1
|
Bashir B, Vishwas S, Gupta G, Paudel KR, Dureja H, Kumar P, Cho H, Sugandhi VV, Kumbhar PS, Disouza J, Dhanasekaran M, Goh BH, Gulati M, Dua K, Singh SK. Does drug repurposing bridge the gaps in management of Parkinson's disease? Unravelling the facts and fallacies. Ageing Res Rev 2025; 105:102693. [PMID: 39961372 DOI: 10.1016/j.arr.2025.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Repurposing the existing drugs for the management of both common and rare diseases is increasingly appealing due to challenges such as high attrition rates, the economy, and the slow pace of discovering new drugs. Drug repurposing involves the utilization of existing medications to treat diseases for which they were not originally intended. Despite encountering scientific and economic challenges, the pharmaceutical industry is intrigued by the potential to uncover new indications for medications. Medication repurposing is applicable across different stages of drug development, with the greatest potential observed when the drug has undergone prior safety testing. In this review, strategies for repurposing drugs for Parkinson's disease (PD) are outlined, a neurodegenerative disorder predominantly impacting dopaminergic neurons in the substantia nigra pars compacta region. PD is a debilitating neurodegenerative condition marked by an amalgam of motor and non-motor symptoms. Despite the availability of certain symptomatic treatments, particularly targeting motor symptoms, there remains a lack of established drugs capable of modifying the clinical course of PD, leading to its unchecked progression. Although standard drug discovery initiatives focusing on treatments that relieve diseases have yielded valuable understanding into the underlying mechanisms of PD, none of the numerous promising candidates identified in preclinical studies have successfully transitioned into clinically effective medications. Due to the substantial expenses associated with drug discovery endeavors, it is understandable that there has been a notable shift towards drug reprofiling strategies. Assessing the efficacy of an existing medication offers the additional advantage of circumventing the requirement for preclinical safety assessments and formulation enhancements, consequently streamlining the process and reducing both the duration of time and financial investments involved in bringing a treatment to clinical fruition. Furthermore, repurposed drugs may benefit from lower rates of failure, presenting an additional potential advantage. Various strategies for repurposing drugs are available to researchers in the field of PD. Some of these strategies have demonstrated effectiveness in identifying appropriate drugs for clinical trials, thereby providing validation for such strategies. This review provides an overview of the diverse strategies employed for drug reprofiling from approaches that place emphasis on single-gene transcriptional investigations to comprehensive epidemiological correlation analysis. Additionally, instances of previous or current research endeavors employing each strategy have been discussed. For the strategies that have not been yet implemented in PD research, their strategic efficacy is demonstrated using examples involving other disorders. In this review, we assess the safety and efficacy potential of prominent candidates repurposed as potential treatments for modifying the course of PD undergoing advanced clinical trials.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Hyunah Cho
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vrashabh V Sugandhi
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra, 416113, India.
| | - John Disouza
- Bombay Institute of Pharmacy and Research, Dombivli, Mumbai, Maharashtra, 421 203, India..
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, AL 36849, USA
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
| |
Collapse
|
2
|
Huang YH, Yang ML, Li YZ, Chen YF, Cai C, Huang J, Wang Y, Li TQ, Ye QY. Differentiating idiopathic Parkinson's disease from multiple system atrophy-P using brain MRI-based radiomics: a multicenter study. Ther Adv Neurol Disord 2025; 18:17562864251318865. [PMID: 40018083 PMCID: PMC11866387 DOI: 10.1177/17562864251318865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
Background Differentiating idiopathic Parkinson's disease (IPD) from multiple system atrophy-parkinsonian type (MSA-P) is essential for optimizing patient care and prognosis, given the differences in disease progression and treatment response. Objectives This study aimed to develop and evaluate a radiomics-based model using magnetic resonance imaging (MRI)-derived features to distinguish IPD from MSA-P. Design A multicenter retrospective study. Methods A multicenter retrospective study was conducted with 287 patients (186 IPD and 101 MSA-P) who underwent brain MRI. Radiomic features were extracted from T1-weighted imaging and T2-weighted imaging sequences, and various machine learning classifiers were applied, including logistic regression, support vector machine (SVM), ExtraTrees, extreme gradient boosting, and Light Gradient Boosting Machine. Model performance was assessed using area under the curve (AUC), accuracy, sensitivity, and specificity. A nomogram combining clinical and radiomic features was also evaluated. Results The SVM model, selected as the base for the Rad-signature, achieved the best diagnostic performance, with AUCs of 0.885 and 0.900 in the training and testing cohorts, respectively. The Rad-signature significantly outperformed clinical-only models in distinguishing IPD from MSA-P. The nomogram incorporating radiomic and clinical features yielded the highest diagnostic accuracy (AUC = 0.973 and 0.963 for training and testing cohorts, respectively) and balanced sensitivity and specificity. Decision curve analysis confirmed the nomogram's clinical utility. Conclusion Radiomics-based MRI analysis offers a powerful tool for distinguishing IPD from MSA-P, enhancing diagnostic accuracy, and aiding personalized treatment planning. Integrating radiomic and clinical data may improve diagnostic workflows in clinical practice.
Collapse
Affiliation(s)
- Yin-Hui Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurology, Jinjiang Municipal Hospital (Shanghai Sixth People’s Hospital Fujian), Quanzhou, China
| | - Mei-Li Yang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yuan-Zhe Li
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ya-Fang Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chi Cai
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jing Huang
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yi Wang
- Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tie-Qiang Li
- School of Medical Imaging, Fujian Medical University, 350001 Fuzhou, Fujian Province, China
- Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital and Karolinska Institute 17176 Stockholm, Sweden
| | - Qin-Yong Ye
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Choi WJ, HwangBo J, Duong QA, Lee JH, Gahm JK. Differentiating atypical parkinsonian syndromes with hyperbolic few-shot contrastive learning. Neuroimage 2024; 304:120940. [PMID: 39586345 DOI: 10.1016/j.neuroimage.2024.120940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/27/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024] Open
Abstract
Differences in iron accumulation patterns have been observed in susceptibility-weighted images across different classes of atypical parkinsonian syndromes (APS). Deep learning methods have shown great potential in automatically detecting these differences. However, the models typically require extensively labeled training datasets, which are costly and pose patient privacy risks. To address the issue of limited training datasets, we propose a novel few-shot learning framework for classifying multiple system atrophy parkinsonian (MSA-P) and progressive supranuclear palsy (PSP) within the APS category using fewer data items. Our method identifies feature areas where iron accumulation patterns occur in classes other than the target classification (MSA-P vs. PSP) and enhances stability by leveraging a superior hyperbolic space embedding technique. Experimental results demonstrate significantly improved performance over conventional methods, as validated by ablation studies and visualizations.
Collapse
Affiliation(s)
- Won June Choi
- Department of Information Convergence Engineering, Pusan National University, Busan 46241, South Korea
| | - Jin HwangBo
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, South Korea
| | - Quan Anh Duong
- Department of Information Convergence Engineering, Pusan National University, Busan 46241, South Korea
| | - Jae-Hyeok Lee
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, South Korea; Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, South Korea.
| | - Jin Kyu Gahm
- School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea; Center for Artificial Intelligence Research, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
4
|
Lee S, Martinez-Valbuena I, Lang AE, Kovacs GG. Cellular iron deposition patterns predict clinical subtypes of multiple system atrophy. Neurobiol Dis 2024; 197:106535. [PMID: 38761956 DOI: 10.1016/j.nbd.2024.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a primary oligodendroglial synucleinopathy, characterized by elevated iron burden in early-affected subcortical nuclei. Although neurotoxic effects of brain iron deposition and its relationship with α-synuclein pathology have been demonstrated, the exact role of iron dysregulation in MSA pathogenesis is unknown. Therefore, advancing the understanding of iron dysregulation at the cellular level is critical, especially in relation to α-synuclein cytopathology. METHODS Iron burden in subcortical and brainstem regions were histologically mapped in human post-mortem brains of 4 MSA-parkinsonian (MSA-P), 4 MSA-cerebellar (MSA-C), and 1 MSA case with both parkinsonian and cerebellar features. We then performed the first cell type-specific evaluation of pathological iron deposition in α-synuclein-affected and -unaffected cells of the globus pallidus, putamen, and the substantia nigra, regions of highest iron concentration, using a combination of iron staining with immunolabelling. Selective regional and cellular vulnerability patterns of iron deposition were compared between disease subtypes. In 7 MSA cases, expression of key iron- and closely related oxygen-homeostatic genes were examined. RESULTS MSA-P and MSA-C showed different patterns of regional iron burden across the pathology-related systems. We identified subcortical microglia to predominantly accumulate iron, which was more distinct in MSA-P. MSA-C showed relatively heterogenous iron accumulation, with greater or similar deposition in astroglia. Iron deposition was also found outside cellular bodies. Cellular iron burden associated with oligodendrocytic, and not neuronal, α-synuclein cytopathology. Gene expression analysis revealed dysregulation of oxygen homeostatic genes, rather than of cellular iron. Importantly, hierarchal cluster analysis revealed the pattern of cellular vulnerability to iron accumulation, distinctly to α-synuclein pathology load in the subtype-related systems, to distinguish MSA subtypes. CONCLUSIONS Our comprehensive evaluation of iron deposition in MSA brains identified distinct regional, and for the first time, cellular distribution of iron deposition in MSA-P and MSA-C and revealed cellular vulnerability patterns to iron deposition as a novel neuropathological characteristic that predicts MSA clinical subtypes. Our findings suggest distinct iron-related pathomechanisms in MSA clinical subtypes that are therefore not a consequence of a uniform down-stream pathway to α-synuclein pathology, and inform current efforts in iron chelation therapies at the disease and cellular-specific levels.
Collapse
Affiliation(s)
- Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada; Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada; Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada; Laboratory Medicine Program, University Health Network, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
5
|
Lee S, Kovacs GG. The Irony of Iron: The Element with Diverse Influence on Neurodegenerative Diseases. Int J Mol Sci 2024; 25:4269. [PMID: 38673855 PMCID: PMC11049980 DOI: 10.3390/ijms25084269] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Iron accumulation in the brain is a common feature of many neurodegenerative diseases. Its involvement spans across the main proteinopathies involving tau, amyloid-beta, alpha-synuclein, and TDP-43. Accumulating evidence supports the contribution of iron in disease pathologies, but the delineation of its pathogenic role is yet challenged by the complex involvement of iron in multiple neurotoxicity mechanisms and evidence supporting a reciprocal influence between accumulation of iron and protein pathology. Here, we review the major proteinopathy-specific observations supporting four distinct hypotheses: (1) iron deposition is a consequence of protein pathology; (2) iron promotes protein pathology; (3) iron protects from or hinders protein pathology; and (4) deposition of iron and protein pathology contribute parallelly to pathogenesis. Iron is an essential element for physiological brain function, requiring a fine balance of its levels. Understanding of disease-related iron accumulation at a more intricate and systemic level is critical for advancements in iron chelation therapies.
Collapse
Affiliation(s)
- Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
6
|
Kispotta S, Das D, Prusty SK. A recent update on drugs and alternative approaches for parkinsonism. Neuropeptides 2024; 104:102415. [PMID: 38402775 DOI: 10.1016/j.npep.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Parkinson's disease, often known as PD, is a more common age-related neurological disorder that affects a huge number of older adults worldwide. Parkinson's disease is predominantly a movement-related pathosis and is distinguished by the deposition of intra-neuronal aggregates, as the alpha-synuclein gene is expressed as Lewy bodies (LB) causing dopaminergic neurons to die. Stress in early life may contribute to the development of depression, and depression in patients may result in the development of Parkinson's disease as they mature. Depression is a non-motor condition that leads to motor symptoms, such as Parkinson's disease. PD Patients are currently utilizing a variety of other therapies like utilizing nutritional supplements, herbal remedies, vitamins, and massage. When a patient's functional ability is impaired, drug treatment is usually initiated according to the individual's condition and the severity of signs and symptoms. The current marketed anti-Parkinson drugs, has low brain distribution and failing to repair dopaminergic neurons or delaying the progression of the disease these negative effects were unavoidable. To overcome these disadvantages, this review considers the inclusion of drugs used in Parkinson's disease, focusing on strategies to reuse existing compounds to speed up drug development, their capacity to traverse the BBB, and drug dispersion in the brain. We look at cellular therapies and repurposed drugs. We also investigate the mechanisms, effectiveness, as well as safety of several new medications that are being repositioned for Parkinson's disease pharmacotherapy. In this study, we focus on global trends in Parkinson's disease research. We hope to raise awareness about the present state of major factors for disability worldwide, including yearly prevalence's from international and national statistics. The pathophysiology of Parkinsonism and also analyze existing therapies for Parkinson's disease, moreover new and innovative drug therapies, and to assess the prospects for disease modification.
Collapse
Affiliation(s)
- Sneha Kispotta
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| | - Debajyoti Das
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| | - Shakti Ketan Prusty
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| |
Collapse
|
7
|
Wang Z, Mo J, Zhang J, Feng T, Zhang K. Surface-Based Neuroimaging Pattern of Multiple System Atrophy. Acad Radiol 2023; 30:2999-3009. [PMID: 37495425 DOI: 10.1016/j.acra.2023.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 07/28/2023]
Abstract
RATIONALE AND OBJECTIVES Overlapping parkinsonism, cerebellar ataxia, and pyramidal signs render challenges in the clinical diagnosis of multiple system atrophy (MSA). The neuroimaging pattern is valuable to understand its pathophysiology and improve its diagnostic effect. MATERIALS AND METHODS We retrospectively obtained magnetic resonance imaging and susceptibility-weighted imaging in patients with MSA (including parkinsonian type [MSA-P] and cerebellar type [MSA-C]), Parkinson's disease, and normal controls. We quantified neuroimaging features to identify the optimal threshold for diagnosis. Furthermore, we explore neuroimaging patterns of MSA by mapping the subcortical morphological alterations and constructing a diagnostic model. RESULTS Compared to controls, normalized putaminal volume significantly decreased in patients with MSA-P (P < .001) and normalized pontine volume significantly decreased in patients with MSA-C (P < .001). The Youden index of the threshold-based clinical prediction model was 0.871-0.928 in patients with MSA. The neuroimaging pattern in patients with MSA was jointly located in the lateral putamen, and the neuroimaging pattern prediction model achieved a classification accuracy of 83.9%-100%. CONCLUSION The quantitative neuroimaging features and surface-based morphologic anomalies represent the markers of MSA and open new avenues for personalized clinical diagnosis.
Collapse
Affiliation(s)
- Zhan Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (Z.W., T.F.); China National Clinical Research Center for Neurological Disease, NCRC-ND, Beijing, China (Z.W., T.F.)
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.)
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.)
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (Z.W., T.F.); China National Clinical Research Center for Neurological Disease, NCRC-ND, Beijing, China (Z.W., T.F.)
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China (J.M., J.Z., K.Z.); Beijing Key Laboratory of Neurostimulation, Beijing, China (J.M., J.Z., K.Z.).
| |
Collapse
|
8
|
Satoh R, Weigand SD, Pham T, Ali F, Arani A, Senjem ML, Jack CR, Whitwell JL, Josephs KA. Magnetic Susceptibility in Progressive Supranuclear Palsy Variants, Parkinson's Disease, and Corticobasal Syndrome. Mov Disord 2023; 38:2282-2290. [PMID: 37772771 PMCID: PMC10840892 DOI: 10.1002/mds.29613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Previous studies have shown that magnetic susceptibility is increased in several subcortical regions in progressive supranuclear palsy (PSP). However, it is still unclear how subcortical and cortical susceptibilities vary across different PSP variants, Parkinson's disease (PD), and corticobasal syndrome (CBS). OBJECTIVE This study aims to clarify the susceptibility profiles in the subcortical and cortical regions in different PSP variants, PD, and CBS. METHODS Sixty-four patients, 20 PSP-Richardson syndrome (PSP-RS), 9 PSP-parkinsonism (PSP-P), 7 PSP-progressive gait freezing, 4 PSP-postural instability, 11 PD, and 13 CBS, and 20 cognitively normal control subjects underwent a 3-Tesla magnetic resonance imaging scan to reconstruct quantitative susceptibility maps. Region-of-interest analysis was performed to obtain susceptibility in several subcortical and cortical regions. Bayesian linear mixed effect models were used to estimate susceptibility within group and differences between groups. RESULTS In the subcortical regions, patients with PSP-RS and PSP-P showed greater susceptibility than control subjects in the pallidum, substantia nigra, red nucleus, and cerebellar dentate (P < 0.05). Patients with PSP-RS also showed greater susceptibility than patients with PSP-progressive gait freezing, PD, and CBS in the red nucleus and cerebellar dentate, and patients with PSP-P showed greater susceptibility than PD in the red nucleus. Patients with PSP-postural instability and CBS showed greater susceptibility than control subjects in the pallidum and substantia nigra. No significant differences were observed in any cortical region. CONCLUSIONS The PSP variants and CBS had different patterns of magnetic susceptibility in the subcortical regions. The findings will contribute to our understanding about iron profiles and pathophysiology of PSP and may provide a potential biomarker to differentiate PSP variants, PD, and CBS. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ryota Satoh
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Thu Pham
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Arvin Arani
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew L. Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | | |
Collapse
|
9
|
Sasikumar S, Strafella AP. Structural and Molecular Imaging for Clinically Uncertain Parkinsonism. Semin Neurol 2023; 43:95-105. [PMID: 36878467 DOI: 10.1055/s-0043-1764228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Neuroimaging is an important adjunct to the clinical assessment of Parkinson disease (PD). Parkinsonism can be challenging to differentiate, especially in early disease stages, when it mimics other movement disorders or when there is a poor response to dopaminergic therapies. There is also a discrepancy between the phenotypic presentation of degenerative parkinsonism and the pathological outcome. The emergence of more sophisticated and accessible neuroimaging can identify molecular mechanisms of PD, the variation between clinical phenotypes, and the compensatory mechanisms that occur with disease progression. Ultra-high-field imaging techniques have improved spatial resolution and contrast that can detect microstructural changes, disruptions in neural pathways, and metabolic and blood flow alterations. We highlight the imaging modalities that can be accessed in clinical practice and recommend an approach to the diagnosis of clinically uncertain parkinsonism.
Collapse
Affiliation(s)
- Sanskriti Sasikumar
- Morton and Gloria Shulman Movement Disorder Unit and Edmond J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, University of Toronto, Toronto Western Hospital, UHN, Ontario, Canada
| | - Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit and Edmond J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, University of Toronto, Toronto Western Hospital, UHN, Ontario, Canada.,Krembil Brain Institute, University Health Network and Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Hu R, Gao B, Tian S, Liu Y, Jiang Y, Li W, Li Y, Song Q, Wang W, Miao Y. Regional high iron deposition on quantitative susceptibility mapping correlates with cognitive decline in type 2 diabetes mellitus. Front Neurosci 2023; 17:1061156. [PMID: 36793541 PMCID: PMC9922715 DOI: 10.3389/fnins.2023.1061156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
Objective To quantitatively evaluate the iron deposition and volume changes in deep gray nuclei according to threshold-method of quantitative susceptibility mapping (QSM) acquired by strategically acquired gradient echo (STAGE) sequence, and to analyze the correlation between the magnetic susceptibility values (MSV) and cognitive scores in type 2 diabetes mellitus (T2DM) patients. Methods Twenty-nine patients with T2DM and 24 healthy controls (HC) matched by age and gender were recruited in this prospective study. QSM images were used to evaluate whole-structural volumes (Vwh), regional magnetic susceptibility values (MSVRII), and volumes (VRII) in high-iron regions in nine gray nuclei. All QSM data were compared between groups. Receiver operating characteristic (ROC) analysis was used to assess the discriminating ability between groups. The predictive model from single and combined QSM parameters was also established using logistic regression analysis. The correlation between MSVRII and cognitive scores was further analyzed. Multiple comparisons of all statistical values were corrected by false discovery rate (FDR). A statistically significant P-value was set at 0.05. Results Compared with HC group, the MSVRII of all gray matter nuclei in T2DM were increased by 5.1-14.8%, with significant differences found in bilateral head of caudate nucleus (HCN), right putamen (PUT), right globus pallidus (GP), and left dentate nucleus (DN) (P < 0.05). The Vwh of most gray nucleus in T2DM group were decreased by 1.5-16.9% except bilateral subthalamic nucleus (STN). Significant differences were found in bilateral HCN, bilateral red nucleus (RN), and bilateral substantia nigra (SN) (P < 0.05). VRII was increased in bilateral GP, bilateral PUT (P < 0.05). VRII/Vwh was also increased in bilateral GP, bilateral PUT, bilateral SN, left HCN and right STN (P < 0.05). Compared with the single QSM parameter, the combined parameter showed the largest area under curve (AUC) of 0.86, with a sensitivity of 87.5% and specificity of 75.9%. The MSVRII in the right GP was strongly associated with List A Long-delay free recall (List A LDFR) scores (r = -0.590, P = 0.009). Conclusion In T2DM patients, excessive and heterogeneous iron deposition as well as volume loss occurs in deep gray nuclei. The MSV in high iron regions can better evaluate the distribution of iron, which is related to the decline of cognitive function.
Collapse
|
11
|
Pang H, Yu Z, Yu H, Chang M, Cao J, Li Y, Guo M, Liu Y, Cao K, Fan G. Multimodal striatal neuromarkers in distinguishing parkinsonian variant of multiple system atrophy from idiopathic Parkinson's disease. CNS Neurosci Ther 2022; 28:2172-2182. [PMID: 36047435 PMCID: PMC9627351 DOI: 10.1111/cns.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS To develop an automatic method of classification for parkinsonian variant of multiple system atrophy (MSA-P) and Idiopathic Parkinson's disease (IPD) in early to moderately advanced stages based on multimodal striatal alterations and identify the striatal neuromarkers for distinction. METHODS 77 IPD and 75 MSA-P patients underwent 3.0 T multimodal MRI comprising susceptibility-weighted imaging, resting-state functional magnetic resonance imaging, T1-weighted imaging, and diffusion tensor imaging. Iron-radiomic features, volumes, functional and diffusion scalars of bilateral 10 striatal subregions were calculated and provided to the support vector machine for classification RESULTS: A combination of iron-radiomic features, function, diffusion, and volumetric measures optimally distinguished IPD and MSA-P in the testing dataset (accuracy 0.911 and area under the receiver operating characteristic curves [AUC] 0.927). The diagnostic performance further improved when incorporating clinical variables into the multimodal model (accuracy 0.934 and AUC 0.953). The most crucial factor for classification was the functional activity of the left dorsolateral putamen. CONCLUSION The machine learning algorithm applied to multimodal striatal dysfunction depicted dorsal striatum and supervening prefrontal lobe and cerebellar dysfunction through the frontostriatal and cerebello-striatal connections and facilitated accurate classification between IPD and MSA-P. The dorsolateral putamen was the most valuable neuromarker for the classification.
Collapse
Affiliation(s)
- Huize Pang
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Ziyang Yu
- School of MedicineXiamen UniversityXiamenChina
| | - Hongmei Yu
- Department of NeurologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Miao Chang
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jibin Cao
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Yingmei Li
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Miaoran Guo
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Yu Liu
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Kaiqiang Cao
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| | - Guoguang Fan
- Department of RadiologyThe first Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
12
|
Zhang P, Chen J, Cai T, He C, Li Y, Li X, Chen Z, Wang L, Zhang Y. Quantitative susceptibility mapping and blood neurofilament light chain differentiate between parkinsonian disorders. Front Aging Neurosci 2022; 14:909552. [PMID: 35992605 PMCID: PMC9389149 DOI: 10.3389/fnagi.2022.909552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives We employed quantitative susceptibility mapping (QSM) to assess iron deposition in parkinsonian disorders and explored whether combining QSM values and neurofilament light (NfL) chain levels can improve the accuracy of distinguishing Parkinson’s disease (PD) from multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Materials and methods Forty-seven patients with PD, 28 patients with MSA, 18 patients with PSP, and 28 healthy controls (HC) were enrolled, and QSM data were reconstructed. Susceptibility values in the bilateral globus pallidus (GP), putamen (PUT), caudate nucleus (CN), red nucleus (RN), substantia nigra (SN), and dentate nucleus (DN) were obtained. Plasma NfL levels of 47 PD, 18 MSA, and 14 PSP patients and 22 HC were measured by ultrasensitive Simoa technology. Results The highest diagnostic accuracy distinguishing MSA from PD patients was observed with increased susceptibility values in CN (AUC: 0.740). The susceptibility values in RN yielded the highest diagnostic performance for distinguishing PSP from PD patients (AUC: 0.829). Plasma NfL levels were significantly higher in the MSA and PSP groups than in PD and HC groups. Combining the susceptibility values in the RN and plasma NfL levels improved the diagnostic performance for PSP vs. PD (AUC: 0.904), whereas plasma NfL levels had higher diagnostic accuracy for MSA vs. PD (AUC: 0.877). Conclusion The exploratory study indicates different patterns of iron accumulation in deep gray matter nuclei in Parkinsonian disorders. Combining QSM values with NfL levels may be a promising biomarker for distinguishing PSP from PD, whereas plasma NfL may be a reliable biomarker for differentiating MSA from PD. QSM and NfL measures appeared to have low accuracy for separating PD from controls.
Collapse
Affiliation(s)
- Piao Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junling Chen
- Department of Neurology, Shantou Central Hospital, Shantou, China
| | - Tongtong Cai
- Department of Neurology, Shantou Central Hospital, Shantou, China
| | - Chentao He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohong Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenzhen Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yuhu Zhang,
| |
Collapse
|
13
|
Lee WW, Kim HJ, Lee HJ, Kim HB, Park KS, Sohn CH, Jeon B. Semiautomated Algorithm for the Diagnosis of Multiple System Atrophy With Predominant Parkinsonism. J Mov Disord 2022; 15:232-240. [PMID: 35880384 PMCID: PMC9536910 DOI: 10.14802/jmd.21178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Putaminal iron deposition is an important feature that helps differentiate multiple system atrophy with predominant parkinsonism (MSA-p) from Parkinson’s disease (PD). Most previous studies used visual inspection or quantitative methods with manual manipulation to perform this differentiation. We investigated the value of a new semiautomated diagnostic algorithm using 3T-MR susceptibility-weighted imaging for MSA-p. Methods This study included 26 MSA-p, 68 PD, and 41 normal control (NC) subjects. The algorithm was developed in 2 steps: 1) determine the image containing the remarkable putaminal margin and 2) calculate the phase-shift values, which reflect the iron concentration. The next step was to identify the best differentiating conditions among several combinations. The highest phase-shift value of each subject was used to assess the most effective diagnostic set. Results The raw phase-shift values were present along the lateral margin of the putamen in each group. It demonstrates an anterior-to-posterior gradient that was identified most frequently in MSA-p. The average of anterior 5 phase shift values were used for normalization. The highest area under the receiver operating characteristic curve (0.874, 80.8% sensitivity, and 86.7% specificity) of MSA-p versus PD was obtained under the combination of 3 or 4 vertical pixels and one dominant side when the normalization methods were applied. In the subanalysis for the MSA-p patients with a longer disease duration, the performance of the algorithm improved. Conclusion This algorithm detected the putaminal lateral margin well, provided insight into the iron distribution of the putaminal rim of MSA-p, and demonstrated good performance in differentiating MSA-p from PD.
Collapse
Affiliation(s)
- Woong-Woo Lee
- Department of Neurology, Nowon Eulji Medical Center, Eulji University, Seoul, Korea.,Department of Neurology, Eulji University College of Medicine, Daejeon, Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea.,Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Hong Ji Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Han Byul Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang Suk Park
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, Korea.,Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
An Updated Overview of the Magnetic Resonance Imaging of Brain Iron in Movement Disorders. Behav Neurol 2022; 2022:3972173. [PMID: 35251368 PMCID: PMC8894064 DOI: 10.1155/2022/3972173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 01/12/2023] Open
Abstract
Brain iron load is one of the most important neuropathological hallmarks in movement disorders. Specifically, the iron provides most of the paramagnetic metal signals in the brain and its accumulation seems to play a key role, although not completely explained, in the degeneration of the basal ganglia, as well as other brain structures. Moreover, iron distribution patterns have been implicated in depicting different movement disorders. This work reviewed current literature on Magnetic Resonance Imaging for Brain Iron Detection and Quantification (MRI-BIDQ) in neurodegenerative processes underlying movement disorders.
Collapse
|
15
|
Shukla JJ, Stefanova N, Bush AI, McColl G, Finkelstein DI, McAllum EJ. Therapeutic potential of iron modulating drugs in a mouse model of multiple system atrophy. Neurobiol Dis 2021; 159:105509. [PMID: 34537326 DOI: 10.1016/j.nbd.2021.105509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Multiple System Atrophy (MSA) is a rare neurodegenerative synucleinopathy which leads to severe disability followed by death within 6-9 years of symptom onset. There is compelling evidence suggesting that biological trace metals like iron and copper play an important role in synucleinopathies like Parkinson's disease and removing excess brain iron using chelators could slow down the disease progression. In human MSA, there is evidence of increased iron in affected brain regions, but role of iron and therapeutic efficacy of iron-lowering drugs in pre-clinical models of MSA have not been studied. We studied age-related changes in iron metabolism in different brain regions of the PLP-αsyn mice and tested whether iron-lowering drugs could alleviate disease phenotype in aged PLP-αsyn mice. Iron content, iron-ferritin association, ferritin protein levels and copper-ceruloplasmin association were measured in prefrontal cortex, putamen, substantia nigra and cerebellum of 3, 8, and 20-month-old PLP-αsyn and age-matched non-transgenic mice. Moreover, 12-month-old PLP-αsyn mice were administered deferiprone or ceruloplasmin or vehicle for 2 months. At the end of treatment period, motor testing and stereological analyses were performed. We found iron accumulation and perturbed iron-ferritin interaction in substantia nigra, putamen and cerebellum of aged PLP-αsyn mice. Furthermore, we found significant reduction in ceruloplasmin-bound copper in substantia nigra and cerebellum of the PLP-αsyn mice. Both deferiprone and ceruloplasmin prevented decline in motor performance in aged PLP-αsyn mice and were associated with higher neuronal survival and reduced density of α-synuclein aggregates in substantia nigra. This is the first study to report brain iron accumulation in a mouse model of MSA. Our results indicate that elevated iron in MSA mice may result from ceruloplasmin dysfunction and provide evidence that targeting iron in MSA could be a viable therapeutic option.
Collapse
Affiliation(s)
- Jay J Shukla
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Parkville, Victoria, Australia
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Parkville, Victoria, Australia
| | - Gawain McColl
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Parkville, Victoria, Australia
| | - David I Finkelstein
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Parkville, Victoria, Australia..
| | - Erin J McAllum
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Diwakarla S, McQuade RM, Constable R, Artaiz O, Lei E, Barnham KJ, Adlard PA, Cherny RA, Di Natale MR, Wu H, Chai XY, Lawson VA, Finkelstein DI, Furness JB. ATH434 Reverses Colorectal Dysfunction in the A53T Mouse Model of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:1821-1832. [PMID: 34366375 PMCID: PMC8609706 DOI: 10.3233/jpd-212731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Gastrointestinal (GI) complications, that severely impact patient quality of life, are a common occurrence in patients with Parkinson’s disease (PD). Damage to enteric neurons and the accumulation of alpha-synuclein in the enteric nervous system (ENS) are thought to contribute to this phenotype. Copper or iron chelators, that bind excess or labile metal ions, can prevent aggregation of alpha-synuclein in the brain and alleviate motor-symptoms in preclinical models of PD. Objective: We investigated the effect of ATH434 (formally PBT434), a small molecule, orally bioavailable, moderate-affinity iron chelator, on colonic propulsion and whole gut transit in A53T alpha-synuclein transgenic mice. Methods: Mice were fed ATH434 (30 mg/kg/day) for either 4 months (beginning at ∼15 months of age), after the onset of slowed propulsion (“treatment group”), or for 3 months (beginning at ∼12 months of age), prior to slowed propulsion (“prevention group”). Results: ATH434, given after dysfunction was established, resulted in a reversal of slowed colonic propulsion and gut transit deficits in A53T mice to WT levels. In addition, ATH434 administered from 12 months prevented the slowed bead expulsion at 15 months but did not alter deficits in gut transit time when compared to vehicle-treated A53T mice. The proportion of neurons with nuclear Hu+ translocation, an indicator of neuronal stress in the ENS, was significantly greater in A53T than WT mice, and was reduced in both groups when ATH434 was administered. Conclusion: ATH434 can reverse some of the GI deficits and enteric neuropathy that occur in a mouse model of PD, and thus may have potential clinical benefit in alleviating the GI dysfunctions associated with PD.
Collapse
Affiliation(s)
- Shanti Diwakarla
- Department of Medicine, Western Health, Melbourne University, Sunshine, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Rachel M McQuade
- Department of Medicine, Western Health, Melbourne University, Sunshine, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Remy Constable
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Olivia Artaiz
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Enie Lei
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.,Melbourne Dementia Research Centre, University of Melbourne, Parkville, Australia
| | - Paul A Adlard
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Robert A Cherny
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Madeleine R Di Natale
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Hongyi Wu
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Xin-Yi Chai
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Victoria A Lawson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC, Australia
| | - David I Finkelstein
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - John B Furness
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Bae YJ, Kim JM, Sohn CH, Choi JH, Choi BS, Song YS, Nam Y, Cho SJ, Jeon B, Kim JH. Imaging the Substantia Nigra in Parkinson Disease and Other Parkinsonian Syndromes. Radiology 2021; 300:260-278. [PMID: 34100679 DOI: 10.1148/radiol.2021203341] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkinson disease is characterized by dopaminergic cell loss in the substantia nigra of the midbrain. There are various imaging markers for Parkinson disease. Recent advances in MRI have enabled elucidation of the underlying pathophysiologic changes in the nigral structure. This has contributed to accurate and early diagnosis and has improved disease progression monitoring. This article aims to review recent developments in nigral imaging for Parkinson disease and other parkinsonian syndromes, including nigrosome imaging, neuromelanin imaging, quantitative iron mapping, and diffusion-tensor imaging. In particular, this article examines nigrosome imaging using 7-T MRI and 3-T susceptibility-weighted imaging. Finally, this article discusses volumetry and its clinical importance related to symptom manifestation. This review will improve understanding of recent advancements in nigral imaging of Parkinson disease. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Yun Jung Bae
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jong-Min Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Chul-Ho Sohn
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Ji-Hyun Choi
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Byung Se Choi
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoo Sung Song
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Yoonho Nam
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Se Jin Cho
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Beomseok Jeon
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| | - Jae Hyoung Kim
- From the Departments of Radiology (Y.J.B., B.S.C., S.J.C., J.H.K.), Neurology (J.M.K., J.H.C.), and Nuclear Medicine (Y.S.S.), Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea; Departments of Radiology (C.H.S.) and Neurology (B.J.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; and Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Republic of Korea (Y.N.)
| |
Collapse
|
18
|
Vroegindeweij LHP, Bossoni L, Boon AJW, Wilson JHP, Bulk M, Labra-Muñoz J, Huber M, Webb A, van der Weerd L, Langendonk JG. Quantification of different iron forms in the aceruloplasminemia brain to explore iron-related neurodegeneration. NEUROIMAGE-CLINICAL 2021; 30:102657. [PMID: 33839643 PMCID: PMC8055714 DOI: 10.1016/j.nicl.2021.102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Ferrihydrite-iron is the most abundant iron form in the aceruloplasminemia brain. Iron concentrations over 1 mg/g are found in deep gray matter structures. The deep gray matter contains over three times more iron than the temporal cortex. Iron-sensitive MRI contrast is primarily driven by the amount of ferrihydrite-iron. R2* is more illustrative of the pattern of iron accumulation than QSM at 7 T.
Aims Aceruloplasminemia is an ultra-rare neurodegenerative disorder associated with massive brain iron deposits, of which the molecular composition is unknown. We aimed to quantitatively determine the molecular iron forms in the aceruloplasminemia brain, and to illustrate their influence on iron-sensitive MRI metrics. Methods The inhomogeneous transverse relaxation rate (R2*) and magnetic susceptibility obtained from 7 T MRI were combined with Electron Paramagnetic Resonance (EPR) and Superconducting Quantum Interference Device (SQUID) magnetometry. The basal ganglia, thalamus, red nucleus, dentate nucleus, superior- and middle temporal gyrus and white matter of a post-mortem aceruloplasminemia brain were studied. MRI, EPR and SQUID results that had been previously obtained from the temporal cortex of healthy controls were included for comparison. Results The brain iron pool in aceruloplasminemia detected in this study consisted of EPR-detectable Fe3+ ions, magnetic Fe3+ embedded in the core of ferritin and hemosiderin (ferrihydrite-iron), and magnetic Fe3+ embedded in oxidized magnetite/maghemite minerals (maghemite-iron). Ferrihydrite-iron represented above 90% of all iron and was the main driver of iron-sensitive MRI contrast. Although deep gray matter structures were three times richer in ferrihydrite-iron than the temporal cortex, ferrihydrite-iron was already six times more abundant in the temporal cortex of the patient with aceruloplasminemia compared to the healthy situation (162 µg/g vs. 27 µg/g), on average. The concentrations of Fe3+ ions and maghemite-iron in the temporal cortex in aceruloplasminemia were within the range of those in the control subjects. Conclusions Iron-related neurodegeneration in aceruloplasminemia is primarily associated with an increase in ferrihydrite-iron, with ferrihydrite-iron being the major determinant of iron-sensitive MRI contrast.
Collapse
Affiliation(s)
- Lena H P Vroegindeweij
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Lucia Bossoni
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Agnita J W Boon
- Department of Neurology, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - J H Paul Wilson
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Marjolein Bulk
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacqueline Labra-Muñoz
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, the Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, the Netherlands
| | - Andrew Webb
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Janneke G Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
19
|
Ren Q, Meng X, Zhang B, Zhang J, Shuai X, Nan X, Zhao C. Morphology and signal changes of the lentiform nucleus based on susceptibility weighted imaging in parkinsonism-predominant multiple system atrophy. Parkinsonism Relat Disord 2020; 81:194-199. [DOI: 10.1016/j.parkreldis.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022]
|
20
|
Pang H, Yu Z, Li R, Yang H, Fan G. MRI-Based Radiomics of Basal Nuclei in Differentiating Idiopathic Parkinson's Disease From Parkinsonian Variants of Multiple System Atrophy: A Susceptibility-Weighted Imaging Study. Front Aging Neurosci 2020; 12:587250. [PMID: 33281598 PMCID: PMC7689200 DOI: 10.3389/fnagi.2020.587250] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives To investigate the value of MRI-based radiomic model based on the radiomic features of different basal nuclei in differentiating idiopathic Parkinson's disease (IPD) from Parkinsonian variants of multiple system atrophy (MSA-P). Methods Radiomics was applied to the 3T susceptibility- weighted imaging (SWI) from 102 MSA-P patients and 83 IPD patients (allocated to a training and a testing cohort, 7:3 ratio). The substantia nigra (SN), caudate nucleus (CN), putamen (PUT), globus pallidus (GP), red nucleus (RN), and subthalamic nucleus (STN) were manually segmented, and 396 features were extracted. After feature selection, support vector machine (SVM) was generated, and its predictive performance was calculated in both the training and testing cohorts using the area under receiver operating characteristic curve (AUC). Results Seven radiomic features were selected from the PUT, by which the SVM classifier achieved the best diagnostic performance with an AUC of 0.867 in the training cohort and an AUC of 0.862 in the testing cohort. Furthermore, the combined model, which incorporating part III of the Parkinson's Disease Rating Scale (UPDRSIII) scores into radiomic features of the PUT, further improved the diagnostic performance. However, radiomic features extracted from RN, SN, GP, CN, and STN had moderate to poor diagnostic performance, with AUC values that ranged from 0.610 to 0.788 in the training cohort and 0.583 to 0.766 in the testing cohort. Conclusion Radiomic features derived from the PUT had optimal value in differentiating IPD from MSA-P. A combined radiomic model, which contained radiomic features of the PUT and UPDRSIII scores, further improved performance and may represent a promising tool for distinguishing between IPD and MSA-P.
Collapse
Affiliation(s)
- Huize Pang
- Department of Radiology, The first affiliated hospital of China Medical University, China Medical University, Shenyang, China
| | - Ziyang Yu
- School of Medicine, Xiamen University, Xiamen, China
| | - Renyuan Li
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.,The Affiliated Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huaguang Yang
- Department of Radiology, The first affiliated hospital of China Medical University, China Medical University, Shenyang, China
| | - Guoguang Fan
- Department of Radiology, The first affiliated hospital of China Medical University, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Fedeli MP, Contarino VE, Siggillino S, Samoylova N, Calloni S, Melazzini L, Conte G, Sacilotto G, Pezzoli G, Triulzi FM, Scola E. Iron deposition in Parkinsonisms: A Quantitative Susceptibility Mapping study in the deep grey matter. Eur J Radiol 2020; 133:109394. [PMID: 33190103 DOI: 10.1016/j.ejrad.2020.109394] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/30/2020] [Indexed: 02/09/2023]
Abstract
PURPOSE The aim of the study is to quantify the susceptibility in deep grey nuclei that are affected by pathological processes related to iron accumulation in patients with Parkinson's disease and primary atypical parkinsonisms such as Progressive Supranuclear Palsy, Multiple System Atrophy and Cortico-Basal Degeneration, in order to assist the differential diagnosis among parkinsonian syndromes. METHODS We enrolled 49 patients with Parkinson's disease and 26 patients with primary atypical parkinsonisms. Automatic segmentation of putamen, globus pallidus, caudate nucleus and thalamus and manual segmentation of red nuclei and substantia nigra were performed, and region of interest-based Quantitative Susceptibility Mapping analysis were performed. Statistical comparisons of the mean susceptibility values in the segmented brain regions were performed among primary atypical parkinsonisms and Parkinson's disease. RESULTS Susceptibility values in red nuclei were increased in Progressive Supranuclear Palsy patients compared to parkinsonian phenotype Multiple System Atrophy (p = 0.004), and Parkinson's disease patients (p = 0.006). Susceptibility in thalamus was decreased in Cortico-Basal Degeneration patients compared to Parkinson's disease (p = 0.006), Multiple System Atrophy with cerebellar phenotype (p = 0.031) and parkinsonian phenotype (p = 0.001) patients, and in Progressive Supranuclear Palsy patients compared to Multiple System Atrophy with parkinsonian phenotype patients (p = 0.012). CONCLUSIONS Quantitative Susceptibility Mapping allows the depiction and quantification of different patterns of iron deposition in the deep gray nuclei occurring in primary atypical parkinsonisms and Parkinson's disease and it may help as a non-invasive tool in the differential diagnosis between parkinsonian syndromes.
Collapse
Affiliation(s)
- Maria Paola Fedeli
- Radiology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Valeria Elisa Contarino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy.
| | - Silvia Siggillino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy
| | - Nina Samoylova
- Faculty of Medicine and Surgery, Università degli Studi di Milano, Milan, Italy
| | - Sonia Calloni
- San Raffaele Scientific Institute, Department of Neuroradiology, Milan, Italy
| | - Luca Melazzini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Conte
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy
| | | | - Gianni Pezzoli
- Parkinson Institute, ASST 'Gaetano Pini-CTO', Milan, Italy; Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Fabio Maria Triulzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Italy
| | - Elisa Scola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy
| |
Collapse
|
22
|
Reimão S, Guerreiro C, Seppi K, Ferreira JJ, Poewe W. A Standardized MR Imaging Protocol for Parkinsonism. Mov Disord 2020; 35:1745-1750. [PMID: 32914459 DOI: 10.1002/mds.28204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sofia Reimão
- Neuroimaging Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Guerreiro
- Neuroimaging Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,CNS - Campus Neurológico Sénior, Torres Vedras, Portugal
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
23
|
Chougar L, Pyatigorskaya N, Degos B, Grabli D, Lehéricy S. The Role of Magnetic Resonance Imaging for the Diagnosis of Atypical Parkinsonism. Front Neurol 2020; 11:665. [PMID: 32765399 PMCID: PMC7380089 DOI: 10.3389/fneur.2020.00665] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The diagnosis of Parkinson's disease and atypical Parkinsonism remains clinically difficult, especially at the early stage of the disease, since there is a significant overlap of symptoms. Multimodal MRI has significantly improved diagnostic accuracy and understanding of the pathophysiology of Parkinsonian disorders. Structural and quantitative MRI sequences provide biomarkers sensitive to different tissue properties that detect abnormalities specific to each disease and contribute to the diagnosis. Machine learning techniques using these MRI biomarkers can effectively differentiate atypical Parkinsonian syndromes. Such approaches could be implemented in a clinical environment and improve the management of Parkinsonian patients. This review presents different structural and quantitative MRI techniques, their contribution to the differential diagnosis of atypical Parkinsonian disorders and their interest for individual-level diagnosis.
Collapse
Affiliation(s)
- Lydia Chougar
- Institut du Cerveau et de la Moelle épinière-ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS UMR 7225, Paris, France.,ICM, "Movement Investigations and Therapeutics" Team (MOV'IT), Paris, France.,ICM, Centre de NeuroImagerie de Recherche-CENIR, Paris, France.,Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Nadya Pyatigorskaya
- Institut du Cerveau et de la Moelle épinière-ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS UMR 7225, Paris, France.,ICM, "Movement Investigations and Therapeutics" Team (MOV'IT), Paris, France.,ICM, Centre de NeuroImagerie de Recherche-CENIR, Paris, France.,Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Bertrand Degos
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France.,Department of Neurology, Avicenne University Hospital, Sorbonne Paris Nord University, Bobigny, France
| | - David Grabli
- Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Stéphane Lehéricy
- Institut du Cerveau et de la Moelle épinière-ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS UMR 7225, Paris, France.,ICM, "Movement Investigations and Therapeutics" Team (MOV'IT), Paris, France.,ICM, Centre de NeuroImagerie de Recherche-CENIR, Paris, France.,Service de Neuroradiologie, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| |
Collapse
|
24
|
Arribarat G, Péran P. Quantitative MRI markers in Parkinson's disease and parkinsonian syndromes. Curr Opin Neurol 2020; 33:222-229. [DOI: 10.1097/wco.0000000000000796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Nuebling GS, Plesch E, Ruf VC, Högen T, Lorenzl S, Kamp F, Giese A, Levin J. Binding of Metal-Ion-Induced Tau Oligomers to Lipid Surfaces Is Enhanced by GSK-3β-Mediated Phosphorylation. ACS Chem Neurosci 2020; 11:880-887. [PMID: 32069020 DOI: 10.1021/acschemneuro.9b00459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While fibrillar deposits of hyperphosphorylated protein tau are a key hallmark of several neurodegenerative diseases such as Alzheimer's disease, small oligomers have been speculated to be the key toxic aggregate species. Trivalent metal ions were shown to promote tau oligomer formation in vitro. However, little is known about potential intercellular spreading mechanisms or toxic modes of action of such oligomers. We investigated interactions of tau monomers and Fe3+/Al3+-induced oligomers with small unilamellar vesicles derived from 1-palmitoyl-2-oleoyl-phosphatidylcholine (neutral, liquid-crystalline phase) and dipalmitoyl-phosphatidylcholine (neutral, gel-phase). We further evaluated the influence of glycogen synthase kinase 3β (GSK-3β)-mediated tau phosphorylation applying the single-particle fluorescence spectroscopy techniques fluorescence correlation spectroscopy, fluorescence intensity distribution analysis, and scanning for intensely fluorescent targets. In these experiments, no binding to neutral lipid surfaces was observed for tau monomers. In contrast, metal-ion-induced tau oligomers showed a gain of function in binding to neutral lipid surfaces. Of note, tau phosphorylation by GSK-3β increased both oligomer formation and membrane affinity of the resulting oligomers. In conclusion, our data imply a pathological gain of function of metal-ion-induced oligomers of hyperphosphorylated tau, enabling membrane binding irrespective of surface charge even at nanomolar protein concentrations.
Collapse
Affiliation(s)
- Georg S. Nuebling
- Department of Neurology, Klinikum der Universität München, Ludwig-Maximilians-University, 81377 Munich, Germany
- Center of Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- Department for Palliative Medicine, Klinikum der Universität München, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Eva Plesch
- Center of Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Viktoria C. Ruf
- Center of Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Tobias Högen
- Department of Neurology, Klinikum der Universität München, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Stefan Lorenzl
- Department of Neurology, Klinikum der Universität München, Ludwig-Maximilians-University, 81377 Munich, Germany
- Department for Palliative Medicine, Klinikum der Universität München, Ludwig-Maximilians-University, 81377 Munich, Germany
- Endowed Professorship for Interdisciplinary Research in Palliative Care, Institute of Nursing Science and Practice, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Frits Kamp
- Center of Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
- Biomedical Research Center, Metabolic Chemistry, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Armin Giese
- Center of Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Johannes Levin
- Department of Neurology, Klinikum der Universität München, Ludwig-Maximilians-University, 81377 Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen DZNE, 81377 Munich, Germany
| |
Collapse
|
26
|
A study of susceptibility-weighted imaging in patients with Wilson disease during the treatment of metal chelator. J Neurol 2020; 267:1643-1650. [DOI: 10.1007/s00415-020-09746-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/12/2023]
|
27
|
Zhou XX, Li XH, Chen DB, Wu C, Feng L, Qin HL, Pu XY, Liang XL. Injury factors and pathological features of toxic milk mice during different disease stages. Brain Behav 2019; 9:e01459. [PMID: 31742933 PMCID: PMC6908887 DOI: 10.1002/brb3.1459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To evaluate different injury factors and pathological characteristics of the brain at different disease stages in toxic milk (TX) mice, an animal model of Wilson's disease (WD). METHODS Thirty TX mice (10 each at 3, 6 and 12 months old) and 30 age-matched C57 mice were used in this study. Corrected phase (CP) values were determined from susceptibility-weighted images. Myelin content was determined by measuring inhibition optical density values of Luxol fast blue-stained sections. Neurofilament protein 68 kDa (NF68), β-amyloid precursor protein (β-APP), and myelin basic protein (MBP) levels, as well as copper and iron content, in brain nuclei of the TX mouse were evaluated. Gene amplification ratios for catalase (CAT), GSH peroxidase (GSH-PX), nitric oxide synthase (NOS), and superoxide dismutase (SOD) in mouse brain were also determined. RESULTS Compared with C57 mice, neuronal cell counts were decreased in 12-months-old TX mice (p = .011). Myelin content was decreased in the lenticular nucleus (p = .029), thalamus (p = .030), and brainstem (p = .034) of 6-months-old TX mice; decreases in the corresponding nuclei (p = .044, .037, and .032, respectively) were also found in 12-months-old TX mice. MBP values were lower in the lenticular nucleus and thalamus (p = .027 and .016, respectively) of 6-months-old TX mice and in the corresponding nuclei (p = .24 and .040) of 12-months-old TX mice. NF-68 values were lower in the lenticular nucleus and thalamus (p = .034 and .037, respectively) of 6-months-old TX mice and in the corresponding nuclei (p = .006 and .012) of 12-months-old TX mice. β-APP values were higher in the thalamus of 6-months-old (p = .037) and 12-months-old (p = .012) TX mice. Iron content was higher in the lenticular nucleus, thalamus, and cerebellum (p = .044, .038, and .029, respectively) of 6-months-old TX mice and in the corresponding nuclei (p = .017, .024, and .029) of 12-months-old TX mice. The NOS gene amplification multiple was higher (p = .039), whereas the SOD1 gene amplification multiple was lower (p = .041) in 12-months-old TX mice. There was no correlation between metal content or oxidation index and pathological index. CONCLUSIONS The pathological characteristics of the brains of TX mice may differ at different ages. Different pathogenic factors, including copper and iron deposition and abnormal oxidative stress, are present at different stages.
Collapse
Affiliation(s)
- Xiang-Xue Zhou
- Department of Neurology, The East Area of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xun-Hua Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ding-Bang Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Feng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao-Lin Qin
- Department of Radiology, The East Area of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yong Pu
- Department of Reproductive Medicine and Urology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiu-Ling Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
28
|
Azuma M, Hirai T, Nakaura T, Kitajima M, Yamashita S, Hashimoto M, Yamada K, Uetani H, Yamashita Y, Wang Y. Combining quantitative susceptibility mapping to the morphometric index in differentiating between progressive supranuclear palsy and Parkinson's disease. J Neurol Sci 2019; 406:116443. [DOI: 10.1016/j.jns.2019.116443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/18/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
|
29
|
Seki M, Seppi K, Mueller C, Potrusil T, Goebel G, Reiter E, Nocker M, Kremser C, Wildauer M, Schocke M, Gizewski ER, Wenning GK, Poewe W, Scherfler C. Diagnostic Potential of Multimodal MRI Markers in Atypical Parkinsonian Disorders. JOURNAL OF PARKINSONS DISEASE 2019; 9:681-691. [DOI: 10.3233/jpd-181568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Morinobu Seki
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Mueller
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Potrusil
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Goebel
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva Reiter
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Nocker
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Kremser
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Wildauer
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Schocke
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke R. Gizewski
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Scherfler
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Chelban V, Bocchetta M, Hassanein S, Haridy NA, Houlden H, Rohrer JD. An update on advances in magnetic resonance imaging of multiple system atrophy. J Neurol 2019; 266:1036-1045. [PMID: 30460448 PMCID: PMC6420901 DOI: 10.1007/s00415-018-9121-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
In this review, we describe how different neuroimaging tools have been used to identify novel MSA biomarkers, highlighting their advantages and limitations. First, we describe the main structural MRI changes frequently associated with MSA including the 'hot cross-bun' and 'putaminal rim' signs as well as putaminal, pontine, and middle cerebellar peduncle (MCP) atrophy. We discuss the sensitivity and specificity of different supra- and infratentorial changes in differentiating MSA from other disorders, highlighting those that can improve diagnostic accuracy, including the MCP width and MCP/superior cerebellar peduncle (SCP) ratio on T1-weighted imaging, raised putaminal diffusivity on diffusion-weighted imaging, and increased T2* signal in the putamen, striatum, and substantia nigra on susceptibility-weighted imaging. Second, we focus on recent advances in structural and functional MRI techniques including diffusion tensor imaging (DTI), resting-state functional MRI (fMRI), and arterial spin labelling (ASL) imaging. Finally, we discuss new approaches for MSA research such as multimodal neuroimaging strategies and how such markers may be applied in clinical trials to provide crucial data for accurately selecting patients and to act as secondary outcome measures.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Toma Ciorbă 1, 2052, Chisinau, Moldova
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Sara Hassanein
- Diagnostic Radiology department, Faculty of Medicine Assiut University, Assiut, Egypt
- Department of Brain, Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Nourelhoda A Haridy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University Hospital, Assiut, Egypt
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| |
Collapse
|
31
|
Pritchard C, Silk A, Hansen L. Are rises in Electro-Magnetic Field in the human environment, interacting with multiple environmental pollutions, the tripping point for increases in neurological deaths in the Western World? Med Hypotheses 2019; 127:76-83. [PMID: 31088653 DOI: 10.1016/j.mehy.2019.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Whilst humans evolved in the earth's Electro-Magnetic-Field (EMF) and sun-light, both being essential to life but too much sun and we burn. What happens if background EMF rise to critical levels, coinciding with increasing environmental pollutants? Two of the authors can look back over 50 clinical years and appreciate the profound changes in human morbidity across a range of disparate conditions - autoimmune diseases, asthma, earlier cancer incidence and reduced male sperm counts. In particular have been increased autism, dyslexia, Attention Deficit Hyperactivity Disorder and neurological diseases, such as Amyotrophic Lateral Sclerosis, Multiple Sclerosis, Parkinson's Disease, Early Onset Dementia, Multiple System Atrophy and Progressive Supranuclear Palsy. What might have caused these changes-whilst genetic factors are taken as given, multiple environmental pollutants are associated with neurological disease although the mechanisms are unclear. The pace of increased neurological deaths far exceeds any Gompertzian explanation - that because people are living longer they are more likely to develop more age-related problems such as neurological disease. Using WHO global mortality categories of Neurological Disease Deaths (NDD) and Alzheimer's and Dementia deaths (Alz), updated June 2018, together they constitute Total Neurological Mortality (TNM), to calculate mortality rates per million for people aged 55-74 and for the over-75's in twenty-one Western countries. Recent increases in American people aged over-75's rose 49% from 1989 to 2015 but US neurological deaths increased five-fold. In 1989 based on Age-Standardised-Deaths-Rates America USA was 17th at 324 pm but rising to 539 pm became second highest. Different environmental/occupational factors have been found to be associated with neuro-degenerative diseases, including background EMF. We briefly explore how levels of EMF interact upon the human body, which can be described as a natural antennae and provide new evidence that builds upon earlier research to propose the following hypothesis. Based upon recent and new evidence we hypothesise that a major contribution for the relative sudden upsurge in neurological morbidity in the Western world (1989-2015), is because of increased background EMF that has become the tipping point-impacting upon any genetic predisposition, increasing multiple-interactive pollutants, such as rises in petro-chemicals, hormone disrupting chemicals, industrial, agricultural and domestic chemicals. The unprecedented neurological death rates, all within just twenty-five years, demand a re-examination of long-term EMF safety related to the increasing background EMF on human health. We do not wish to 'stop the modern world', only make it safer.
Collapse
Affiliation(s)
- Colin Pritchard
- Faculty of Health & Social Sciences, Bournemouth University, United Kingdom.
| | - Anne Silk
- Faculty of Health & Social Sciences, Bournemouth University, United Kingdom
| | - Lars Hansen
- Southern Health, Dept of Psychiatry, University of Southampton, United Kingdom
| |
Collapse
|
32
|
Lee JH, Lee MS. Brain Iron Accumulation in Atypical Parkinsonian Syndromes: in vivo MRI Evidences for Distinctive Patterns. Front Neurol 2019; 10:74. [PMID: 30809185 PMCID: PMC6379317 DOI: 10.3389/fneur.2019.00074] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
Recent data suggest mechanistic links among perturbed iron homeostasis, oxidative stress, and misfolded protein aggregation in neurodegenerative diseases. Iron overload and toxicity toward dopaminergic neurons have been established as playing a role in the pathogenesis of Parkinson's disease (PD). Brain iron accumulation has also been documented in atypical parkinsonian syndromes (APS), mainly comprising multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). Iron-sensitive magnetic resonance imaging (MRI) has been applied to identify iron-related signal changes for the diagnosis and differentiation of these disorders. Topographic patterns of widespread iron deposition in deep brain nuclei have been described as differing between patients with MSA and PSP and those with PD. A disease-specific increase of iron occurs in the brain regions mainly affected by underlying disease pathologies. However, whether iron changes are a primary pathogenic factor or an epiphenomenon of neuronal degeneration has not been fully elucidated. Moreover, the clinical implications of iron-related pathology in APS remain unclear. In this review study, we collected data from qualitative and quantitative MRI studies on brain iron accumulation in APS to identify disease-related patterns and the potential role of iron-sensitive MRI.
Collapse
Affiliation(s)
- Jae-Hyeok Lee
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, South Korea
| | - Myung-Sik Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
33
|
Abstract
Qualitative and quantitative structural magnetic resonance imaging offer objective measures of the underlying neurodegeneration in atypical parkinsonism. Regional changes in tissue volume, signal changes and increased deposition of iron as assessed with different structural MRI techniques are surrogate markers of underlying neurodegeneration and may reflect cell loss, microglial proliferation and astroglial activation. Structural MRI has been explored as a tool to enhance diagnostic accuracy in differentiating atypical parkinsonian disorders (APDs). Moreover, the longitudinal assessment of serial structural MRI-derived parameters offers the opportunity for robust inferences regarding the progression of APDs. This review summarizes recent research findings as (1) a diagnostic tool for APDs as well as (2) as a tool to assess longitudinal changes of serial MRI-derived parameters in the different APDs.
Collapse
|
34
|
Lewis MM, Du G, Baccon J, Snyder AM, Murie B, Cooper F, Sica C, Mailman RB, Connor JR, Huang X. Susceptibility MRI captures nigral pathology in patients with parkinsonian syndromes. Mov Disord 2018; 33:1432-1439. [PMID: 29756231 PMCID: PMC6185787 DOI: 10.1002/mds.27381] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/21/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Parkinsonisms are neurodegenerative disorders characterized pathologically by α-synuclein-positive (e.g., PD, diffuse Lewy body disease, and MSA) and/or tau-positive (e.g., PSP, cortical basal degeneration) pathology. Using R2* and quantitative susceptibility mapping, susceptibility changes have been reported in the midbrain of living parkinsonian patients, although the exact underlying pathology of these alterations is unknown. OBJECTIVE The current study investigated the pathological correlates of these susceptibility MRI measures. METHODS In vivo MRIs (T1- and T2-weighted, and T2*) and pathology were obtained from 14 subjects enrolled in an NINDS PD Biomarker Program (PDBP). We assessed R2* and quantitative susceptibility mapping values in the SN, semiquantitative α-synuclein, tau, and iron values, as well as neuronal and glial counts. Data were analyzed using age-adjusted Spearman correlations. RESULTS R2* was associated significantly with nigral α-synuclein (r = 0.746; P = 0.003). Quantitative susceptibility mapping correlated significantly with Perls' (r = 0.758; P = 0.003), but not with other pathological measurements. Neither measurement correlated with tau or glial cell counts (r ≤ 0.11; P ≥ 0.129). CONCLUSIONS Susceptibility MRI measurements capture nigral pathologies associated with parkinsonian syndromes. Whereas quantitative susceptibility mapping is more sensitive to iron, R2* may reflect pathological aspects of the disorders beyond iron such as α-synuclein. They may be invaluable tools in diagnosing differential parkinsonian syndromes, and tracking in living patients the dynamic changes associated with the pathological progression of these disorders. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mechelle M. Lewis
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
- Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
| | - Guangwei Du
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
| | - Jennifer Baccon
- Department of Pathology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
- Department of Pathology and Laboratory Medicine, Akron Children’s Hospital, Akron, OH 44308
| | - Amanda M. Snyder
- Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
| | - Ben Murie
- Department of Pathology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
| | - Felicia Cooper
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
| | - Christopher Sica
- Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
| | - Richard B. Mailman
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
- Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
| | - James R. Connor
- Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
- Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
- Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
- Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
- Department of Kinesiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey PA 17033
| |
Collapse
|
35
|
Abstract
The development of an intervention to slow or halt disease progression remains the greatest unmet therapeutic need in Parkinson's disease. Given the number of failures of various novel interventions in disease-modifying clinical trials in combination with the ever-increasing costs and lengthy processes for drug development, attention is being turned to utilizing existing compounds approved for other indications as novel treatments in Parkinson's disease. Advances in rational and systemic drug repurposing have identified a number of drugs with potential benefits for Parkinson's disease pathology and offer a potentially quicker route to drug discovery. Here, we review the safety and potential efficacy of the most promising candidates repurposed as potential disease-modifying treatments for Parkinson's disease in the advanced stages of clinical testing.
Collapse
Affiliation(s)
- Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
36
|
Pritchard C, Silk A. Patient’s occupation, electric & head trauma in a cohort of 88 multiple system atrophy patients compared with the general population: a hypothesis stimulating pilot study. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/jnsk.2018.08.00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
You L, Wang J, Liu T, Zhang Y, Han X, Wang T, Guo S, Dong T, Xu J, Anderson GJ, Liu Q, Chang YZ, Lou X, Nie G. Targeted Brain Delivery of Rabies Virus Glycoprotein 29-Modified Deferoxamine-Loaded Nanoparticles Reverses Functional Deficits in Parkinsonian Mice. ACS NANO 2018; 12:4123-4139. [PMID: 29617109 DOI: 10.1021/acsnano.7b08172] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Excess iron deposition in the brain often causes oxidative stress-related damage and necrosis of dopaminergic neurons in the substantia nigra and has been reported to be one of the major vulnerability factors in Parkinson's disease (PD). Iron chelation therapy using deferoxamine (DFO) may inhibit this nigrostriatal degeneration and prevent the progress of PD. However, DFO shows very short half-life in vivo and hardly penetrates the blood brain barrier (BBB). Hence, it is of great interest to develop DFO formulations for safe and efficient intracerebral drug delivery. Herein, we report a polymeric nanoparticle system modified with brain-targeting peptide rabies virus glycoprotein (RVG) 29 that can intracerebrally deliver DFO. The nanoparticle system penetrates the BBB possibly through specific receptor-mediated endocytosis triggered by the RVG29 peptide. Administration of these nanoparticles significantly decreased iron content and oxidative stress levels in the substantia nigra and striatum of PD mice and effectively reduced their dopaminergic neuron damage and as reversed their neurobehavioral deficits, without causing any overt adverse effects in the brain or other organs. This DFO-based nanoformulation holds great promise for delivery of DFO into the brain and for realizing iron chelation therapy in PD treatment.
Collapse
Affiliation(s)
- Linhao You
- Laboratory of Molecular Iron Metabolism, College of Life Science , Hebei Normal University , Shijiazhuang , Hebei Province 050024 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute , PO Royal Brisbane Hospital , Brisbane , QLD 4029 , Australia
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- College of Pharmaceutical Science , Jilin University , Changchun 130021 , China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ting Wang
- Department of Radiology , The People's Liberation Army General Hospital , No. 28 Fuxing Road , Beijing 100853 , China
| | - Shanshan Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tianyu Dong
- Laboratory of Molecular Iron Metabolism, College of Life Science , Hebei Normal University , Shijiazhuang , Hebei Province 050024 , China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute , PO Royal Brisbane Hospital , Brisbane , QLD 4029 , Australia
| | - Qiang Liu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences , University of Science and Technology of China , Hefei 230026 , China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science , Hebei Normal University , Shijiazhuang , Hebei Province 050024 , China
| | - Xin Lou
- Department of Radiology , The People's Liberation Army General Hospital , No. 28 Fuxing Road , Beijing 100853 , China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
38
|
Zhou XX, Li XH, Chen DB, Wu C, Feng L, Chu JP, Yang ZY, Li XB, Qin H, Li GD, Huang HW, Liang YY, Liang XL. The asymmetry of neural symptoms in Wilson's disease patients detecting by diffusion tensor imaging, resting-state functional MRI, and susceptibility-weighted imaging. Brain Behav 2018; 8:e00930. [PMID: 29761003 PMCID: PMC5943770 DOI: 10.1002/brb3.930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/25/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the cause of the motor asymmetry in Wilson's disease (WD) patients using functional MRI. METHODS Fifty patients with WD and 20 age-matched healthy controls were enrolled. Neurological symptoms were scored using the modified Young Scale. All study subjects underwent diffusion tensor imaging (DTI), susceptibility-weighted imaging (SWI), and resting-state functional MRI (rs-fMRI) of the brain. Six regions of interest (ROI) were chosen. Fiber volumes between ROIs on DTI, corrected phase (CP) values on SWI, amplitude of low-frequency fluctuation (ALFF), and regional homogeneity (REHO) values on rs-fMRI were determined. Asymmetry index (right or left value/left or right value) was evaluated. RESULTS Asymmetry of rigidity, tremor, choreic movement, and gait abnormality (asymmetry index = 1.33, 1.39, 1.36, 1.40), fiber tracts between the GP and substantia nigra (SN), GP and PU, SN and thalamus (TH), SN and cerebellum, head of the caudate nucleus (CA) and SN, PU and CA, CA and TH, TH and cerebellum (asymmetry index = 1.233, 1.260, 1.269, 1.437, 1.503, 1.138, 1.145, 1.279), CP values in the TH, SN (asymmetry index = 1.327, 1.166), ALFF values, and REHO values of the TH (asymmetry index = 1.192, 1.233) were found. Positive correlation between asymmetry index of rigidity and fiber volumes between the GP and SN, SN and TH (r = .221, .133, p = .043, .036), and tremor and fiber volumes between the CA and TH (r = .045, p = .040) was found. CONCLUSIONS The neurological symptoms of patients with WD were asymmetry. The asymmetry of fiber projections may be the main cause of motor asymmetry in patients with WD.
Collapse
Affiliation(s)
- Xiang-Xue Zhou
- Department of Neurology The East Area of the First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Xun-Hua Li
- Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Ding-Bang Chen
- Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Chao Wu
- Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Li Feng
- Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Jian-Ping Chu
- Department of Radiology The First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Zhi-Yun Yang
- Department of Radiology The First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Xin-Bei Li
- Department of Radiology The First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Haolin Qin
- Department of Radiology The East Area of the First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Gui-Dian Li
- Department of Radiology The East Area of the First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Hai-Wei Huang
- Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Ying-Ying Liang
- Department of Neurology The East Area of the First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| | - Xiu-Ling Liang
- Department of Neurology The First Affiliated Hospital Sun Yat-Sen University Guangzhou China
| |
Collapse
|
39
|
Kaindlstorfer C, Jellinger KA, Eschlböck S, Stefanova N, Weiss G, Wenning GK. The Relevance of Iron in the Pathogenesis of Multiple System Atrophy: A Viewpoint. J Alzheimers Dis 2018; 61:1253-1273. [PMID: 29376857 PMCID: PMC5798525 DOI: 10.3233/jad-170601] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/16/2022]
Abstract
Iron is essential for cellular development and maintenance of multiple physiological processes in the central nervous system. The disturbance of its homeostasis leads to abnormal iron deposition in the brain and causes neurotoxicity via generation of free radicals and oxidative stress. Iron toxicity has been established in the pathogenesis of Parkinson's disease; however, its contribution to multiple system atrophy (MSA) remains elusive. MSA is characterized by cytoplasmic inclusions of misfolded α-synuclein (α-SYN) in oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). Remarkably, the oligodendrocytes possess high amounts of iron, which together with GCI pathology make a contribution toward MSA pathogenesis likely. Consistent with this observation, the GCI density is associated with neurodegeneration in central autonomic networks as well as olivopontocerebellar and striatonigral pathways. Iron converts native α-SYN into a β-sheet conformation and promotes its aggregation either directly or via increasing levels of oxidative stress. Interestingly, α-SYN possesses ferrireductase activity and α-SYN expression underlies iron mediated translational control via RNA stem loop structures. Despite a correlation between progressive putaminal atrophy and iron accumulation as well as clinical decline, it remains unclear whether pathologic iron accumulation in MSA is a secondary event in the cascade of neuronal degeneration rather than a primary cause. This review summarizes the current knowledge of iron in MSA and gives evidence for perturbed iron homeostasis as a potential pathogenic factor in MSA-associated neurodegeneration.
Collapse
Affiliation(s)
| | | | - Sabine Eschlböck
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
40
|
Sugiyama A, Sato N, Kimura Y, Ota M, Maekawa T, Sone D, Enokizono M, Murata M, Matsuda H, Kuwabara S. MR findings in the substantia nigra on phase difference enhanced imaging in neurodegenerative parkinsonism. Parkinsonism Relat Disord 2017; 48:10-16. [PMID: 29279191 DOI: 10.1016/j.parkreldis.2017.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In Parkinson's disease (PD) patients, magnetic resonance (MR) imaging studies using phase difference enhanced imaging (PADRE) and susceptibility-weighted imaging (SWI) showed the obscuration of the boundary between the crural fibers and substantia nigra, and the absence of dorsolateral nigral hyperintensity, respectively. PADRE images have not been evaluated in other types of neurodegenerative parkinsonism, and PADRE and SWI images have not been compared. Here we evaluated PADRE and SWI images in patients with progressive supranuclear palsy (PSP), multiple system atrophy (MSA), or PD and controls, and we compared the diagnostic values. METHODS PADRE and SWI-like MR images were visually assessed focusing on the substantia nigra in 39 PD patients, eight with PSP, 13 with MSA, and 34 normal controls. RESULTS The obscuration of the boundary between the crural fibers and substantia nigra on PADRE was observed in: the PD group, 62%; PSP, 100%; MSA, 60%, and controls, 19%. The overall collect classification for neurodegenerative parkinsonism was 74%. The absence of dorsolateral nigral hyperintensity on SWI-like images was present in: PD, 97%; PSP, 100%; MSA, 67%; and controls, 6%, resulting in the overall correct classification of 96%. CONCLUSIONS The MR feature on PADRE was observed not only in PD but also in other neurodegenerative parkinsonism, especially in PSP with high sensitivity. The finding in substantia nigra on SWI had greater discrimination power than that of PADRE in neurodegenerative parkinsonism, especially in PD.
Collapse
Affiliation(s)
- Atsuhiko Sugiyama
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoko Maekawa
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mikako Enokizono
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Murata
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Matsuda
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
41
|
Heim B, Krismer F, De Marzi R, Seppi K. Magnetic resonance imaging for the diagnosis of Parkinson's disease. J Neural Transm (Vienna) 2017; 124:915-964. [PMID: 28378231 PMCID: PMC5514207 DOI: 10.1007/s00702-017-1717-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
The differential diagnosis of parkinsonian syndromes is considered one of the most challenging in neurology and error rates in the clinical diagnosis can be high even at specialized centres. Despite several limitations, magnetic resonance imaging (MRI) has undoubtedly enhanced the diagnostic accuracy in the differential diagnosis of neurodegenerative parkinsonism over the last three decades. This review aims to summarize research findings regarding the value of the different MRI techniques, including advanced sequences at high- and ultra-high-field MRI and modern image analysis algorithms, in the diagnostic work-up of Parkinson's disease. This includes not only the exclusion of alternative diagnoses for Parkinson's disease such as symptomatic parkinsonism and atypical parkinsonism, but also the diagnosis of early, new onset, and even prodromal Parkinson's disease.
Collapse
Affiliation(s)
- Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
| | - Roberto De Marzi
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
42
|
Ito K, Ohtsuka C, Yoshioka K, Kameda H, Yokosawa S, Sato R, Terayama Y, Sasaki M. Differential diagnosis of parkinsonism by a combined use of diffusion kurtosis imaging and quantitative susceptibility mapping. Neuroradiology 2017; 59:759-769. [PMID: 28689259 DOI: 10.1007/s00234-017-1870-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/16/2017] [Indexed: 01/23/2023]
Abstract
PURPOSE We investigated whether diffusion kurtosis imaging (DKI) and quantitative susceptibility mapping (QSM) could detect pathological changes that occur in Parkinson's disease (PD), multiple system atrophy with predominant parkinsonism (MSA-P) or predominant cerebellar ataxia (MSA-C), and progressive supranuclear palsy syndrome (PSPS) and thus be used for differential diagnosis that is often difficult. METHODS Seventy patients (41 with PD, 6 with MSA-P, 7 with MSA-C, 16 with PSPS) and 20 healthy controls were examined using a 3.0 T MRI scanner. From DKI and QSM data, we automatically obtained mean kurtosis (MK), fractional anisotropy (FA), and mean diffusivity (MD) values of the midbrain tegmentum (MBT), pontine crossing tract (PCT), and superior/middle cerebellar peduncles (CPs), which were used to calculate diffusion MBT/PCT ratios (dMPRs) and diffusion superior/middle CP ratios (dCPRs), as well as MS (magnetic susceptibility) values of the anterior/posterior putamen (PUa and PUp) and globus pallidus (GP). RESULTS dMPRs of MK were significantly decreased in PSPS and increased in MSA-C compared with the other groups, while dCPRs of MK showed significant differences only between MSA-C and PD, PSPS, or control. MS values were significantly increased in the PUp of MSA-P and in the PUa and GP of PSPS compared with those in PD. The combined use of MK-dMPR and MS-PUp showed sensitivities of 83-100% and specificities of 81-100% for discriminating among the disease groups, respectively. CONCLUSION A quantitative assessment using DKI and QSM analyses, particularly MK-dMPR and MS-PUp values, can readily identify patients with parkinsonism.
Collapse
Affiliation(s)
- Kenji Ito
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate, 028-3694, Japan.
| | - Chigumi Ohtsuka
- Department of Neurology and Gerontology, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, Japan
| | - Kunihiro Yoshioka
- Department of Radiology, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, Japan
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-ku, Sapporo, Hokkaido, Japan
| | - Suguru Yokosawa
- Research & Development Group, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo, Japan
| | - Ryota Sato
- Research & Development Group, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji, Tokyo, Japan
| | - Yasuo Terayama
- Department of Neurology and Gerontology, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate, 028-3694, Japan
| |
Collapse
|
43
|
Whitwell JL, Höglinger GU, Antonini A, Bordelon Y, Boxer AL, Colosimo C, van Eimeren T, Golbe LI, Kassubek J, Kurz C, Litvan I, Pantelyat A, Rabinovici G, Respondek G, Rominger A, Rowe JB, Stamelou M, Josephs KA. Radiological biomarkers for diagnosis in PSP: Where are we and where do we need to be? Mov Disord 2017; 32:955-971. [PMID: 28500751 PMCID: PMC5511762 DOI: 10.1002/mds.27038] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
PSP is a pathologically defined neurodegenerative tauopathy with a variety of clinical presentations including typical Richardson's syndrome and other variant PSP syndromes. A large body of neuroimaging research has been conducted over the past two decades, with many studies proposing different structural MRI and molecular PET/SPECT biomarkers for PSP. These include measures of brainstem, cortical and striatal atrophy, diffusion weighted and diffusion tensor imaging abnormalities, [18F] fluorodeoxyglucose PET hypometabolism, reductions in striatal dopamine imaging and, most recently, PET imaging with ligands that bind to tau. Our aim was to critically evaluate the degree to which structural and molecular neuroimaging metrics fulfill criteria for diagnostic biomarkers of PSP. We queried the PubMed, Cochrane, Medline, and PSYCInfo databases for original research articles published in English over the past 20 years using postmortem diagnosis or the NINDS-SPSP criteria as the diagnostic standard from 1996 to 2016. We define a five-level theoretical construct for the utility of neuroimaging biomarkers in PSP, with level 1 representing group-level findings, level 2 representing biomarkers with demonstrable individual-level diagnostic utility, level 3 representing biomarkers for early disease, level 4 representing surrogate biomarkers of PSP pathology, and level 5 representing definitive PSP biomarkers of PSP pathology. We discuss the degree to which each of the currently available biomarkers fit into this theoretical construct, consider the role of biomarkers in the diagnosis of Richardson's syndrome, variant PSP syndromes and autopsy confirmed PSP, and emphasize current shortfalls in the field. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Günter U. Höglinger
- Department of Neurology, Technische Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
| | - Angelo Antonini
- Parkinson and Movement Disorder Unit, IRCCS Hospital San Camillo, Venice and Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, CA, USA
| | - Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Thilo van Eimeren
- German Center for Neurodegenerative Diseases (DZNE), Germany
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Lawrence I. Golbe
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Carolin Kurz
- Psychiatrische Klinik, Ludwigs-Maximilians-Universität, München, Germany
| | - Irene Litvan
- Department of Neurology, University of California, San Diego, CA, USA
| | | | - Gil Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Gesine Respondek
- Department of Neurology, Technische Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Germany
| | - Axel Rominger
- Deptartment of Nuclear Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - James B. Rowe
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
| | - Maria Stamelou
- Second Department of Neurology, Attikon University Hospital, University of Athens, Greece; Philipps University, Marburg, Germany; Movement Disorders Dept., HYGEIA Hospital, Athens, Greece
| | | |
Collapse
|
44
|
Martin-Bastida A, Ward RJ, Newbould R, Piccini P, Sharp D, Kabba C, Patel MC, Spino M, Connelly J, Tricta F, Crichton RR, Dexter DT. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson's disease. Sci Rep 2017; 7:1398. [PMID: 28469157 PMCID: PMC5431100 DOI: 10.1038/s41598-017-01402-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is associated with increased iron levels in the substantia nigra (SNc). This study evaluated whether the iron chelator, deferiprone, is well tolerated, able to chelate iron from various brain regions and improve PD symptomology. In a randomised double-blind, placebo controlled trial, 22 early onset PD patients, were administered deferiprone, 10 or 15 mg/kg BID or placebo, for 6 months. Patients were evaluated for PD severity, cognitive function, depression rating and quality of life. Iron concentrations were assessed in the substantia nigra (SNc), dentate and caudate nucleus, red nucleus, putamen and globus pallidus by T2* MRI at baseline and after 3 and 6 months of treatment. Deferiprone therapy was well tolerated and was associated with a reduced dentate and caudate nucleus iron content compared to placebo. Reductions in iron content of the SNc occurred in only 3 patients, with no changes being detected in the putamen or globus pallidus. Although 30 mg/kg deferiprone treated patients showed a trend for improvement in motor-UPDRS scores and quality of life, this did not reach significance. Cognitive function and mood were not adversely affected by deferiprone therapy. Such data supports more extensive clinical trials into the potential benefits of iron chelation in PD.
Collapse
Affiliation(s)
- Antonio Martin-Bastida
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Roberta J Ward
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.,Universite Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Rexford Newbould
- Imanova Ltd, Burlington Danes Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Paola Piccini
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - David Sharp
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Christina Kabba
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Maneesh C Patel
- Imaging Department, Charing Cross Hospital, Imperial College NHS Trust, Fulham Palace Road, London, W6 8RF, UK
| | - Michael Spino
- ApoPharma Inc. 200 Barmac Drive, Toronto, Ontario, M9L 2Z7, Canada
| | - John Connelly
- ApoPharma Inc. 200 Barmac Drive, Toronto, Ontario, M9L 2Z7, Canada
| | - Fernando Tricta
- ApoPharma Inc. 200 Barmac Drive, Toronto, Ontario, M9L 2Z7, Canada
| | | | - David T Dexter
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
45
|
Bacchi S, Chim I, Patel S. Specificity and sensitivity of magnetic resonance imaging findings in the diagnosis of progressive supranuclear palsy. J Med Imaging Radiat Oncol 2017; 62:21-31. [DOI: 10.1111/1754-9485.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 03/11/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Stephen Bacchi
- University of Adelaide; Adelaide South Australia Australia
| | - Ivana Chim
- University of Adelaide; Adelaide South Australia Australia
| | - Sandy Patel
- Royal Adelaide Hospital; Adelaide South Australia Australia
| |
Collapse
|
46
|
Santin MD, Didier M, Valabrègue R, Yahia Cherif L, García-Lorenzo D, Loureiro de Sousa P, Bardinet E, Lehéricy S. Reproducibility of R 2 * and quantitative susceptibility mapping (QSM) reconstruction methods in the basal ganglia of healthy subjects. NMR IN BIOMEDICINE 2017; 30:e3491. [PMID: 26913373 DOI: 10.1002/nbm.3491] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/15/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
The basal ganglia are key structures for motor, cognitive and behavioral functions. They undergo several changes with aging and disease, such as Parkinson's or Huntington's disease, for example. Iron accumulation in basal ganglia is often related to these diseases, which is conventionally monitored by the transverse relaxation rate (R2 *). Quantitative susceptibility mapping (QSM) is a novel contrast mechanism in MRI produced by adding information taken from the phase of the MR signal to its magnitude. It has been shown to be more sensitive to subtle changes in Parkinson's disease. In order to be applied widely to various pathologies, its reproducibility must be evaluated in order to assess intra-subject variability and to disseminate into clinical and pharmaceutical studies. In this work, we studied the reproducibility and sensitivity of several QSM techniques. Fourteen subjects were scanned four times, and QSM and R2 * images were reconstructed and registered. An atlas of the basal ganglia was used to automatically define regions of interest. We found that QSM measurements are indeed reproducible in the basal ganglia of healthy subjects and can be widely used as a replacement for R2 * mapping in iron-rich regions. This reproducibility study could lead to several lines of research in relaxometry and susceptibility measurements, in vivo iron load evaluation as well as pharmacological assessment and biomarker development. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M D Santin
- CENIR, Centre de NeuroImagerie de Recherche, Paris, France
- ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - M Didier
- CENIR, Centre de NeuroImagerie de Recherche, Paris, France
- ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - R Valabrègue
- CENIR, Centre de NeuroImagerie de Recherche, Paris, France
- ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - L Yahia Cherif
- CENIR, Centre de NeuroImagerie de Recherche, Paris, France
- ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - D García-Lorenzo
- CENIR, Centre de NeuroImagerie de Recherche, Paris, France
- ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | | | - E Bardinet
- CENIR, Centre de NeuroImagerie de Recherche, Paris, France
- ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - S Lehéricy
- CENIR, Centre de NeuroImagerie de Recherche, Paris, France
- ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| |
Collapse
|
47
|
Using ‘swallow-tail’ sign and putaminal hypointensity as biomarkers to distinguish multiple system atrophy from idiopathic Parkinson’s disease: A susceptibility-weighted imaging study. Eur Radiol 2017; 27:3174-3180. [DOI: 10.1007/s00330-017-4743-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022]
|
48
|
Acosta-Cabronero J, Cardenas-Blanco A, Betts MJ, Butryn M, Valdes-Herrera JP, Galazky I, Nestor PJ. The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease. Brain 2016; 140:118-131. [PMID: 27836833 DOI: 10.1093/brain/aww278] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 12/13/2022] Open
Abstract
Although iron-mediated oxidative stress has been proposed as a potential pathomechanism in Parkinson's disease, the global distribution of iron accumulation in Parkinson's disease has not yet been elucidated. This study used a new magnetic resonance imaging contrast, quantitative susceptibility mapping, and state-of-the-art methods to map for the first time the whole-brain landscape of magnetostatic alterations as a surrogate for iron level changes in n = 25 patients with idiopathic Parkinson's disease versus n = 50 matched controls. In addition to whole-brain analysis, a regional study including sub-segmentation of the substantia nigra into dorsal and ventral regions and qualitative assessment of susceptibility maps in single subjects were also performed. The most remarkable basal ganglia effect was an apparent magnetic susceptibility increase-consistent with iron deposition-in the dorsal substantia nigra, though an effect was also observed in ventral regions. Increased bulk susceptibility, additionally, was detected in rostral pontine areas and in a cortical pattern tightly concordant with known Parkinson's disease distributions of α-synuclein pathology. In contrast, the normally iron-rich cerebellar dentate nucleus returned a susceptibility reduction suggesting decreased iron content. These results are in agreement with previous post-mortem studies in which iron content was evaluated in specific regions of interest; however, extensive neocortical and cerebellar changes constitute a far more complex pattern of iron dysregulation than was anticipated. Such findings also stand in stark contrast to the lack of statistically significant group change using conventional magnetic resonance imaging methods namely voxel-based morphometry, cortical thickness analysis, subcortical volumetry and tract-based diffusion tensor analysis; confirming the potential of whole-brain quantitative susceptibility mapping as an in vivo biomarker in Parkinson's disease.
Collapse
Affiliation(s)
- Julio Acosta-Cabronero
- 1 German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Arturo Cardenas-Blanco
- 1 German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Matthew J Betts
- 1 German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Michaela Butryn
- 2 Department of Neurology, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jose P Valdes-Herrera
- 1 German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Imke Galazky
- 2 Department of Neurology, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Peter J Nestor
- 1 German Center for Neurodegenerative Diseases (DZNE), Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
49
|
Wang JY, Zhuang QQ, Zhu LB, Zhu H, Li T, Li R, Chen SF, Huang CP, Zhang X, Zhu JH. Meta-analysis of brain iron levels of Parkinson's disease patients determined by postmortem and MRI measurements. Sci Rep 2016; 6:36669. [PMID: 27827408 PMCID: PMC5101491 DOI: 10.1038/srep36669] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
Brain iron levels in patients of Parkinson's disease (PD) are usually measured in postmortem samples or by MRI imaging including R2* and SWI. In this study we performed a meta-analysis to understand PD-associated iron changes in various brain regions, and to evaluate the accuracy of MRI detections comparing with postmortem results. Databases including Medline, Web of Science, CENTRAL and Embase were searched up to 19th November 2015. Ten brain regions were identified for analysis based on data extracted from thirty-three-articles. An increase in iron levels in substantia nigra of PD patients by postmortem, R2* or SWI measurements was observed. The postmortem and SWI measurements also suggested significant iron accumulation in putamen. Increased iron deposition was found in red nucleus as determined by both R2* and SWI, whereas no data were available in postmortem samples. Based on SWI, iron levels were increased significantly in the nucleus caudatus and globus pallidus. Of note, the analysis might be biased towards advanced disease and that the precise stage at which regions become involved could not be ascertained. Our analysis provides an overview of iron deposition in multiple brain regions of PD patients, and a comparison of outcomes from different methods detecting levels of iron.
Collapse
Affiliation(s)
- Jian-Yong Wang
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qing-Qing Zhuang
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lan-Bing Zhu
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hui Zhu
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ting Li
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Rui Li
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Song-Fang Chen
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chen-Ping Huang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiong Zhang
- Department of Neurology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jian-Hong Zhu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
50
|
Wang Z, Luo XG, Gao C. Utility of susceptibility-weighted imaging in Parkinson's disease and atypical Parkinsonian disorders. Transl Neurodegener 2016; 5:17. [PMID: 27761236 PMCID: PMC5054585 DOI: 10.1186/s40035-016-0064-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/29/2016] [Indexed: 01/14/2023] Open
Abstract
In the clinic, the diagnosis of Parkinson's disease (PD) largely depends on clinicians' experience. When the diagnosis is made, approximately 80% of dopaminergic cells in the substantia nigra (SN) have been lost. Additionally, it is rather challenging to differentiate PD from atypical parkinsonian disorders (APD). Clinially-available 3T conventional MRI contributes little to solve these problems. The pathologic alterations of parkinsonism show abnormal brain iron deposition, and therefore susceptibility-weighted imaging (SWI), which is sensitive to iron concentration, has been applied to find iron-related lesions for the diagnosis and differentiation of PD in recent decades. Until now, the majority of research has revealed that in SWI the signal intensity changes in deep brain nuclei, such as the SN, the putamen (PUT), the globus pallidus (GP), the thalamus (TH), the red nucleus (RN) and the caudate nucleus (CN), thereby raising the possibility of early diagnosis and differentiation. Furthermore, the signal changes in SN, PUT and TH sub-regions may settle the issues with higher accuracy. In this article, we review the brain iron deposition of PD, MSA-P and PSP in SWI in the hope of exhibiting a profile of SWI features in PD, MSA and PSP and its clinical values.
Collapse
Affiliation(s)
- Zhibin Wang
- Neurology Department, The First Affiliated Hospital of China Medical University, 155# Nanjing Bei Street Heping District, Shenyang, 110001 People's Republic of China
| | - Xiao-Guang Luo
- Neurology Department, The First Affiliated Hospital of China Medical University, 155# Nanjing Bei Street Heping District, Shenyang, 110001 People's Republic of China
| | - Chao Gao
- Neurology Department, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin 2nd Road 197, Shanghai, 200025 People's Republic of China
| |
Collapse
|