: 35967385 PMCID: PMC9368763 DOI: 10.3389/fimmu.2022.946698] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Multiple sclerosis (MS) is a highly disabling, progressive neurodegenerative disease with no curative treatment available. Although significant progress has been made in understanding how MS develops, there remain aspects of disease pathogenesis that are yet to be fully elucidated. In this regard, studies have shown that dysfunctional adenosinergic signaling plays a pivotal role, as patients with MS have altered levels adenosine (ADO), adenosine receptors and proteins involved in the generation and termination of ADO signaling, such as CD39 and adenosine deaminase (ADA). We have therefore performed a literature review regarding the involvement of the adenosinergic system in the development of MS and propose mechanisms by which the modulation of this system can support drug development and repurposing.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, Brazil
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czechia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Abd Aziz NAW, Iezhitsa I, Agarwal R, Bakar NS, Abd Latiff A, Ismail NM. Neuroprotection by Trans-Resveratrol in Rats With Intracerebral Hemorrhage: Insights into the Role of Adenosine A1 Receptors. J Neuropathol Exp Neurol 2022; 81:596-613. [PMID: 35799401 DOI: 10.1093/jnen/nlac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Given the neuroprotective effects of trans-resveratrol (RV), this study aimed to investigate the involvement of the adenosine A1 receptor (A1R) in RV-mediated neuroprotection in a rat intracerebral hemorrhage (ICH) model induced by intrastriatal injection of collagenase. Rats were divided into 5 groups: (1) control, (2) sham-operated, (3) ICH pretreated with vehicle, (4) ICH pretreated with RV, and (5) ICH pretreated with RV and the A1R antagonist DPCPX. At 48 hours after ICH, the rats were subjected to neurological testing. Brain tissues were assessed for neuronal density and morphological features using routine and immunohistochemical staining. Expression of tumor necrosis factor-α (TNF-α), caspase-3, and RIPK3 proteins was examined using ELISA. A1R, MAPK P38, Hsp90, TrkB, and BDNF genes were examined using RT-qPCR. RV protected against neurological deficits and neuronal depletion, restored the expression of TNF-α, CASP3, RIPK3, A1R, and Hsp90, and increased BDNF/TrkB. DPCPX abolished the effects of RV on neurological outcomes, neuronal density, CASP3, RIPK3, A1R, Hsp90, and BDNF. These data indicate that the neuroprotection by RV involves A1R and inhibits CASP3-dependent apoptosis and RIPK3-dependent necroptosis in the perihematoma region; this is likely to be mediated by crosstalk between A1R and the BDNF/TrkB pathway.
Collapse
Affiliation(s)
- Noor Azliza Wani Abd Aziz
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Igor Iezhitsa
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Renu Agarwal
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Nor Salmah Bakar
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Azian Abd Latiff
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| | - Nafeeza Mohd Ismail
- From the Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA, NSB, NMI); Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh, Malaysia (NAWAA); School of Medicine, International Medical University, Kuala Lumpur, Malaysia (II, RA); Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd, Russia (II); and Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia (AAL)
| |
Collapse
|
6
|
Coppi E, Cencetti F, Cherchi F, Venturini M, Donati C, Bruni P, Pedata F, Pugliese AM. A 2 B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Front Neurosci 2021; 15:677988. [PMID: 34135730 PMCID: PMC8202686 DOI: 10.3389/fnins.2021.677988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain. Impairments in the process of myelination, or demyelinating insults, might cause chronic diseases such as multiple sclerosis (MS). Under physiological conditions, remyelination is an ongoing process throughout adult life consisting in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes (OLs). During pathological events, this process fails due to unfavorable environment. Adenosine and sphingosine kinase/sphingosine 1-phosphate signaling axes (SphK/S1P) play important roles in remyelination processes. Remarkably, fingolimod (FTY720), a sphingosine analog recently approved for MS treatment, plays important roles in OPC maturation. We recently demonstrated that the selective stimulation of A2 B adenosine receptors (A2 B Rs) inhibit OPC differentiation in vitro and reduce voltage-dependent outward K+ currents (I K ) necessary to OPC maturation, whereas specific SphK1 or SphK2 inhibition exerts the opposite effect. During OPC differentiation A2 B R expression increases, this effect being prevented by SphK1/2 blockade. Furthermore, selective silencing of A2 B R in OPC cultures prompts maturation and, intriguingly, enhances the expression of S1P lyase, the enzyme responsible for irreversible S1P catabolism. Finally, the existence of an interplay between SphK1/S1P pathway and A2 B Rs in OPCs was confirmed since acute stimulation of A2 B Rs activates SphK1 by increasing its phosphorylation. Here the role of A2 B R and SphK/S1P signaling during oligodendrogenesis is reviewed in detail, with the purpose to shed new light on the interaction between A2 B Rs and S1P signaling, as eventual innovative targets for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Martina Venturini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
7
|
Dehghan S, Aref E, Raoufy MR, Javan M. An optimized animal model of lysolecithin induced demyelination in optic nerve; more feasible, more reproducible, promising for studying the progressive forms of multiple sclerosis. J Neurosci Methods 2021; 352:109088. [PMID: 33508411 DOI: 10.1016/j.jneumeth.2021.109088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/01/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a demyelinating disease leading to long-term neurological deficit due to unsuccessful remyelination and axonal loss. Currently, there are no satisfactory treatments for progressive MS somewhat due to the lack of an adequate animal model for studying the mechanisms of disease progression and screening new drugs. NEW METHOD Lysolecithin (LPC) or agarose-gel loaded LPC (AL-LPC) were applied to mouse optic nerve behind the globe via a minor surgery. Agarose loading was used to achieve longer time of LPC exposure and subsequently long-lasting demyelination. RESULTS The lesion sites characterized by luxol fast blue (LFB), FluoroMyelin, Bielschowsky's staining, and immunostaining showed extensive demyelination and axonal damage. The loss of Retinal ganglion cells (RGCs) in the corresponding retinal layer was shown by immunostaining and H&E staining. Visual evoked potential (VEP) recordings showed a significant increase in the latency of the P1 wave and a decrease in the amplitude of the P1N1 wave. COMPARISON WITH EXISTING METHODS The new approach with a very minor surgery seems to be more feasible and reproducible compared to stereotaxic LPC injection to optic chiasm. Our data revealed prolonged demyelination, axonal degeneration and RGCs loss in both AL-LPC and LPC groups; however, these pathologies were more extensive in the AL-LPC group. CONCLUSION The optimized model provides a longer demyelination time frame and axonal damage followed by RGC degeneration; which is of exceptional interest in investigating axonal degeneration mechanisms and screening the new drugs for progressive MS.
Collapse
Affiliation(s)
- Samaneh Dehghan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran
| | - Ehsan Aref
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box:14115-331, Tehran, Iran; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box:14115-331, Tehran, Iran.
| |
Collapse
|
8
|
Cherchi F, Pugliese AM, Coppi E. Oligodendrocyte precursor cell maturation: role of adenosine receptors. Neural Regen Res 2021; 16:1686-1692. [PMID: 33510056 PMCID: PMC8328763 DOI: 10.4103/1673-5374.306058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocyte-formed myelin sheaths allow fast synaptic transmission in the brain and their degeneration leads to demyelinating diseases such as multiple sclerosis. Remyelination requires the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes but, in chronic neurodegenerative disorders, remyelination fails due to adverse environment. Therefore, a strategy to prompt oligodendrocyte progenitor cell differentiation towards myelinating oligodendrocytes is required. The neuromodulator adenosine, and its receptors (A1, A2A, A2B and A3 receptors: A1R, A2AR, A2BR and A3R), are crucial mediators in remyelination processes. It is known that A1Rs facilitate oligodendrocyte progenitor cell maturation and migration whereas the A3Rs initiates apoptosis in oligodendrocyte progenitor cells. Our group of research contributed to the field by demonstrating that A2AR and A2BR inhibit oligodendrocyte progenitor cell maturation by reducing voltage-dependent K+ currents necessary for cell differentiation. The present review summarizes the possible role of adenosine receptor ligands as potential therapeutic targets in demyelinating pathologies such as multiple sclerosis.
Collapse
Affiliation(s)
- Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health-Neurofarba-Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 2020; 162:105253. [PMID: 33080321 DOI: 10.1016/j.phrs.2020.105253] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.
Collapse
|
10
|
Nano-hesperetin enhances the functional recovery and endogenous remyelination of the optic pathway in focal demyelination model. Brain Res Bull 2020; 164:392-399. [PMID: 32926949 DOI: 10.1016/j.brainresbull.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Our recent report demonstrated that hesperetin (Hst) as a citrus flavonoid, significantly reduces the levels of demyelination in optic chiasm of rats. Previous evidence also indicated that nano-hesperetin (nano-Hst) possesses beneficial impacts in experimental models of Alzheimer's disease and autism. In this study, the effects of nano-Hst on latency of visual signals, demyelination levels, glial activation, and expression of Olig2 and MBP were evaluated in lysolecithin (LPC)-induced demyelination model. Focal demyelination was induced by injection of LPC (1%, 2 μL) into the rat optic chiasm. Animals received oral administration of nano-Hst at dose of 20 mg/kg for 14 or 21 days post LPC injection. Visual evoked potential (VEP) recording showed that nano-Hst reduces the latency of visual signals and ameliorates the extent of demyelination areas and glial activation. Expression levels of the Olig2 and MBP were also significantly increased in nano-Hst treated rats. Overall, our data suggest that nano-Hst reduces the latency of visual signals through its protective effects on myelin sheath, amelioration of glial activation, and enhancement of endogenous remyelination.
Collapse
|
11
|
Protective Mechanism and Treatment of Neurogenesis in Cerebral Ischemia. Neurochem Res 2020; 45:2258-2277. [PMID: 32794152 DOI: 10.1007/s11064-020-03092-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the fifth leading cause of death worldwide and is a main cause of disability in adults. Neither currently marketed drugs nor commonly used treatments can promote nerve repair and neurogenesis after stroke, and the repair of neurons damaged by ischemia has become a research focus. This article reviews several possible mechanisms of stroke and neurogenesis and introduces novel neurogenic agents (fibroblast growth factors, brain-derived neurotrophic factor, purine nucleosides, resveratrol, S-nitrosoglutathione, osteopontin, etc.) as well as other treatments that have shown neuroprotective or neurogenesis-promoting effects.
Collapse
|
12
|
Mateus JM, Ribeiro FF, Alonso-Gomes M, Rodrigues RS, Marques JM, Sebastião AM, Rodrigues RJ, Xapelli S. Neurogenesis and Gliogenesis: Relevance of Adenosine for Neuroregeneration in Brain Disorders. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Joana M. Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Alonso-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S. Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M. Marques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo J. Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Fingolimod (FTY720) improves the functional recovery and myelin preservation of the optic pathway in focal demyelination model of rat optic chiasm. Brain Res Bull 2019; 153:109-121. [DOI: 10.1016/j.brainresbull.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022]
|
14
|
Shen HY, Huang N, Reemmer J, Xiao L. Adenosine Actions on Oligodendroglia and Myelination in Autism Spectrum Disorder. Front Cell Neurosci 2018; 12:482. [PMID: 30581380 PMCID: PMC6292987 DOI: 10.3389/fncel.2018.00482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is the most commonly diagnosed neurodevelopmental disorder. Independent of neuronal dysfunction, ASD and its associated comorbidities have been linked to hypomyelination and oligodendroglial dysfunction. Additionally, the neuromodulator adenosine has been shown to affect certain ASD comorbidities and symptoms, such as epilepsy, impairment of cognitive function, and anxiety. Adenosine is both directly and indirectly responsible for regulating the development of oligodendroglia and myelination through its interaction with, and modulation of, several neurotransmitters, including glutamate, dopamine, and serotonin. In this review, we will focus on the recent discoveries in adenosine interaction with physiological and pathophysiological activities of oligodendroglia and myelination, as well as ASD-related aspects of adenosine actions on neuroprotection and neuroinflammation. Moreover, we will discuss the potential therapeutic value and clinical approaches of adenosine manipulation against hypomyelination in ASD.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Robert Stone Dow Neurobiology Department, Legacy Research Institute, Legacy Health, Portland, OR, United States.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jesica Reemmer
- Robert Stone Dow Neurobiology Department, Legacy Research Institute, Legacy Health, Portland, OR, United States
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
15
|
Zhang J, Yang L, Fang Z, Kong J, Huang Q, Xu H. Adenosine Promotes the Recovery of Mice from the Cuprizone-Induced Behavioral and Morphological Changes while Effecting on Microglia and Inflammatory Cytokines in the Brain. J Neuroimmune Pharmacol 2018; 13:412-425. [PMID: 30069711 DOI: 10.1007/s11481-018-9799-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/10/2018] [Indexed: 02/05/2023]
Abstract
Recent studies have shown that multiple sclerosis (MS) and schizophrenia share similarities in some respects, including white matter damage and neuroinflammation. On the other hand, adenosine was reported to promote oligodendrocyte precursor maturation and remyelinating while influencing microglia activation. The aim of the present study was to examine possible beneficial effects of adenosine on the recovery of cuprizone (CPZ)-exposed mouse which has been used as an animal model of MS and schizophrenia as the CPZ-exposed mouse presents demyelination, oligodendrocyte loss, microglia accumulation, as well as behavioral changes. As reported previously, C57BL/6 mice, after fed CPZ for 5 weeks, showed salient demyelination and oligodendrocyte loss in the cerebral cortex (CTX) and hippocampus, in addition to displaying anxiety-like behavior, spatial working memory deficit, and social interaction impairment. Administration of adenosine for 7 days during the recovery period after CPZ withdrawal promoted the behavioral recovery of CPZ-exposed mice and accelerated the remyelinating process in the brains of mice after CPZ withdrawal in a dose-dependent manner. In addition, the effective dose (10 mg/kg) of adenosine inhibited microglia activation and suppressed abnormal elevation of the pro-inflammatory cytokines IL-1β and TNF-α in CTX and hippocampus, but increased levels of the anti-inflammatory cytokines IL-4 or IL-10 in the same brain regions during the remyelinating process. These results provided an evidence-based rationale for the application of adenosine or its analogues as add-on therapy for schizophrenia.
Collapse
Affiliation(s)
- Jinling Zhang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Liu Yang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Zeman Fang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, Shantou, China.
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, China.
- Department of Anatomy, Shantou University Medical College, Shantou, China.
| |
Collapse
|
16
|
Akbari A, Khalili-Fomeshi M, Ashrafpour M, Moghadamnia AA, Ghasemi-Kasman M. Adenosine A 2A receptor blockade attenuates spatial memory deficit and extent of demyelination areas in lyolecithin-induced demyelination model. Life Sci 2018; 205:63-72. [PMID: 29730168 DOI: 10.1016/j.lfs.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/21/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
In recent years, inactivation of A2A adenosine receptors has been emerged as a novel strategy for treatment of several neurodegenerative diseases. Although numerous studies have shown the beneficial effects of A2A receptors blockade on spatial memory, the impacts of selective adenosine A2A receptors on memory performance has not yet been examined in the context of demyelination. In the present study, we evaluated the effect of A2A receptor antagonist SCH58261 on spatial memory and myelination in an experimental model of focal demyelination in rat fimbria. Demyelination was induced by local injection of lysolecithin (LPC) 1% (2 μl) into the hippocampus fimbria. SCH58261 (20 μg/0.5 μl or 40 μg/0.5 μl) was daily injected intracerebroventricularly (i.c.v.) for 10 days post LPC injection. The Morris water maze test was used to assess the spatial learning and memory on day 6 post lesion. Myelin staining and immunostaining against astrocytes/microglia were carried out 10 days post LPC injection. The administration of adenosine A2A receptor antagonist prevented the spatial memory impairment in LPC receiving animals. Myelin staining revealed that application of SCH58261 reduces the extent of demyelination areas in the fimbria. Furthermore, the level of astrocytes and microglia activation was attenuated following administration of A2A receptor antagonist. Collectively, the results of this study suggest that A2A receptor blockade can improve the spatial memory and protect myelin sheath, which might be considered as a novel therapeutic approach for multiple sclerosis disease.
Collapse
Affiliation(s)
- Atefeh Akbari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
17
|
Welsh TG, Kucenas S. Purinergic signaling in oligodendrocyte development and function. J Neurochem 2018; 145:6-18. [PMID: 29377124 DOI: 10.1111/jnc.14315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/08/2018] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
Myelin, an insulating membrane that enables rapid action potential propagation, is an essential component of an efficient, functional vertebrate nervous system. Oligodendrocytes, the myelinating glia of the central nervous system (CNS), produce myelin throughout the CNS, which requires continuous proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Because myelination is essential for efficient neurotransmission, researchers hypothesize that neuronal signals may regulate the cascade of events necessary for this process. The ability of oligodendrocytes and oligodendrocyte progenitor cells to detect and respond to neuronal activity is becoming increasingly appreciated, although the specific signals involved are still a matter of debate. Recent evidence from multiple studies points to purinergic signaling as a potential regulator of oligodendrocyte development and differentiation. Adenosine triphosphate (ATP) and its derivatives are potent signaling ligands with receptors expressed on many populations of cells in the nervous system, including cells of the oligodendrocyte lineage. Release of ATP into the extracellular space can initiate a multitude of signaling events, and these downstream signals are specific to the particular purinergic receptor (or receptors) expressed, and whether enzymes are present to hydrolyze ATP to its derivatives adenosine diphosphate and adenosine, each of which can activate their own unique downstream signaling cascades. This review will introduce purinergic signaling in the CNS and discuss evidence for its effects on oligodendrocyte proliferation, differentiation, and myelination. We will review sources of extracellular purines in the nervous system and how changes in purinergic receptor expression may be coupled to oligodendrocyte differentiation. We will also briefly discuss purinergic signaling in injury and diseases of the CNS.
Collapse
Affiliation(s)
- Taylor G Welsh
- Neuroscience Graduate Program, Charlottesville, Virginia, USA
| | - Sarah Kucenas
- Neuroscience Graduate Program, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
18
|
Naeimi R, Baradaran S, Ashrafpour M, Moghadamnia AA, Ghasemi-Kasman M. Querectin improves myelin repair of optic chiasm in lyolecithin-induced focal demyelination model. Biomed Pharmacother 2018; 101:485-493. [PMID: 29501770 DOI: 10.1016/j.biopha.2018.02.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Although the beneficial effects of quercetin on oligodendrocyte precursor cell (OPCs) population has been evaluated in-vitro, there are few studies about the effects of quercetin on myelin repair in the context of demyelination. The aim of this study was to investigate the effects of querectin on functional recovery and myelin repair of optic chiasm in lysolecithin (LPC)-induced demyelination model. Demyelination was induced by local injection of LPC 1% (2 μl) into rat optic chiasm. Querectin at doses 25 or 50 mg/kg was administrated daily by oral gavage for 7 or 14 days post LPC. Visual evoked potential (VEPs) recordings were used to assess the functional property of the optic pathway. Immunostaining and myelin staining were performed on brain sections 7 or 14 days post lesion. Electrophysiological data indicated that LPC injection increased the latency of VEPs waves and quercetin effectively reduced the delay of visual signals. The level of glial activation was alleviated in animals under treatment of quercetin compared to vehicle group. Furthermore, quercetin treatment decreased the extent of demyelination areas and increased the remyelination process following LPC injection. Overall, our findings indicate that quercetin could remarkably improve the functional recovery of the optic pathway by its protective effects on myelin sheath and attenuation of glial activation.
Collapse
Affiliation(s)
- Reza Naeimi
- Student Research Committee, Babol University of Medical Sciences, Babol, IranIran
| | - Saeideh Baradaran
- Student Research Committee, Babol University of Medical Sciences, Babol, IranIran
| | - Manouchehr Ashrafpour
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology, Faculty of Medical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
19
|
Payghani C, Khani F, Zadeh AR, Reisi P, Alaei H, Rashidi B. The Effect of Levothyroxine on Serum Levels of Interleukin 10 and Interferon-gamma in Rat Model of Multiple Sclerosis. Adv Biomed Res 2017; 6:118. [PMID: 28989911 PMCID: PMC5627569 DOI: 10.4103/abr.abr_267_16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: There is an increase in inflammatory and a reduction in anti-inflammatory cytokines in multiple sclerosis (MS). Considering the role of thyroid hormones in the development and regulation of both neural and immune systems, the aim of this study was to evaluate the effects of levothyroxine on serum concentrations of interleukin-10 (IL-10) and interferon gamma (IFN-γ) in animal models of MS. Materials and Methods: To induce demyelination in male Wistar rats, lysolecithin was injected into the optic chiasm. Then levothyroxine was injected intraperitoneally (20, 50, and 100 μg/kg) for 21 days. Serum levels of cytokines were measured by enzyme-linked immunosorbent assay at 7, 14, and 21 days after that. Results: The results showed that injection of lysolecithin to the optic chiasm only increased serum concentrations of IL-10 compared to the sham group (P < 0.05) at 7th day, but this increase was prevented by all doses of levothyroxine. IFN-γ was decreased significantly (P < 0.001) 21 days after. Comparing to the sham group at all sampling time and with respect to the MS group at the days 7 and 21, levothyroxine decreased serum concentrations of IFN-γ significantly. Conclusion: The results showed that thyroid hormones probably could produce protective effects against induced demyelination through affecting immune responses.
Collapse
Affiliation(s)
- Cobra Payghani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Khani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryan Rafiee Zadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Kashfi S, Peymani M, Ghaedi K, Baharvand H, Nasr-Esfahani MH, Javan M. Purinergic Receptor Expression and Potential Association with Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Development. CELL JOURNAL 2017; 19:386-402. [PMID: 28836401 PMCID: PMC5570404 DOI: 10.22074/cellj.2017.3906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 08/28/2016] [Indexed: 12/19/2022]
Abstract
Objective Due to recent progress in production of human embryonic stem cell-derived oligodendrocyte progenitor cells (hESC-OPCs) for ameliorating myelin disease
such as multiple sclerosis (MS) and the role of purinergic signaling in OPCs development, we avaluated the profile of purinergic receptors expression during development
of OPCs from hESC. Materials and Methods In this experimental study, we used reverse transcription and
quantitative polymerase chain reaction (RT-qPCR) to obtain more information about
potential roles of purinergic receptors during in vitro production of hESC-OPCs. We
first determined the expression level of different subtypes of purinergic receptors in
hESCs, embryoid bodies (EBs), and hESC-OPCs. The effects of A1adenosine receptor (A1AR)
activation on hESC-OPCs development were subsequently examined. Results hESCs and OPCs had different mRNA expression levels of the AR subtypes.
ARs mRNA were expressed in the EB stage, except for A2AAR. We observed expressions
of several P2X (P2X1, 2, 3, 4, 5, 7) and P2Y (P2Y1, 2, 4, 6, 11-14) genes in hESCs. hESC-OPCs
expressed different subtypes of P2X (P2X1, 2, 3,4,5,7) and P2Y (P2Y1, 2, 4, 6, 11-14). Except for P2X1
and P2X6, all other P2X and P2Y purinergic receptor subtypes expressed in EBs. We also
indicate that A1AR might be involved in modulating gene expression levels of cell cycle
regulators in an agonist and/or dose-dependent manner.
Conclusion Elucidation of the expression pattern of purinergic receptors and the effects
of different subtypes of these receptors in hESC-OPCs may have a promising role in future cell-based therapy or drug design for demyelinating disease.
Collapse
Affiliation(s)
- Shirin Kashfi
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Peymani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Javan
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
21
|
Daneshdoust D, Khalili-Fomeshi M, Ghasemi-Kasman M, Ghorbanian D, Hashemian M, Gholami M, Moghadamnia A, Shojaei A. Pregabalin enhances myelin repair and attenuates glial activation in lysolecithin-induced demyelination model of rat optic chiasm. Neuroscience 2017; 344:148-156. [DOI: 10.1016/j.neuroscience.2016.12.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 11/26/2022]
|
22
|
Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch L, Frederiksen J, Skeen M, Jaffe GJ, Butzkueven H, Ziemssen F, Massacesi L, Chai Y, Xu L, Freeman S. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2017; 16:189-199. [PMID: 28229892 DOI: 10.1016/s1474-4422(16)30377-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND The human monoclonal antibody opicinumab (BIIB033, anti-LINGO-1) has shown remyelinating activity in preclinical studies. We therefore assessed the safety and tolerability, and efficacy of opicinumab given soon after a first acute optic neuritis episode. METHODS This randomised, double-blind, placebo-controlled, phase 2 study (RENEW) was done at 33 sites in Australia, Canada, and Europe in participants (aged 18-55 years) with a first unilateral acute optic neuritis episode within 28 days from study baseline. After treatment with high-dose methylprednisolone (1 g/day, intravenously, for 3-5 days), participants were assigned with a computer-generated sequence with permuted block randomisation (1:1) using a centralised interactive voice and web response system to receive 100 mg/kg opicinumab intravenously or placebo once every 4 weeks (six doses) and followed up to week 32. All study participants and all study staff, including the central readers, were masked to treatment assignment apart from the pharmacist responsible for preparing the study treatments and the pharmacy monitor at each site. The primary endpoint was remyelination at 24 weeks, measured as recovery of affected optic nerve conduction latency using full-field visual evoked potential (FF-VEP) versus the unaffected fellow eye at baseline. Analysis was by intention-to-treat (ITT); prespecified per-protocol (PP) analyses were also done. This study is registered with ClinicalTrials.gov, number NCT01721161. FINDINGS The study was done between Dec 21, 2012, and Oct 21, 2014. 82 participants were enrolled, and 41 in each group comprised the ITT population; 33 participants received opicinumab and 36 received placebo in the PP population. Adjusted mean treatment difference of opicinumab versus placebo was -3·5 ms (17·3 vs 20·8 [95% CI -10·6 to 3·7]; 17%; p=0·33) in the ITT population, and -7·6 ms in the PP population (14·7 vs 22·2 [-15·1 to 0·0]; 34%; p=0·050) at week 24 and -6·1 ms (15·1 vs 21·2 [-12·7 to 0·5]; 29%; p=0·071) in the ITT population and -9·1 ms (13·2 vs 22·4 [-16·1 to -2·1]; 41%; p=0·011) in the PP population at week 32. The overall incidence (34 [83%] of 41 in each group) and severity of adverse events (two [5%] of 41 severe adverse events with placebo vs three [7%] of 41 with opicinumab) were similar between groups and no significant effects on brain MRI measures were noted in either group (mean T2 lesion volume change, 0·05 mL [SD 0·21] for placebo vs 0·20 mL [0·52] with opicinumab; 27 [77%] of 35 participants with no change in gadolinium-enhancing [Gd+] lesion number with opicinumab vs 27 [79%] of 34 with placebo; mean 0·4 [SD 0·79 for the placebo group and 0·85 for the opicinumab group] new Gd+ lesions per participant in both groups). Treatment-related serious adverse events were reported in three (7%) of 41 participants in the opicinumab group (hypersensitivity [n=2], asymptomatic increase in transaminase concentrations [n=1]) and none of the participants in the placebo group. INTERPRETATION Remyelination did not differ significantly between the opicinumab and placebo groups in the ITT population at week 24. However, results from the prespecified PP population suggest that enhancing remyelination in the human CNS with opicinumab might be possible and warrant further clinical investigation. FUNDING Biogen.
Collapse
Affiliation(s)
| | - Laura Balcer
- Departments of Neurology, Population Health, and Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Steven Galetta
- Departments of Neurology, Population Health, and Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tjalf Ziemssen
- MS Centre Dresden, Centre of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ludo Vanopdenbosch
- Department of Neurology, AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium
| | - Jette Frederiksen
- Department of Neurology, Rigshospitalet-Glostrup and University of Copenhagen, Glostrup, Denmark
| | - Mark Skeen
- Department of Neurology, Duke University, Durham, NC, USA
| | - Glenn J Jaffe
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Helmut Butzkueven
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Focke Ziemssen
- Center for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Luca Massacesi
- Department of Neurosciences, Drug Research, and Child's Health, University of Florence, Florence, Italy
| | | | - Lei Xu
- Biogen, Cambridge, MA, USA
| | | | | |
Collapse
|
23
|
Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:226-42. [PMID: 26577017 DOI: 10.1016/j.neuropharm.2015.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
In the present review, we stress the importance of the purine nucleosides, adenosine and guanosine, in protecting the nervous system, both centrally and peripherally, via activation of their receptors and intracellular signalling mechanisms. A most novel part of the review focus on the mechanisms of neuronal regeneration that are targeted by nucleosides, including a recently identified action of adenosine on axonal growth and microtubule dynamics. Discussion on the role of the purine nucleosides transversally with the most established neurotrophic factors, e.g. brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), is also focused considering the intimate relationship between some adenosine receptors, as is the case of the A2A receptors, and receptors for neurotrophins. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
24
|
CNS remyelination as a novel reparative approach to neurodegenerative diseases: The roles of purinergic signaling and the P2Y-like receptor GPR17. Neuropharmacology 2015; 104:82-93. [PMID: 26453964 DOI: 10.1016/j.neuropharm.2015.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 02/07/2023]
Abstract
Oligodendrocytes are the myelin-forming cells in the CNS. They enwrap axons, thus permitting fast impulse transmission and exerting trophic actions on neurons. Demyelination accompanied by neurological deficit is a rather frequent condition that is not only associated with multiple sclerosis but has been also recognized in several other neurodegenerative diseases, including brain trauma and stroke, Alzheimer's disease and amyotrophic lateral sclerosis. Recently, alterations of myelin function have been also reported in neuropsychiatric diseases, like depression and autism. Highly relevant for therapeutic purposes, oligodendrocyte precursor cells (OPCs) still persist in the adult brain and spinal cord. These cells are normally rather quiescent, but under specific circumstances, they can be stimulated to undergo differentiation and generate mature myelinating oligodendrocytes. Thus, approaches aimed at restoring myelin integrity and at fostering a correct oligodendrocyte function are now viewed as novel therapeutic opportunities for both neurodegenerative and neuropsychiatric diseases. Both OPCs and mature oligodendrocytes express purinergic receptors. For some of these receptors, expression is restricted at specific differentiation stages, suggesting key roles in OPCs maturation and myelination. Some of these receptors are altered under demyelinating conditions, suggesting that their dysregulation may contribute to disease development and could represent adequate new targets for remyelinating therapies. Here, we shall describe the current literature available on all these receptors, with special emphasis on the P2Y-like GPR17 receptor, that represents one of the most studied receptor subtypes in these cells. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Key Words
- 2′-Deoxy-N(6)-methyladenosine 3′,5'-bisphosphate ammonium salt (MRS2179)
- 3-(2-carboxy-4,6-dichloro-indol-3-yl)propionic acid (MDL29,951)
- 3-[4-[2-[ [6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]propanoic acid (CGS21680)
- 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261)
- ADP
- ATP
- Adenosine
- Brilliant blue G (BBG)
- Leukotriene D4 (LTD(4))
- Montelukast
- N6-cyclohexyladenosine (CHA)
- Oligodendrocytes
- Oxidized ATP (oxATP)
- Purinergic receptors
- Rapamycin
- Remyelination
- UDP
- UDP-Glucose
Collapse
|
25
|
Wang T, Xi NN, Chen Y, Shang XF, Hu Q, Chen JF, Zheng RY. Chronic caffeine treatment protects against experimental autoimmune encephalomyelitis in mice: Therapeutic window and receptor subtype mechanism. Neuropharmacology 2014; 86:203-11. [DOI: 10.1016/j.neuropharm.2014.06.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/08/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
26
|
Rial D, Lara DR, Cunha RA. The Adenosine Neuromodulation System in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:395-449. [DOI: 10.1016/b978-0-12-801022-8.00016-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|