1
|
Tumpa S, Thornton R, Tisdall MM, Baldeweg T, Friston KJ, Rosch RE. Interictal discharges spread along local recurrent networks between tubers and surrounding cortex. J Physiol 2025; 603:2425-2441. [PMID: 40096620 PMCID: PMC12013798 DOI: 10.1113/jp288141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
The presence of interictal epileptiform discharges on EEG may indicate increased epileptic seizure risk. In highly epileptogenic lesions, such as cortical tubers in tuberous sclerosis, these discharges can be recorded with intracranial stereotactic EEG as part of the evaluation for epilepsy surgery. Yet the network mechanisms that underwrite the generation and spread of these discharges remain poorly understood. Here, we investigate the dynamics of interictal epileptiform discharges using a combination of quantitative analysis of invasive EEG recordings and mesoscale neural mass modelling of cortical dynamics. We first characterise spatially organised local dynamics of discharges recorded from 36 separate tubers in eight patients with tuberous sclerosis. We characterise these dynamics with a set of competing explanatory network models using dynamic causal modelling. Bayesian model comparison of plausible network architectures suggests that the recurrent coupling between neuronal populations within, as well as adjacent to, the tuber core explains the travelling wave dynamics observed in these patient recordings. Our results indicate that tuber cores are the spatial sources of interictal discharges that behave like travelling waves with dynamics most probably explained by locally recurrent tuber-perituberal networks. This view integrates competing theories regarding the pathological organisation of epileptic foci and surrounding cortex in patients with tuberous sclerosis by through coupled oscillator dynamics. This recurrent coupling can explain the spread of ictal dynamics and also provide an explanation interictal discharge spread. In the future, we will explore the possible implications of our findings for epilepsy surgery approaches in tuberous sclerosis. KEY POINTS: Interictal epileptiform discharges (IEDs) are abnormal electrical patterns observed in the brains of people with epilepsy and may indicate seizure risk. In tuberous sclerosis, a condition causing epileptic lesions called cortical tubers, IEDs spread from the tuber core to surrounding brain tissue, forming travelling waves. This study used invasive EEG recordings and mathematical models to identify that recurrent connections between the tuber core and its surroundings explain this wave-like spread. Further in silico simulations demonstrate that this recurrent network architecture supports both interictal discharges and seizure-like dynamics under different levels of local inhibition.
Collapse
Affiliation(s)
- Stasa Tumpa
- Wellcome Trust Centre for Neuroimaging, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Rachel Thornton
- Department of Clinical NeurophysiologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Martin M. Tisdall
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of NeurosurgeryGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Torsten Baldeweg
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Karl J. Friston
- Wellcome Trust Centre for Neuroimaging, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Richard E. Rosch
- Wellcome Trust Centre for Neuroimaging, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department for Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and NeursocienceKing's College LondonLondonUK
| |
Collapse
|
2
|
Chang BL, Walker MC, Kullmann DM, Schorge S. Deciphering temporal gene expression dynamics during epilepsy development using a rat model of focal neocortical epilepsy. Epilepsia 2025; 66:288-302. [PMID: 39526997 DOI: 10.1111/epi.18169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Epilepsy involves significant changes in neural cells during epileptogenesis. Although the molecular mechanism of epileptogenesis remains obscure, changes in gene regulation play a crucial role in the evolution of epilepsy. This study aimed to compare changes in a subset of specific genes during epilepsy development, focusing on the period after the first spontaneous seizure, to identify critical time windows for targeting different regulators. METHODS Using a rat model of acquired focal neocortical epilepsy induced by tetanus toxin, we characterized gene expression at acute, subacute, and chronic stages (48-72 h, 2 weeks, and 30 days after first spontaneous seizure, respectively), focusing on genes' potential contribution to epilepsy progression. RESULTS We observed dynamic changes in the expression of these genes throughout the period after the first spontaneous seizure. Astrocytic reactions primarily occur early, before epilepsy is well established. Changes in Mtor (mammalian target of rapamycin) and Rest (repressor element 1 silencing transcription factor) signaling pathways are highly dynamic and correlated with the progression of epilepsy development. Ccl2 (chemokine C-C-motif ligand) is upregulated at the chronic stage, indicating activation of the neuroinflammatory pathway. Finally, Gabra5 (γ-aminobutyric acidergic signaling) is downregulated at the late stage after epilepsy is established. Surprisingly, changes in the expression of specific genes are linked to the time since the first seizure, rather than seizure frequency or duration. SIGNIFICANCE These results suggest that the regulation of specific genes is essentially stage-dependent during the development of epilepsy, highlighting the importance of targeting specific genes at appropriate stages of epilepsy development.
Collapse
Grants
- MOST 110-2314-B-182-055 Ministry of Science and Technology, Taiwan
- CMRPG3P0131 Chang Gung Memorial Hospital, Taipei, Taiwan
- MOST 108-2314-B-182A-153 Ministry of Science and Technology, Taiwan
- MR/W005204/1 Medical Research Council
- CMRPG3K1021 Chang Gung Memorial Hospital, Taipei, Taiwan
- MR/L01095X/1 Medical Research Council
- MOST 109-2314-B-182-079 Ministry of Science and Technology, Taiwan
- MOST 109-2314-B-182A-086 Ministry of Science and Technology, Taiwan
- CMRPG3L0661-2 Chang Gung Memorial Hospital, Taipei, Taiwan
- CMRPG3M1991-2 Chang Gung Memorial Hospital, Taipei, Taiwan
- 212285/Z/18/Z Wellcome Trust
- MR/V013556/1 Medical Research Council
- WT093205MA Wellcome Trust, Epilepsy Research UK
- MR/V034758/1 Medical Research Council
Collapse
Affiliation(s)
- Bao-Luen Chang
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| |
Collapse
|
3
|
Hinojosa J, Becerra V, Candela-Cantó S, Alamar M, Culebras D, Valencia C, Valera C, Rumiá J, Muchart J, Aparicio J. Extra-temporal pediatric low-grade gliomas and epilepsy. Childs Nerv Syst 2024; 40:3309-3327. [PMID: 39191974 DOI: 10.1007/s00381-024-06573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Low-grade gliomas, especially glioneuronal tumors, are a common cause of epilepsy in children. Seizures associated with low-grade pediatric tumors are medically refractory and present a significant burden to patients. Often, morbidity and patients´ quality of life are determined rather by the control of seizures than the oncological process itself and the resolution of epilepsy represents an important part in the treatment of LGGs. The pathogenesis of tumor-related seizures in focal LGG tumors is multifactorial, and mechanisms differ probably among patients and tumor types. Pediatric low-grade tumors associated with epilepsy include a series of neoplasms that have a pure astrocytic or glioneuronal lineage. They are usually benign tumors with a neocortical localization typically in the temporal lobes, but also in other supratentorial locations. Gangliogliomas and dysembryoplastic neuroepithelial tumors (DNET) are the most common entities together with astrocytic gliomas (pilocytic astrocytomas and pleomorphic xanthoastrocytoma) and angiocentric gliomas, and dual pathology is found in up to 40% of glioneuronal tumors. The treatment of low-grade gliomas and associated epilepsy is based mainly on resection and the extent of surgery is the main predictor of postoperative seizure control in patients with a LGG. Long-term epilepsy-associated tumors (LEATs) tend to be well-circumscribed, and therefore, the chances for a complete resection and epilepsy control with a safe approach are very high. New treatments have emerged as alternatives to open microsurgical approaches, including laser thermal ablation or the use of BRAF inhibitors. Future advances in identifying seizure-related biomarkers and molecular tumor pathways will facilitate targeted treatment strategies that will have a deep impact both in oncologic and epilepsy outcomes.
Collapse
Affiliation(s)
- José Hinojosa
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain.
| | - Victoria Becerra
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Santiago Candela-Cantó
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Mariana Alamar
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Diego Culebras
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valencia
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Carlos Valera
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Rumiá
- Department of Neurosurgery, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic Barcelona, C. de Villarroel, 170 08036, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Jordi Muchart
- Department of Neuroradiology, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| | - Javier Aparicio
- Unit for Epilepsy Surgery, Member of ERN-EpiCARE, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950, Barcelona, Spain
| |
Collapse
|
4
|
Pais ML, Martins J, Castelo‐Branco M, Gonçalves J. Increased susceptibility to kainate-induced seizures in a mouse model of tuberous sclerosis complex: Importance of sex and circadian cycle. Epilepsia Open 2024; 9:1710-1722. [PMID: 39010669 PMCID: PMC11450656 DOI: 10.1002/epi4.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE Comorbidity of epilepsy and autism in tuberous sclerosis complex 2 (TSC2) is very frequent, but the link between these conditions is still poorly understood. To study neurological problems related to autism, the scientific community has been using an animal model of TSC2, Tsc2+/- mice. However, it is still unknown whether this model has the propensity to exhibit increased seizure susceptibility. Further, the importance of sex and/or the circadian cycle in this biological process has never been addressed. This research aimed to determine whether male and female Tsc2+/- mice have altered seizure susceptibility at light and dark phases. METHODS We assessed seizure susceptibility and progression in a Tsc2+/- mouse model using the chemical convulsant kainic acid (KA), a potent agonist of the AMPA/kainate class of glutamate receptors. Both male and female animals at adult age were evaluated during non-active and active periods. Seizure severity was determined by integrating individual scores per mouse according to a modified Racine scale. Locomotor behavior was monitored during control and after KA administration. RESULTS We found increased seizure susceptibility in Tsc2+/- mice with a significant influence of sex and circadian cycle on seizure onset, progression, and behavioral outcomes. While, compared to controls, Tsc2+/- males overall exhibited higher susceptibility independently of circadian cycle, Tsc2+/- females were more susceptible during the dark and post-ovulatory phase. Interestingly, sexual dimorphisms related to KA susceptibility were always reported during light phase independently of the genetic background, with females being the most vulnerable. SIGNIFICANCE The enhanced susceptibility in the Tsc2 mouse model suggests that other neurological alterations, beside brain lesions, may be involved in seizure occurrence for TSC. Importantly, our work highlighted the importance of considering biological sex and circadian cycle for further studies of TSC-related epilepsy research. PLAIN LANGUAGE SUMMARY Tuberous sclerosis complex (TSC) is a rare genetic disorder. It causes brain lesions and is linked to epilepsy, intellectual disability, and autism. We wanted to investigate epilepsy in this model. We found that these mice have more induced seizures than control animals. Our results show that these mice can be used in future epilepsy research for this disorder. We also found that sex and time of day can influence the results. This must be considered in this type of research.
Collapse
Affiliation(s)
- Mariana L. Pais
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
| | - Miguel Castelo‐Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), R. Santa CombaUniversity of CoimbraCoimbraPortugal
- Institute of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
5
|
Egido-Betancourt HX, Strowd III RE, Raab-Graham KF. Potential roles of voltage-gated ion channel disruption in Tuberous Sclerosis Complex. Front Mol Neurosci 2024; 17:1404884. [PMID: 39253727 PMCID: PMC11381416 DOI: 10.3389/fnmol.2024.1404884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 09/11/2024] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a lynchpin disorder, as it results in overactive mammalian target of rapamycin (mTOR) signaling, which has been implicated in a multitude of disease states. TSC is an autosomal dominant disease where 90% of affected individuals develop epilepsy. Epilepsy results from aberrant neuronal excitability that leads to recurring seizures. Under neurotypical conditions, the coordinated activity of voltage-gated ion channels keep neurons operating in an optimal range, thus providing network stability. Interestingly, loss or gain of function mutations in voltage-gated potassium, sodium, or calcium channels leads to altered excitability and seizures. To date, little is known about voltage-gated ion channel expression and function in TSC. However, data is beginning to emerge on how mTOR signaling regulates voltage-gated ion channel expression in neurons. Herein, we provide a comprehensive review of the literature describing common seizure types in patients with TSC, and suggest possible parallels between acquired epilepsies with known voltage-gated ion channel dysfunction. Furthermore, we discuss possible links toward mTOR regulation of voltage-gated ion channels expression and channel kinetics and the underlying epileptic manifestations in patients with TSC.
Collapse
Affiliation(s)
- Hailey X. Egido-Betancourt
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Roy E. Strowd III
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
6
|
Park KI. Understanding epileptogenesis from molecules to network alteration. ENCEPHALITIS 2024; 4:47-54. [PMID: 38886161 PMCID: PMC11237188 DOI: 10.47936/encephalitis.2024.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Epilepsy is characterized by recurrent seizures. Following an initial insult, a latent period precedes the onset of spontaneous seizures, a process referred to as epileptogenesis. This period plays a critical role in halting the progression toward epilepsy before the onset of abnormal molecular and network alterations. In this study, the fundamental concepts of epileptogenesis as well as the associated molecular and cellular targets are reviewed.
Collapse
Affiliation(s)
- Kyung-Il Park
- Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Wang Y, Niu W, Shi H, Bao X, Liu Y, Lu M, Sun Y. A novel variation in DEPDC5 causing familial focal epilepsy with variable foci. Front Genet 2024; 15:1414259. [PMID: 38974383 PMCID: PMC11227254 DOI: 10.3389/fgene.2024.1414259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Background Disheveled, EGL-10, and pleckstrin (DEP) domain-containing protein 5 (DEPDC5) is a component of GTPase-activating protein (GAP) activity toward the RAG complex 1 (GATOR1) protein, which is an inhibitor of the amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. GATOR1 complex variations were reported to correlate with familial focal epilepsy with variable foci (FFEVF). With the wide application of whole exome sequencing (WES), more and more variations in DEPDC5 were uncovered in FFEVF families. Methods A family with a proband diagnosed with familial focal epilepsy with variable foci (FFEVF) was involved in this study. Whole exome sequencing (WES) was performed in the proband, and Sanger sequencing was used to confirm the variation carrying status of the family members. Mini-gene splicing assay was performed to validate the effect on the alternative splicing of the variation. Results A novel variant, c.1217 + 2T>A, in DEPDC5 was identified by WES in the proband. This splicing variant that occurred at the 5' end of intron 17 was confirmed by mini-gene splicing assays, which impacted alternative splicing and led to the inclusion of an intron fragment. The analysis of the transcribed mRNA sequence indicates that the translation of the protein is terminated prematurely, which is very likely to result in the loss of function of the protein and lead to the occurrence of FFEVF. Conclusion The results suggest that c.1217 + 2T>A variations in DEPDC5 might be the genetic etiology for FFEVF in this pedigree. This finding expands the genotype spectrum of FFEVF and provides new etiological information for FFEVF.
Collapse
Affiliation(s)
- Yanchi Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Bao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yidong Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Manman Lu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Neumann AM, Britsch S. Molecular Genetics of Acquired Temporal Lobe Epilepsy. Biomolecules 2024; 14:669. [PMID: 38927072 PMCID: PMC11202058 DOI: 10.3390/biom14060669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
An epilepsy diagnosis reduces a patient's quality of life tremendously, and it is a fate shared by over 50 million people worldwide. Temporal lobe epilepsy (TLE) is largely considered a nongenetic or acquired form of epilepsy that develops in consequence of neuronal trauma by injury, malformations, inflammation, or a prolonged (febrile) seizure. Although extensive research has been conducted to understand the process of epileptogenesis, a therapeutic approach to stop its manifestation or to reliably cure the disease has yet to be developed. In this review, we briefly summarize the current literature predominately based on data from excitotoxic rodent models on the cellular events proposed to drive epileptogenesis and thoroughly discuss the major molecular pathways involved, with a focus on neurogenesis-related processes and transcription factors. Furthermore, recent investigations emphasized the role of the genetic background for the acquisition of epilepsy, including variants of neurodevelopmental genes. Mutations in associated transcription factors may have the potential to innately increase the vulnerability of the hippocampus to develop epilepsy following an injury-an emerging perspective on the epileptogenic process in acquired forms of epilepsy.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
9
|
Iyer SH, Yeh MY, Netzel L, Lindsey MG, Wallace M, Simeone KA, Simeone TA. Dietary and Metabolic Approaches for Treating Autism Spectrum Disorders, Affective Disorders and Cognitive Impairment Comorbid with Epilepsy: A Review of Clinical and Preclinical Evidence. Nutrients 2024; 16:553. [PMID: 38398876 PMCID: PMC10893388 DOI: 10.3390/nu16040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Epilepsy often occurs with other neurological disorders, such as autism, affective disorders, and cognitive impairment. Research indicates that many neurological disorders share a common pathophysiology of dysfunctional energy metabolism, neuroinflammation, oxidative stress, and gut dysbiosis. The past decade has witnessed a growing interest in the use of metabolic therapies for these disorders with or without the context of epilepsy. Over one hundred years ago, the high-fat, low-carbohydrate ketogenic diet (KD) was formulated as a treatment for epilepsy. For those who cannot tolerate the KD, other diets have been developed to provide similar seizure control, presumably through similar mechanisms. These include, but are not limited to, the medium-chain triglyceride diet, low glycemic index diet, and calorie restriction. In addition, dietary supplementation with ketone bodies, polyunsaturated fatty acids, or triheptanoin may also be beneficial. The proposed mechanisms through which these diets and supplements work to reduce neuronal hyperexcitability involve normalization of aberrant energy metabolism, dampening of inflammation, promotion of endogenous antioxidants, and reduction of gut dysbiosis. This raises the possibility that these dietary and metabolic therapies may not only exert anti-seizure effects, but also reduce comorbid disorders in people with epilepsy. Here, we explore this possibility and review the clinical and preclinical evidence where available.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Timothy A. Simeone
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (S.H.I.); (K.A.S.)
| |
Collapse
|
10
|
Qi Y, Zhang YM, Gao YN, Chen WG, Zhou T, Chang L, Zang Y, Li J. AMPK role in epilepsy: a promising therapeutic target? J Neurol 2024; 271:748-771. [PMID: 38010498 DOI: 10.1007/s00415-023-12062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
Epilepsy is a complex and multifaceted neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to its diverse etiology and often-refractory nature. This comprehensive review highlights the pivotal role of AMP-activated protein kinase (AMPK), a key metabolic regulator involved in cellular energy homeostasis, which may be a promising therapeutic target for epilepsy. Current therapeutic strategies such as antiseizure medication (ASMs) can alleviate seizures (up to 70%). However, 30% of epileptic patients may develop refractory epilepsy. Due to the complicated nature of refractory epilepsy, other treatment options such as ketogenic dieting, adjunctive therapy, and in limited cases, surgical interventions are employed. These therapy options are only suitable for a select group of patients and have limitations of their own. Current treatment options for epilepsy need to be improved. Emerging evidence underscores a potential association between impaired AMPK functionality in the brain and the onset of epilepsy, prompting an in-depth examination of AMPK's influence on neural excitability and ion channel regulation, both critical factors implicated in epileptic seizures. AMPK activation through agents such as metformin has shown promising antiepileptic effects in various preclinical and clinical settings. These effects are primarily mediated through the inhibition of the mTOR signaling pathway, activation of the AMPK-PI3K-c-Jun pathway, and stimulation of the PGC-1α pathway. Despite the potential of AMPK-targeted therapies, several aspects warrant further exploration, including the detailed mechanisms of AMPK's role in different brain regions, the impact of AMPK under various conditional circumstances such as neural injury and zinc toxicity, the long-term safety and efficacy of chronic metformin use in epilepsy treatment, and the potential benefits of combination therapy involving AMPK activators. Moreover, the efficacy of AMPK activators in refractory epilepsy remains an open question. This review sets the stage for further research with the aim of enhancing our understanding of the role of AMPK in epilepsy, potentially leading to the development of more effective, AMPK-targeted therapeutic strategies for this challenging and debilitating disorder.
Collapse
Affiliation(s)
- Yingbei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Wen-Gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuliu Chang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China.
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Bertoli G, Fortunato F, Cava C, Manna I, Gallivanone F, Labate A, Panio A, Porro D, Gambardella A. Serum MicroRNAs as Predictors of Diagnosis and Drug-resistance in Temporal Lobe Epilepsy: A Preliminary Study. Curr Neuropharmacol 2024; 22:2422-2432. [PMID: 39403059 PMCID: PMC11451323 DOI: 10.2174/1570159x22666240516145823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is the most common form of refractory focal epilepsy, and the current clinical diagnosis is based on EEG, clinical neurological history and neuroimaging findings. METHODS So far, there are no blood-based molecular biomarkers of TLE to support clinical diagnosis, despite the pathogenic mechanisms underlying TLE involving defects in the regulation of gene expression. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression. RESULTS Recent studies show the feasibility of detecting miRNAs in body fluids; circulating miRNAs have emerged as potential clinical biomarkers in epilepsy, although the TLE miRNA profile needs to be addressed. Here, we analysed the diagnostic potential of 8 circulating miRNAs in sera of 52 TLE patients and 40 age- and sex-matched donor controls by RT-qPCR analyses. CONCLUSION We found that miR-34a-5p, -106b-5p, -130a-3p, -146a-5p, and -19a-3p are differently expressed in TLE compared to control subjects, suggesting a diagnostic role. Furthermore, we found that miR-34a-5p, -106b-5p, -146a-5p and miR-451a could become prognostic biomarkers, being differentially expressed between drug-resistant and drug-responsive TLE subjects. Therefore, serum miRNAs are diagnostic and drug-resistance predictive molecules of TLE.
Collapse
Affiliation(s)
- Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, Germaneto, Catanzaro, Italy
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- IUSS, Scuola Universitaria Superiore Pavia, Pv, Italy
| | - Ida Manna
- IBFM-CNR, Section of Germaneto, Catanzaro, Italy
| | - Francesca Gallivanone
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Angelo Labate
- Neurophysiopatology and Movement Disorders Clinic, University of Messina, Italy
| | - Antonella Panio
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, Milan, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, Germaneto, Catanzaro, Italy
| |
Collapse
|
12
|
Isop LM, Neculau AE, Necula RD, Kakucs C, Moga MA, Dima L. Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:1714. [PMID: 38139841 PMCID: PMC10748332 DOI: 10.3390/ph16121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin, a widely prescribed medication for type 2 diabetes, has garnered increasing attention for its potential neuroprotective properties due to the growing demand for treatments for Alzheimer's, Parkinson's, and motor neuron diseases. This review synthesizes experimental and clinical studies on metformin's mechanisms of action and potential therapeutic benefits for neurodegenerative disorders. A comprehensive search of electronic databases, including PubMed, MEDLINE, Embase, and Cochrane library, focused on key phrases such as "metformin", "neuroprotection", and "neurodegenerative diseases", with data up to September 2023. Recent research on metformin's glucoregulatory mechanisms reveals new molecular targets, including the activation of the LKB1-AMPK signaling pathway, which is crucial for chronic administration of metformin. The pleiotropic impact may involve other stress kinases that are acutely activated. The precise role of respiratory chain complexes (I and IV), of the mitochondrial targets, or of the lysosomes in metformin effects remains to be established by further research. Research on extrahepatic targets like the gut and microbiota, as well as its antioxidant and immunomodulatory properties, is crucial for understanding neurodegenerative disorders. Experimental data on animal models shows promising results, but clinical studies are inconclusive. Understanding the molecular targets and mechanisms of its effects could help design clinical trials to explore and, hopefully, prove its therapeutic effects in neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Mihaela Isop
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Radu Dan Necula
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Cristian Kakucs
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| |
Collapse
|
13
|
Saviuk M, Sleptsova E, Redkin T, Turubanova V. Unexplained Causes of Glioma-Associated Epilepsies: A Review of Theories and an Area for Research. Cancers (Basel) 2023; 15:5539. [PMID: 38067243 PMCID: PMC10705208 DOI: 10.3390/cancers15235539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/25/2023] Open
Abstract
Approximately 30% of glioma patients are able to survive beyond one year postdiagnosis. And this short time is often overshadowed by glioma-associated epilepsy. This condition severely impairs the patient's quality of life and causes great suffering. The genetic, molecular and cellular mechanisms underlying tumour development and epileptogenesis remain incompletely understood, leading to numerous unanswered questions. The various types of gliomas, namely glioblastoma, astrocytoma and oligodendroglioma, demonstrate distinct seizure susceptibility and disease progression patterns. Patterns have been identified in the presence of IDH mutations and epilepsy, with tumour location in cortical regions, particularly the frontal lobe, showing a more frequent association with seizures. Altered expression of TP53, MGMT and VIM is frequently detected in tumour cells from individuals with epilepsy associated with glioma. However, understanding the pathogenesis of these modifications poses a challenge. Moreover, hypoxic effects induced by glioma and associated with the HIF-1a factor may have a significant impact on epileptogenesis, potentially resulting in epileptiform activity within neuronal networks. We additionally hypothesise about how the tumour may affect the functioning of neuronal ion channels and contribute to disruptions in the blood-brain barrier resulting in spontaneous depolarisations.
Collapse
Affiliation(s)
- Mariia Saviuk
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ekaterina Sleptsova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Tikhon Redkin
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| | - Victoria Turubanova
- Institute of Neurosciences, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (M.S.); (E.S.); (T.R.)
| |
Collapse
|
14
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29:142. [PMID: 37880579 PMCID: PMC10598971 DOI: 10.1186/s10020-023-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran university, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
15
|
Abdolrahmani M, Mirazi N, Hosseini A. Effect of Duvelisib, a Selective PI3K Inhibitor on Seizure Activity in Pentylenetetrazole-Induced Convulsions Animal Model. Neurosci Insights 2023; 18:26331055231198013. [PMID: 37720697 PMCID: PMC10503276 DOI: 10.1177/26331055231198013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Epilepsy is one of the most common neurological diseases, which is caused by abnormal brain activity. A wide variety of studies have shown the importance of the phosphatidylinositol-3-kinase (PI3K) signaling pathway in epilepsy pathogenesis. Duvelisib (DUV) is a selective inhibitor of PI3K. The present study investigated the anticonvulsant potential of DUV in a rat model of pentylenetetrazole (PTZ)-induced convulsions. Male Wistar rats (200-250 g, 8 weeks old) were injected intraperitoneally (IP) with DUV at different doses of 5 and 10 mg/kg, or vehicle 30 minutes prior to PTZ (70 mg/kg, IP) treatment. Based on Racine's scale, behavioral seizures were assessed. The results showed that pretreatment with DUV prolonged the seizure stages according to the Racine scale, significantly decreased the duration of general tonic-clonic seizure and reduced the number of myoclonic jerks (P < .05). In conclusion, we found that PI3K antagonist DUV significantly reduced PTZ-induced seizures, indicating that DUV exerts an anticonvulsant effect by inhibiting PI3K signaling pathway.
Collapse
Affiliation(s)
- Mahnaz Abdolrahmani
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
16
|
Mohammadi E, Nikbakht F, Vazifekhah S, Babae JF, Jogataei MT. Evaluation the cognition-improvement effects of N-acetyl cysteine in experimental temporal lobe epilepsy in rat. Behav Brain Res 2023; 440:114263. [PMID: 36563904 DOI: 10.1016/j.bbr.2022.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Memory impairment is a critical issue in patients with temporal lobe epilepsy (TLE). Neuronal loss within the hippocampus and recurrent seizures may cause cognitive impairment in TLE. N -acetyl cysteine (NAC) is a sulfur-containing amino acid cysteine that is currently being investigated due to its protective effects on neurodegenerative disorders. NAC was orally administrated at a dose of 100 mg/kg for 8 days (7-day pretreatment and 1-day post-surgery). Neuronal viability, mTOR protein level, and spatial memory were detected in the kainite temporal epilepsy model via Nissl staining, western blot method, and Morris water maze task, respectively. Results showed that NAC delayed seizure activity and ameliorated memory deficit induced by Kainic acid. Histological analysis showed that NAC significantly increased the number of intact neurons in CA3 and hilar areas of the hippocampus following the induction of epilepsy. NAC also modulated the mTOR protein level 5 days after epilepsy compared to the KA-induced group. CONCLUSION: These results suggest that NAC improved memory impairment via anticonvulsant and neuroprotective activity and, in all probability, by lowering the level of mTOR.
Collapse
Affiliation(s)
- Ekram Mohammadi
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, University of Medical Sciences, Tehran Iran
| | - Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, University of Medical Sciences, Tehran Iran.
| | - Somayeh Vazifekhah
- Department of Basic Sciences, Sari Branch. Islamic Azad University, Sari, Iran
| | - Javad Fahanik Babae
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Taghi Jogataei
- Cellular and Molecular Research Center and Department of Anatomy, School of Medicine, University of Medical Sciences, Tehran Iran
| |
Collapse
|
17
|
Neurophysiological assessment of cortical activity in DEPDC5- and NPRL3-related epileptic mTORopathies. Orphanet J Rare Dis 2023; 18:11. [PMID: 36639812 PMCID: PMC9840333 DOI: 10.1186/s13023-022-02600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mutations in the GATOR1 complex genes, DEPDC5 and NPRL3, play a major role in the development of lesional and non-lesional focal epilepsy through increased mTORC1 signalling. We aimed to assess the effects of mTORC1 hyperactivation on GABAergic inhibitory circuits, in 3 and 5 individuals carrying DEPDC5 and NPRL3 mutations respectively using a multimodal approach including transcranial magnetic stimulation (TMS), magnetic resonance spectroscopy (MRS), and electroencephalography (EEG). RESULTS Inhibitory functions probed by TMS and MRS showed no effect of mutations on cortical GABAergic receptor-mediated inhibition and GABA concentration, in both cortical and subcortical regions. However, stronger EEG theta oscillations and stronger and more synchronous gamma oscillations were observed in DEPDC5 and NPRL3 mutations carriers. CONCLUSIONS These results suggest that DEPDC5 and NPRL3-related epileptic mTORopathies may not directly modulate GABAergic functions but are nonetheless characterized by a stronger neural entrainment that may be reflective of a cortical hyperexcitability mediated by increased mTORC1 signaling.
Collapse
|
18
|
Developing Novel Experimental Models of m-TORopathic Epilepsy and Related Neuropathologies: Translational Insights from Zebrafish. Int J Mol Sci 2023; 24:ijms24021530. [PMID: 36675042 PMCID: PMC9866103 DOI: 10.3390/ijms24021530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an important molecular regulator of cell growth and proliferation. Brain mTOR activity plays a crucial role in synaptic plasticity, cell development, migration and proliferation, as well as memory storage, protein synthesis, autophagy, ion channel expression and axonal regeneration. Aberrant mTOR signaling causes a diverse group of neurological disorders, termed 'mTORopathies'. Typically arising from mutations within the mTOR signaling pathway, these disorders are characterized by cortical malformations and other neuromorphological abnormalities that usually co-occur with severe, often treatment-resistant, epilepsy. Here, we discuss recent advances and current challenges in developing experimental models of mTOR-dependent epilepsy and other related mTORopathies, including using zebrafish models for studying these disorders, as well as outline future directions of research in this field.
Collapse
|
19
|
Luo S, Ye XG, Jin L, Li H, He YY, Guan BZ, Gao LD, Liang XY, Wang PY, Lu XG, Yan HJ, Li BM, Chen YJ, Liu ZG. SZT2 variants associated with partial epilepsy or epileptic encephalopathy and the genotype-phenotype correlation. Front Mol Neurosci 2023; 16:1162408. [PMID: 37213690 PMCID: PMC10198435 DOI: 10.3389/fnmol.2023.1162408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
Background Recessive SZT2 variants are reported to be associated with developmental and epileptic encephalopathy 18 (DEE-18) and occasionally neurodevelopment abnormalities (NDD) without seizures. This study aims to explore the phenotypic spectrum of SZT2 and the genotype-phenotype correlation. Methods Trios-based whole-exome sequencing was performed in patients with epilepsy. Previously reported SZT2 mutations were systematically reviewed to analyze the genotype-phenotype correlations. Results SZT2 variants were identified in six unrelated cases with heterogeneous epilepsy, including one de novo null variant and five pairs of biallelic variants. These variants had no or low frequencies in controls. All missense variants were predicted to alter the hydrogen bonds with surrounding residues and/or protein stability. The three patients with null variants exhibited DEE. The patients with biallelic null mutations presented severe DEE featured by frequent spasms/tonic seizures and diffuse cortical dysplasia/periventricular nodular heterotopia. The three patients with biallelic missense variants presented mild partial epilepsy with favorable outcomes. Analysis of previously reported cases revealed that patients with biallelic null mutations presented significantly higher frequency of refractory seizures and earlier onset age of seizure than those with biallelic non-null mutations or with biallelic mutations containing one null variant. Significance This study suggested that SZT2 variants were potentially associated with partial epilepsy with favorable outcomes without NDD, expanding the phenotypic spectrum of SZT2. The genotype-phenotype correlation helps in understanding the underlying mechanism of phenotypic variation.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xing-Guang Ye
- Department of Pediatrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huan Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bao-Zhu Guan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin-Guo Lu
- Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Jun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Yong-Jun Chen
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Zhi-Gang Liu
| |
Collapse
|
20
|
Subramanian A, Tamilanban T, Alsayari A, Ramachawolran G, Wong LS, Sekar M, Gan SH, Subramaniyan V, Chinni SV, Izzati Mat Rani NN, Suryadevara N, Wahab S. Trilateral association of autophagy, mTOR and Alzheimer's disease: Potential pathway in the development for Alzheimer's disease therapy. Front Pharmacol 2022; 13:1094351. [PMID: 36618946 PMCID: PMC9817151 DOI: 10.3389/fphar.2022.1094351] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The primary and considerable weakening event affecting elderly individuals is age-dependent cognitive decline and dementia. Alzheimer's disease (AD) is the chief cause of progressive dementia, and it is characterized by irreparable loss of cognitive abilities, forming senile plaques having Amyloid Beta (Aβ) aggregates and neurofibrillary tangles with considerable amounts of tau in affected hippocampus and cortex regions of human brains. AD affects millions of people worldwide, and the count is showing an increasing trend. Therefore, it is crucial to understand the underlying mechanisms at molecular levels to generate novel insights into the pathogenesis of AD and other cognitive deficits. A growing body of evidence elicits the regulatory relationship between the mammalian target of rapamycin (mTOR) signaling pathway and AD. In addition, the role of autophagy, a systematic degradation, and recycling of cellular components like accumulated proteins and damaged organelles in AD, is also pivotal. The present review describes different mechanisms and signaling regulations highlighting the trilateral association of autophagy, the mTOR pathway, and AD with a description of inhibiting drugs/molecules of mTOR, a strategic target in AD. Downregulation of mTOR signaling triggers autophagy activation, degrading the misfolded proteins and preventing the further accumulation of misfolded proteins that inhibit the progression of AD. Other target mechanisms such as autophagosome maturation, and autophagy-lysosomal pathway, may initiate a faulty autophagy process resulting in senile plaques due to defective lysosomal acidification and alteration in lysosomal pH. Hence, the strong link between mTOR and autophagy can be explored further as a potential mechanism for AD therapy.
Collapse
Affiliation(s)
- Arunkumar Subramanian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamilnadu, India
| | - T. Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamilnadu, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University, Abha, Saudi Arabia
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, Georgetown, Pulau Pinang, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Nagaraja Suryadevara
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- Complementary and Alternative Medicine Unit, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
21
|
Hyder Pottoo F, Salahuddin M, Khan FA, Albaqshi BT, Gomaa MS, Abdulla FS, AlHajri N, Alomary MN. Trio-Drug Combination of Sodium Valproate, Baclofen and Thymoquinone Exhibits Synergistic Anticonvulsant Effects in Rats and Neuro-Protective Effects in HEK-293 Cells. Curr Issues Mol Biol 2022; 44:4350-4366. [PMID: 36286014 PMCID: PMC9601194 DOI: 10.3390/cimb44100299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 10/04/2023] Open
Abstract
Epilepsy is a chronic brain disorder, with anti-epileptic drugs (AEDs) providing relief from hyper-excitability of neurons, but largely failing to restrain neurodegeneration. We investigated a progressive preclinical trial in rats, whereby the test drugs; sodium valproate (SVP; 150 and 300 mg/kg), baclofen (BFN; 5 and 10 mg/kg), and thymoquinone (THQ; 40 and 80 mg/kg) were administered (i.p, once/day for 15 days) alone, and as low dose combinations, and subsequently tested for antiseizure and neuroprotective potential using electrical stimulation of neurons by Maximal electroshock (MES). The seizure stages were monitored, and hippocampal levels of m-TOR, IL-1β, IL-6 were measured. Hippocampal histopathology was also performed. Invitro and Insilco studies were run to counter-confirm the results from rodent studies. We report the synergistic effect of trio-drug combination; SVP (150 mg/kg), BFN (5 mg/kg) and THQ (40 mg/kg) against generalized seizures. The Insilco results revealed that trio-drug combination binds the Akt active site as a supramolecular complex, which could have served as a delivery system that affects the penetration and the binding to the new target. The potential energy of the ternary complex in the Akt active site after dynamics simulation was found to be -370.426 Kcal/mol, while the supramolecular ternary complex alone was -38.732 Kcal/mol, with a potential energy difference of -331.694 Kcal/mol, which favors the supramolecular ternary complex at Akt active site binding. In addition, the said combination increased cell viability by 267% and reduced morphological changes induced by Pentylenetetrazol (PTZ) in HEK-293 cells, which indicates the neuroprotective property of said combination. To conclude, we are the first to report the anti-convulsant and neuroprotective potential of the trio-drug combination.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Batool Taleb Albaqshi
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fatima S. Abdulla
- College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Noora AlHajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad N. Alomary
- National Centre for Biotechnology, Kind Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
22
|
Zahra MA, Kamha ES, Abdelaziz HK, Nounou HA, Deeb HME. Aberrant Expression of Serum MicroRNA-153 and -199a in Generalized Epilepsy and its Correlation with Drug Resistance. Ann Neurosci 2022; 29:203-208. [PMID: 37064282 PMCID: PMC10101161 DOI: 10.1177/09727531221077667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Epilepsy is one of the common neurological disorders affecting approximately 50 million people worldwide. Despite the recent introduction of new antiepileptic drugs, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Early recognition of patients with drug-resistant epilepsy may help direct these patients to appropriate nonpharmacological treatment. Purpose: The possible use of serum microRNAs (miRNAs) as noninvasive biomarkers has been explored in various brain diseases, including epilepsy. In this study, we are aiming at analyzing the expression levels of circulating miRNA-153 and miRNA-199a in patients with generalized epilepsy and their correlation with drug resistance. Methods: Our study comprised 40 patients with generalized epilepsy and 20 healthy controls. 22 patients were drug-resistant and 18 patients were drug-responsive. The expression levels of miRNA-153 and -199a in serum were analyzed using quantitative real-time polymerase chain reaction. Data analysis was done by IBM SPSS Statistics 20.0. Results: The expression of miRNA-153 and -199a in serum was significantly downregulated in patients with generalized epilepsy compared with that of the healthy control ( P < .001). Combined expression level of serum miRNA-153 and -199a had a sensitivity of 85% and a specificity of 90% in the diagnosis of generalized epilepsy. Furthermore, the expression levels of miRNA-153 and -199a were significantly decreased in drug-resistant patients compared to the drug-responsive group, and the combination of both markers gave the best results in differentiating between the two groups. Conclusion: We suggest that serum miRNAs-153 and -199a expression levels could be potential noninvasive biomarkers supporting the diagnosis of generalized epilepsy. Moreover, they could be used for the early detection of refractory generalized epilepsy.
Collapse
Affiliation(s)
- Mai A. Zahra
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Alexandria Governorate, Egypt
| | - Eman S. Kamha
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Alexandria Governorate, Egypt
| | - Hanan K. Abdelaziz
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Alexandria Governorate, Egypt
| | - Howaida A. Nounou
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Alexandria Governorate, Egypt
| | - Hany M. El Deeb
- Department of Neuropsychiatry, Faculty of Medicine, University of Alexandria, Alexandria, Alexandria Governorate, Egypt
| |
Collapse
|
23
|
Mortazavi A, Fayed I, Bachani M, Dowdy T, Jahanipour J, Khan A, Owotade J, Walbridge S, Inati SK, Steiner J, Wu J, Gilbert M, Yang CZ, Larion M, Maric D, Ksendzovsky A, Zaghloul KA. IDH-mutated gliomas promote epileptogenesis through d-2-hydroxyglutarate-dependent mTOR hyperactivation. Neuro Oncol 2022; 24:1423-1435. [PMID: 34994387 PMCID: PMC9435503 DOI: 10.1093/neuonc/noac003] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Uncontrolled seizures in patients with gliomas have a significant impact on quality of life and morbidity, yet the mechanisms through which these tumors cause seizures remain unknown. Here, we hypothesize that the active metabolite d-2-hydroxyglutarate (d-2-HG) produced by the IDH-mutant enzyme leads to metabolic disruptions in surrounding cortical neurons that consequently promote seizures. METHODS We use a complementary study of in vitro neuron-glial cultures and electrographically sorted human cortical tissue from patients with IDH-mutant gliomas to test this hypothesis. We utilize micro-electrode arrays for in vitro electrophysiological studies in combination with pharmacological manipulations and biochemical studies to better elucidate the impact of d-2-HG on cortical metabolism and neuronal spiking activity. RESULTS We demonstrate that d-2-HG leads to increased neuronal spiking activity and promotes a distinct metabolic profile in surrounding neurons, evidenced by distinct metabolomic shifts and increased LDHA expression, as well as upregulation of mTOR signaling. The increases in neuronal activity are induced by mTOR activation and reversed with mTOR inhibition. CONCLUSION Together, our data suggest that metabolic disruptions in the surrounding cortex due to d-2-HG may be a driving event for epileptogenesis in patients with IDH-mutant gliomas.
Collapse
Affiliation(s)
- Armin Mortazavi
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Islam Fayed
- Department of Neurosurgery, Georgetown University, Washington, District of Columbia, USA
| | - Muzna Bachani
- NeuroTherapeutics Development Unit, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Tyrone Dowdy
- NeuroOncology Branch, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Jahandar Jahanipour
- Flow and Cytometry Core, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Anas Khan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Jemima Owotade
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Stuart Walbridge
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara K Inati
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Steiner
- NeuroTherapeutics Development Unit, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Wu
- NeuroOncology Branch, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Gilbert
- NeuroOncology Branch, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Chun Zhang Yang
- NeuroOncology Branch, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Mioara Larion
- NeuroOncology Branch, NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Dragan Maric
- Flow and Cytometry Core, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Kareem A Zaghloul
- Corresponding Author: Kareem A. Zaghloul, MD, PhD, Surgical Neurology Branch, NINDS, National Institutes of Health, Building 10, Room 3D20, 10 Center Drive Bethesda, MD 20892-1414, USA ()
| |
Collapse
|
24
|
Khlebodarova TM. The molecular view of mechanical stress of brain cells, local translation, and neurodegenerative diseases. Vavilovskii Zhurnal Genet Selektsii 2021; 25:92-100. [PMID: 34901706 PMCID: PMC8629365 DOI: 10.18699/vj21.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
The assumption that chronic mechanical stress in brain cells stemming from intracranial hypertension,
arterial hypertension, or mechanical injury is a risk factor for neurodegenerative diseases was put forward in the
1990s and has since been supported. However, the molecular mechanisms that underlie the way from cell exposure to mechanical stress to disturbances in synaptic plasticity followed by changes in behavior, cognition, and
memory are still poorly understood. Here we review (1) the current knowledge of molecular mechanisms regulating local translation and the actin cytoskeleton state at an activated synapse, where they play a key role in the
formation of various sorts of synaptic plasticity and long-term memory, and (2) possible pathways of mechanical
stress intervention. The roles of the mTOR (mammalian target of rapamycin) signaling pathway; the RNA-binding
FMRP protein; the CYFIP1 protein, interacting with FMRP; the family of small GTPases; and the WAVE regulatory
complex in the regulation of translation initiation and actin cytoskeleton rearrangements in dendritic spines of the
activated synapse are discussed. Evidence is provided that chronic mechanical stress may result in aberrant activation of mTOR signaling and the WAVE regulatory complex via the YAP/TAZ system, the key sensor of mechanical
signals, and influence the associated pathways regulating the formation of F actin filaments and the dendritic spine
structure. These consequences may be a risk factor for various neurological conditions, including autistic spectrum
disorders and epileptic encephalopathy. In further consideration of the role of the local translation system in the
development of neuropsychic and neurodegenerative diseases, an original hypothesis was put forward that one
of the possible causes of synaptopathies is impaired proteome stability associated with mTOR hyperactivity and
formation of complex dynamic modes of de novo protein synthesis in response to synapse-stimulating factors,
including chronic mechanical stress.
Collapse
Affiliation(s)
- T M Khlebodarova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
25
|
Roy A, Han VZ, Bard AM, Wehle DT, Smith SEP, Ramirez JM, Kalume F, Millen KJ. Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy. Front Mol Neurosci 2021; 14:772847. [PMID: 34899181 PMCID: PMC8662737 DOI: 10.3389/fnmol.2021.772847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy.
Collapse
Affiliation(s)
- Achira Roy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Victor Z Han
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Biology, University of Washington, Seattle, WA, United States
| | - Angela M Bard
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Devin T Wehle
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
26
|
An insight into crosstalk among multiple signaling pathways contributing to epileptogenesis. Eur J Pharmacol 2021; 910:174469. [PMID: 34478688 DOI: 10.1016/j.ejphar.2021.174469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023]
Abstract
Despite the years of research, epilepsy remains uncontrolled in one-third of afflicted individuals and poses a health and economic burden on society. Currently available anti-epileptic drugs mainly target the excitatory-inhibitory imbalance despite targeting the underlying pathophysiology of the disease. Recent research focuses on understanding the pathophysiologic mechanisms that lead to seizure generation and on possible new treatment avenues for preventing epilepsy after a brain injury. Various signaling pathways, including the mechanistic target of rapamycin (mTOR) pathway, mitogen-activated protein kinase (MAP-ERK) pathway, JAK-STAT pathway, wnt/β-catenin signaling, cAMP pathway, and jun kinase pathway, have been suggested to play an essential role in this regard. Recent work suggests that the mTOR pathway intervenes epileptogenesis and proposes that mTOR inhibitors may have antiepileptogenic properties for epilepsy. In the same way, several animal studies have indicated the involvement of the Wnt signaling pathway in neurogenesis and neuronal death induced by seizures in different phases (acute and chronic) of seizure development. Various studies have also documented the activation of JAK-STAT signaling in epilepsy and cAMP involvement in epileptogenesis through CREB (cAMP response element-binding protein). Although studies are there, the mechanism for how components of these pathways mediate epileptogenesis requires further investigation. This review summarises the current role of various signaling pathways involved in epileptogenesis and the crosstalk among them. Furthermore, we will also discuss the mechanical base for the interaction between these pathways and how these interactions could be a new emerging promising target for future epilepsy therapies.
Collapse
|
27
|
EWAS of Monozygotic Twins Implicate a Role of mTOR Pathway in Pathogenesis of Tic Spectrum Disorder. Genes (Basel) 2021; 12:genes12101510. [PMID: 34680906 PMCID: PMC8535383 DOI: 10.3390/genes12101510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Tic spectrum disorder (TSD) is an umbrella term which includes Gilles de la Tourette syndrome (GTS) and chronic tic disorder (CTD). They are considered highly heritable, yet the genetic components remain largely unknown. In this study we aimed to investigate disease-associated DNA methylation differences to identify genes and pathways which may be implicated in TSD aetiology. For this purpose, we performed an exploratory analysis of the genome-wide DNA methylation patterns in whole blood samples of 16 monozygotic twin pairs, of which eight were discordant and six concordant for TSD, while two pairs were asymptomatic. Although no sites reached genome-wide significance, we identified several sites and regions with a suggestive significance, which were located within or in the vicinity of genes with biological functions associated with neuropsychiatric disorders. The two top genes identified (TSC1 and CRYZ/TYW3) and the enriched pathways and components (phosphoinosides and PTEN pathways, and insulin receptor substrate binding) are related to, or have been associated with, the PI3K/AKT/mTOR pathway. Genes in this pathway have previously been associated with GTS, and mTOR signalling has been implicated in a range of neuropsychiatric disorders. It is thus possible that altered mTOR signalling plays a role in the complex pathogenesis of TSD.
Collapse
|
28
|
Shao LL, Gao MM, Gong JX, Yang LY. DUSP1 regulates hippocampal damage in epilepsy rats via ERK1/2 pathway. J Chem Neuroanat 2021; 118:102032. [PMID: 34562585 DOI: 10.1016/j.jchemneu.2021.102032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the effects of DUSP1 on the hippocampal injury of young rats with epilepsy (EP) through mediating ERK1/2 signaling pathway. METHODS Young SD rats were selected and divided into Control, EP, EP + LV-GFP, EP + LV-DUSP1, EP + LV-siDUSP1, and EP + LV-siDUSP1 + U0126 groups. Morris Water Maze Test was used to detect the spatial learning and memory. Nissl staining and TUNEL staining were conducted and the inflammatory factors and oxidative stress-related indicators were also measured. Western blotting was utilized to detect the expression of DUSP1 and ERK1/2 pathway. EP cell model was constructed in vitro to verify the in vivo results. RESULTS Compared with Control group, young rats in EP group had decreased spatial learning and memory abilities and increased apoptotic rate and decreased number of Nissl positive cells. Besides, the up-regulated levels in inflammatory factors (IL-1β, IL-6), MDA content, and p-ERK1/2/ERK1/2 protein expression, as well as the down-regulated levels in DUSP1 protein expression and SOD content were also observed in EP rats. The EP rats treated with LV-DUSP1 showed obvious improvements regarding the above indicators, while those treated with LV-siDUSP1 had aggravated injury. But the effect of LV-siDUSP1 can be reversed by the treatment with ERK1/2 pathway inhibitor U0126. Further in vitro investigation verified the in vivo results. CONCLUSION DUSP1 may ameliorate the oxidative stress and inflammatory injury, as well as improve spatial learning and memory abilities via inhibiting ERK1/2 pathway, eventually playing protective roles in hippocampal injury of young rats with EP.
Collapse
Affiliation(s)
- Li-Li Shao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China.
| | - Miao-Miao Gao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Jing-Xin Gong
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Li-Yong Yang
- Department of Diagnostic CT, Cangzhou Central Hospital Yanshan Branch, Cangzhou 061399, PR China
| |
Collapse
|
29
|
Womble PD, Hodges SL, Nolan SO, Binder MS, Holley AJ, Herrera R, Senger S, Kwok E, Narviaz DA, Faust A, Hernandez-Zegada CJ, Kwon RY, Lugo JN. A vitamin D enriched diet attenuates sex-specific behavioral deficits, increases the lifespan, but does not rescue bone abnormalities in a mouse model of cortical dysplasia. Epilepsy Behav 2021; 124:108297. [PMID: 34509882 DOI: 10.1016/j.yebeh.2021.108297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Individuals who experience recurrent spontaneous seizures often show behavioral and physiological comorbidities. Those with epilepsy are at a high risk of bone fractures (independent of seizure-related falls) and show a higher rate of a diagnosis of Autism Spectrum Disorder. The neural subset-specific (NS) Pten knockout (KO) mouse has an epilepsy phenotype, has been characterized to show autistic-like deficits, and has an osteoporosis phenotype. The current study examined the effect of a vitamin D enriched diet (20,000 IU VD) in the NS-Pten KO and wildtype mice. Mice were placed onto a vitamin D enriched diet at 4 weeks of age and maintained on that diet throughout testing. Behavioral testing began at 6 weeks of age and included tests for general activity, anxiety, repetitive behaviors, social behaviors, and memory. Results indicated that a vitamin D diet attenuated hypoactivity levels in male KO mice (p < 0.05). In a social partition task, vitamin D increased sociability in male wildtype mice, (p < 0.05). Most significantly, vitamin D fortified diet increased percent survival in KO animals and decreased the level of microglia marker IBA-1 and mTOR (mammalian target of rapamycin) downstream targets pS6 and pAKT. A high vitamin D diet did not reverse bone deficits in male or female KO mice. Overall, these findings suggest that a vitamin D enriched diet had a significant impact on the behavioral phenotype of NS-Pten KO mice, suggesting that dietary manipulations could be a potential therapeutic option for autistic-like behavior.
Collapse
Affiliation(s)
- Paige D Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Andrew J Holley
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Rebecca Herrera
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Savannah Senger
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Eliesse Kwok
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - David A Narviaz
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Amanda Faust
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | | | - Ronald Y Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98104, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA.
| |
Collapse
|
30
|
Paudel YN, Angelopoulou E, Piperi C, Gnatkovsky V, Othman I, Shaikh MF. From the Molecular Mechanism to Pre-clinical Results: Anti-epileptic Effects of Fingolimod. Curr Neuropharmacol 2021; 18:1126-1137. [PMID: 32310049 PMCID: PMC7709153 DOI: 10.2174/1570159x18666200420125017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023] Open
Abstract
Epilepsy is a devastating neurological condition characterized by long-term tendency to generate unprovoked seizures, affecting around 1-2% of the population worldwide. Epilepsy is a serious health concern which often associates with other neurobehavioral comorbidities that further worsen disease conditions. Despite tremendous research, the mainstream anti-epileptic drugs (AEDs) exert only symptomatic relief leading to 30% of untreatable patients. This reflects the complexity of the disease pathogenesis and urges the precise understanding of underlying mechanisms in order to explore novel therapeutic strategies that might alter the disease progression as well as minimize the epilepsy-associated comorbidities. Unfortunately, the development of novel AEDs might be a difficult process engaging huge funds, tremendous scientific efforts and stringent regulatory compliance with a possible chance of end-stage drug failure. Hence, an alternate strategy is drug repurposing, where anti-epileptic effects are elicited from drugs that are already used to treat non-epileptic disorders. Herein, we provide evidence of the anti-epileptic effects of Fingolimod (FTY720), a modulator of sphingosine-1-phosphate (S1P) receptor, USFDA approved already for Relapsing-Remitting Multiple Sclerosis (RRMS). Emerging experimental findings suggest that Fingolimod treatment exerts disease-modifying anti-epileptic effects based on its anti-neuroinflammatory properties, potent neuroprotection, anti-gliotic effects, myelin protection, reduction of mTOR signaling pathway and activation of microglia and astrocytes. We further discuss the underlying molecular crosstalk associated with the anti-epileptic effects of Fingolimod and provide evidence for repurposing Fingolimod to overcome the limitations of current AEDs.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vadym Gnatkovsky
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
31
|
Ahmed MM, Carrel AJ, Cruz Del Angel Y, Carlsen J, Thomas AX, González MI, Gardiner KJ, Brooks-Kayal A. Altered Protein Profiles During Epileptogenesis in the Pilocarpine Mouse Model of Temporal Lobe Epilepsy. Front Neurol 2021; 12:654606. [PMID: 34122302 PMCID: PMC8194494 DOI: 10.3389/fneur.2021.654606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is characterized by recurrent, spontaneous seizures and is a major contributor to the global burden of neurological disease. Although epilepsy can result from a variety of brain insults, in many cases the cause is unknown and, in a significant proportion of cases, seizures cannot be controlled by available treatments. Understanding the molecular alterations that underlie or are triggered by epileptogenesis would help to identify therapeutics to prevent or control progression to epilepsy. To this end, the moderate throughput technique of Reverse Phase Protein Arrays (RPPA) was used to profile changes in protein expression in a pilocarpine mouse model of acquired epilepsy. Levels of 54 proteins, comprising phosphorylation-dependent and phosphorylation-independent components of major signaling pathways and cellular complexes, were measured in hippocampus, cortex and cerebellum of mice at six time points, spanning 15 min to 2 weeks after induction of status epilepticus. Results illustrate the time dependence of levels of the commonly studied MTOR pathway component, pS6, and show, for the first time, detailed responses during epileptogenesis of multiple components of the MTOR, MAPK, JAK/STAT and apoptosis pathways, NMDA receptors, and additional cellular complexes. Also noted are time- and brain region- specific changes in correlations among levels of functionally related proteins affecting both neurons and glia. While hippocampus and cortex are primary areas studied in pilocarpine-induced epilepsy, cerebellum also shows significant time-dependent molecular responses.
Collapse
Affiliation(s)
- Md Mahiuddin Ahmed
- Department of Neurology, University of Colorado Alzheimer's and Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew J Carrel
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Yasmin Cruz Del Angel
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jessica Carlsen
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Ajay X Thomas
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States.,Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States.,Section of Child Neurology, Texas Children's Hospital, Houston, TX, United States
| | - Marco I González
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katheleen J Gardiner
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Amy Brooks-Kayal
- Division of Neurology and Translational Epilepsy Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Children's Hospital Colorado, Aurora, CO, United States.,Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
32
|
Kaur J, Famta P, Famta M, Mehta M, Satija S, Sharma N, Vyas M, Khatik GL, Chellappan DK, Dua K, Khurana N. Potential anti-epileptic phytoconstituents: An updated review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113565. [PMID: 33166627 DOI: 10.1016/j.jep.2020.113565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is one of the most commonly occurring non-communicable neurological disorder that affects people of all age groups. Around 50 million people globally are epileptic, with 80% cases in developing countries due to lack of access to treatments determined by high cost and poor availability or it can be defined by the fraction of active epileptic patients who are not appropriately being treated. The availability of antiepileptic drugs and their adjuvant therapy in such countries is less than 50% and these are highly susceptible to drug interactions and severe adverse effects. As a result, the use of herbal medicine is increasingly becoming popular. AIM OF THE STUDY To provide pharmacological information on the active constituents evaluated in the preclinical study to treat epilepsy with potential to be used as an alternative therapeutic option in future. It also provides affirmation for the development of novel antiepileptic drugs derived from medicinal plants. MATERIALS AND METHODS Relevant information on the antiepileptic potential of phytoconstituents in the preclinical study (in-vitro, in-vivo) is provided based on their effect on screening parameters. Besides, relevant information on pharmacology of phytoconstituents, the traditional use of their medicinal plants related to epilepsy and status of phytoconstituents in the clinical study were derived from online databases, including PubMed, Clinicaltrial. gov, The Plant List (TPL, www.theplantlist.org), Science Direct. Articles identified using preset searching syntax and inclusion criteria are presented. RESULTS More than 70% of the phytoconstituents reviewed in this paper justified the traditional use of their medicinal plant related to epilepsy by primarily acting on the GABAergic system. Amongst the phytoconstituents, only cannabidiol and tetrahydrocannabinol have been explored for clinical application in epilepsy. CONCLUSION The preclinical and clinical data of the phytoconstituents to treat epilepsy and its associated comorbidities provides evidence for the discovery and development of novel antiepileptic drugs from medicinal plants. In terms of efficacy and safety, further randomized and controlled clinical studies are required to understand the complete pharmacodynamic and pharmacokinetic picture of phytoconstituents. Also, specific botanical source evaluation is needed.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Paras Famta
- Institute of Nano Science and Technology, Phase-10, Sector-64, Mohali, Punjab, 160062, India
| | - Mani Famta
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Vidya Vihar Campus, Street Number 41, Pilani, Rajasthan, 333031, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gopal Lal Khatik
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
33
|
Pires G, Leitner D, Drummond E, Kanshin E, Nayak S, Askenazi M, Faustin A, Friedman D, Debure L, Ueberheide B, Wisniewski T, Devinsky O. Proteomic differences in the hippocampus and cortex of epilepsy brain tissue. Brain Commun 2021; 3:fcab021. [PMID: 34159317 DOI: 10.1093/braincomms/fcab021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Epilepsy is a common neurological disorder affecting over 70 million people worldwide, with a high rate of pharmaco-resistance, diverse comorbidities including progressive cognitive and behavioural disorders, and increased mortality from direct (e.g. sudden unexpected death in epilepsy, accidents, drowning) or indirect effects of seizures and therapies. Extensive research with animal models and human studies provides limited insights into the mechanisms underlying seizures and epileptogenesis, and these have not translated into significant reductions in pharmaco-resistance, morbidities or mortality. To help define changes in molecular signalling networks associated with seizures in epilepsy with a broad range of aetiologies, we examined the proteome of brain samples from epilepsy and control cases. Label-free quantitative mass spectrometry was performed on the hippocampal cornu ammonis 1-3 region (CA1-3), frontal cortex and dentate gyrus microdissected from epilepsy and control cases (n = 14/group). Epilepsy cases had significant differences in the expression of 777 proteins in the hippocampal CA1 - 3 region, 296 proteins in the frontal cortex and 49 proteins in the dentate gyrus in comparison to control cases. Network analysis showed that proteins involved in protein synthesis, mitochondrial function, G-protein signalling and synaptic plasticity were particularly altered in epilepsy. While protein differences were most pronounced in the hippocampus, similar changes were observed in other brain regions indicating broad proteomic abnormalities in epilepsy. Among the most significantly altered proteins, G-protein subunit beta 1 (GNB1) was one of the most significantly decreased proteins in epilepsy in all regions studied, highlighting the importance of G-protein subunit signalling and G-protein-coupled receptors in epilepsy. Our results provide insights into common molecular mechanisms underlying epilepsy across various aetiologies, which may allow for novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Geoffrey Pires
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, USA.,Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA.,Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Dominique Leitner
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Eleanor Drummond
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA.,Faculty of Medicine and Health, Brain and Mind Centre and School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Shruti Nayak
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Manor Askenazi
- Biomedical Hosting LLC, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Arline Faustin
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel Friedman
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ludovic Debure
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Beatrix Ueberheide
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA.,Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA.,Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.,Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Legaz I, Bernardo MV, Alfaro R, Martínez-Banaclocha H, Galián JA, Jimenez-Coll V, Boix F, Mrowiec A, Salmeron D, Botella C, Parrado A, Moya-Quiles MR, Minguela A, Llorente S, de la Peña-Moral J, Muro M. PCR Array Technology in Biopsy Samples Identifies Up-Regulated mTOR Pathway Genes as Potential Rejection Biomarkers After Kidney Transplantation. Front Med (Lausanne) 2021; 8:547849. [PMID: 33681239 PMCID: PMC7927668 DOI: 10.3389/fmed.2021.547849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Antibody-mediated rejection (AMR) is the major cause of kidney transplant rejection. The donor-specific human leukocyte antigen (HLA) antibody (DSA) response to a renal allograft is not fully understood yet. mTOR complex has been described in the accommodation or rejection of transplants and integrates responses from a wide variety of signals. The aim of this study was to analyze the expression of the mTOR pathway genes in a large cohort of kidney transplant patients to determine its possible influence on the transplant outcome. Methods: A total of 269 kidney transplant patients monitored for DSA were studied. The patients were divided into two groups, one with recipients that had transplant rejection (+DSA/+AMR) and a second group of recipients without rejection (+DSA/-AMR and -DSA/-AMR, controls). Total RNA was extracted from kidney biopsies and reverse transcribed to cDNA. Human mTOR-PCR array technology was used to determine the expression of 84 mTOR pathway genes. STRING and REVIGO software were used to simulate gene to gene interaction and to assign a molecular function. Results: The studied groups showed a different expression of the mTOR pathway related genes. Recipients that had transplant rejection showed an over-expressed transcript (≥5-fold) of AKT1S1, DDIT4, EIF4E, HRAS, IGF1, INS, IRS1, PIK3CD, PIK3CG, PRKAG3, PRKCB (>12-fold), PRKCG, RPS6KA2, TELO2, ULK1, and VEGFC, compared with patients that did not have rejection. AKT1S1 transcripts were more expressed in +DSA/-AMR biopsies compared with +DSA/+AMR. The main molecular functions of up-regulated gene products were phosphotransferase activity, insulin-like grown factor receptor and ribonucleoside phosphate binding. The group of patients with transplant rejection also showed an under-expressed transcript (≥5-fold) of VEGFA (>15-fold), RPS6, and RHOA compared with the group without rejection. The molecular function of down-regulated gene products such as protein kinase activity and carbohydrate derivative binding proteins was also analyzed. Conclusions: We have found a higher number of over-expressed mTOR pathway genes than under-expressed ones in biopsies from rejected kidney transplants (+DSA/+AMR) with respect to controls. In addition to this, the molecular function of both types of transcripts (over/under expressed) is different. Therefore, further studies are needed to determine if variations in gene expression profiles can act as predictors of graft loss, and a better understanding of the mechanisms of action of the involved proteins would be necessary.
Collapse
Affiliation(s)
- Isabel Legaz
- Department of Legal and Forensic Medicine, Faculty of Medicine, Biomedical Research Institute (IMIB), University of Murcia, Murcia, Spain
| | - María Victoria Bernardo
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Rafael Alfaro
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Helios Martínez-Banaclocha
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Jose Antonio Galián
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Victor Jimenez-Coll
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Francisco Boix
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Anna Mrowiec
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Diego Salmeron
- Departamento de Ciencias Sociosanitarias, Universidad de Murcia, Murcia, Spain
- Centro de Investigación Biomédica en Red (CIBER) Epidemiología y Salud Pública (CIBERESP), Murcia, Spain
- Instituto Murciano de Investigacion Biomédica-Arrixaca, Murcia, Spain
| | - Carmen Botella
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Antonio Parrado
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - María Rosa Moya-Quiles
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Santiago Llorente
- Department of Nephrology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Jesús de la Peña-Moral
- Department of Pathology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Manuel Muro
- Department of Immunology, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
35
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
36
|
Pons-Bennaceur A, Tsintsadze V, Bui TT, Tsintsadze T, Minlebaev M, Milh M, Scavarda D, Giniatullin R, Giniatullina R, Shityakov S, Wright M, Miller AD, Lozovaya N, Burnashev N. Diadenosine-Polyphosphate Analogue AppCH2ppA Suppresses Seizures by Enhancing Adenosine Signaling in the Cortex. Cereb Cortex 2020; 29:3778-3795. [PMID: 30295710 DOI: 10.1093/cercor/bhy257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 08/15/2018] [Accepted: 09/14/2018] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is a multifactorial disorder associated with neuronal hyperexcitability that affects more than 1% of the human population. It has long been known that adenosine can reduce seizure generation in animal models of epilepsies. However, in addition to various side effects, the instability of adenosine has precluded its use as an anticonvulsant treatment. Here we report that a stable analogue of diadenosine-tetraphosphate: AppCH2ppA effectively suppresses spontaneous epileptiform activity in vitro and in vivo in a Tuberous Sclerosis Complex (TSC) mouse model (Tsc1+/-), and in postsurgery cortical samples from TSC human patients. These effects are mediated by enhanced adenosine signaling in the cortex post local neuronal adenosine release. The released adenosine induces A1 receptor-dependent activation of potassium channels thereby reducing neuronal excitability, temporal summation, and hypersynchronicity. AppCH2ppA does not cause any disturbances of the main vital autonomous functions of Tsc1+/- mice in vivo. Therefore, we propose this compound to be a potent new candidate for adenosine-related treatment strategies to suppress intractable epilepsies.
Collapse
Affiliation(s)
- Alexandre Pons-Bennaceur
- INSERM UMR1249, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Vera Tsintsadze
- INSERM UMR1249, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France.,Knight Cardiovascular Institute, Oregon Health and Science University, OR, USA
| | - Thi-Thien Bui
- B&A Therapeutics, Ben-Ari Institute of Neuroarcheology, Batiment Beret-Delaage, Zone Luminy Biotech Entreprises, Marseille, Cedex 09, France
| | - Timur Tsintsadze
- INSERM UMR1249, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
| | - Marat Minlebaev
- INSERM UMR1249, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Mathieu Milh
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, Marseille Cedex 5, France
| | - Didier Scavarda
- APHM, Department of Pediatric Neurosurgery and Neurology, CHU Timone, Marseille Cedex 5, France
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Sergey Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, Josef-Schneider-Street 2, Würzburg, Germany
| | - Michael Wright
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London, UK
| | - Andrew D Miller
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London, UK.,Veterinary Research Institute, Hudcova 296/70, Brno, Czech Republic.,KP Therapeutics Ltd, 86 Deansgate, Manchester, UK
| | - Natalia Lozovaya
- B&A Therapeutics, Ben-Ari Institute of Neuroarcheology, Batiment Beret-Delaage, Zone Luminy Biotech Entreprises, Marseille, Cedex 09, France
| | - Nail Burnashev
- INSERM UMR1249, Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
37
|
Khlebodarova TM, Kogai VV, Likhoshvai VA. On the dynamical aspects of local translation at the activated synapse. BMC Bioinformatics 2020; 21:258. [PMID: 32921299 PMCID: PMC7488754 DOI: 10.1186/s12859-020-03597-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 02/01/2023] Open
Abstract
Background The key role in the dynamic regulation of synaptic protein turnover belongs to the Fragile X Mental Retardation Protein, which regulates the efficiency of dendritic mRNA translation in response to stimulation of metabotropic glutamate receptors at excitatory synapses of the hippocampal pyramidal cells. Its activity is regulated via positive and negative regulatory loops that function in different time ranges, which is an absolute factor for the formation of chaotic regimes that lead to disrupted proteome stability. The indicated condition may cause a number of neuropsychiatric diseases, including autism and epilepsy. The present study is devoted to a theoretical analysis of the local translation system dynamic properties and identification of parameters affecting the chaotic potential of the system. Results A mathematical model that describes the maintenance of a specific pool of active receptors on the postsynaptic membrane via two mechanisms – de novo synthesis of receptor proteins and restoration of protein function during the recycling process – has been developed. Analysis of the model revealed that an increase in the values of the parameters describing the impact of protein recycling on the maintenance of a pool of active receptors in the membrane, duration of the signal transduction via the mammalian target of rapamycin pathway, influence of receptors on the translation activation, as well as reduction of the rate of synthesis and integration of de novo synthesized proteins into the postsynaptic membrane – contribute to the reduced complexity of the local translation system dynamic state. Formation of these patterns significantly depends on the complexity and non-linearity of the mechanisms of exposure of de novo synthesized receptors to the postsynaptic membrane, the correct evaluation of which is currently problematic. Conclusions The model predicts that an increase of “receptor recycling” and reduction of the rate of synthesis and integration of de novo synthesized proteins into the postsynaptic membrane contribute to the reduced complexity of the local translation system dynamic state. Herewith, stable stationary states occur much less frequently than cyclic states. It is possible that cyclical nature of functioning of the local translation system is its “normal” dynamic state.
Collapse
Affiliation(s)
- Tamara M Khlebodarova
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | | | - Vitaly A Likhoshvai
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
38
|
GABAergic Interneuron and Neurotransmission Are mTOR-Dependently Disturbed in Experimental Focal Cortical Dysplasia. Mol Neurobiol 2020; 58:156-169. [PMID: 32909150 DOI: 10.1007/s12035-020-02086-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/21/2020] [Indexed: 01/13/2023]
Abstract
Focal cortical dysplasia (FCD) is a major cause for drug-resistant epilepsies. The molecular and cellular mechanisms of epileptogenesis in FCD are still poorly understood. Some studies have suggested that deficiencies of γ-aminobutyric acid (GABA) system may play an important role in type II FCD, but it remains controversial. In order to examine whether and how GABAergic interneurons and synaptic function are affected, we generated a somatic mTOR hyperactivation-based mouse model of type II FCD by in utero electroporation, quantified densities of interneurons in the malformed cortices, and recorded miniature inhibitory postsynaptic currents in dysmorphic neurons. We detected 20-25% reduction of GABAergic interneurons within malformed cortices, independent of cortical regions and cell subtypes but proportionate to the decrease of global neuron counts. GABAergic synaptic transmission from interneurons to mTOR hyperactivated dysmorphic neurons was dramatically disrupted, outweighing the decrease of interneuron counts. Postnatal mTOR inhibition partially rescued these alterations of GABAergic system. We also quantified the expression of GABAA receptor, GABA transporter, and chloridion transporter encoding genes and found that their expression was relatively intact within the malformed cortices. Taken together, these results confirmed that GABAergic interneuron and synapse transmission are disturbed profoundly in an mTOR-dependent manner in type II FCD. Our study suggests that postsynaptic mechanisms independent of interneuron reduction or altered expression of GABA synapse genes might be accountable for the impaired GABAergic neurotransmission in type II FCD as well as other mTOR-related epilepsies.
Collapse
|
39
|
Jeong KH, Cho KO, Lee MY, Kim SY, Kim WJ. Vascular endothelial growth factor receptor-3 regulates astroglial glutamate transporter-1 expression via mTOR activation in reactive astrocytes following pilocarpine-induced status epilepticus. Glia 2020; 69:296-309. [PMID: 32835451 DOI: 10.1002/glia.23897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Recent evidence has shown that the vascular endothelial growth factor (VEGF) system plays a crucial role in several neuropathological processes. We previously reported an upregulation of VEGF-C and its receptor, VEGFR-3, in reactive astrocytes after the onset of status epilepticus (SE). However, it remains unknown, which molecules act as downstream signals following VEGFR-3 upregulation, and are involved in reactive astrogliosis after SE. Therefore, we investigated whether VEGFR-3 upregulation within reactive astrocytes is associated with the activation of mammalian target of rapamycin (mTOR) signaling, which we confirmed by assaying for the phosphorylated form of S6 protein (pS6), and whether VEGFR-3-mediated mTOR activation induces astroglial glutamate transporter-1 (GLT-1) expression in the hippocampus after pilocarpine-induced SE. We found that spatiotemporal expression of pS6 was consistent with VEGFR-3 expression in the hippocampus after SE, and that both pS6 and VEGFR-3 were highly expressed in SE-induced reactive astrocytes. Treatment with the mTOR inhibitor rapamycin decreased astroglial VEGFR-3 expression and GLT-1 expression after SE. Treatment with a selective inhibitor for VEGFR-3 attenuated astroglial pS6 expression as well as suppressed GLT-1 expression and astroglial reactivity in the hippocampus after SE. These findings demonstrate that VEGFR-3-mediated mTOR activation could contribute to the regulation of GLT-1 expression in reactive astrocytes during the subacute phase of epilepsy. In conclusion, the present study suggests that VEGFR-3 upregulation in reactive astrocytes may play a role in preventing hyperexcitability induced by continued seizure activity.
Collapse
Affiliation(s)
- Kyoung Hoon Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Ok Cho
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong Yun Kim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Hadouiri N, Darmency V, Guibaud L, Arzimanoglou A, Sorlin A, Carmignac V, Rivière JB, Huet F, Luu M, Bardou M, Thauvin-Robinet C, Vabres P, Faivre L. Compassionate use of everolimus for refractory epilepsy in a patient with MTOR mosaic mutation. Eur J Med Genet 2020; 63:104036. [PMID: 32805448 DOI: 10.1016/j.ejmg.2020.104036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
The MTOR gene encodes the mechanistic target of rapamycin (mTOR), which is a core component of the PI3K-AKT-mTOR signaling pathway. Postzygotic MTOR variants result in various mosaic phenotypes, referred to in OMIM as Smith-Kinsgmore syndrome or focal cortical dysplasia. We report here the case of a patient, with an MTOR mosaic gain-of-function variant (p.Glu2419Lys) in the DNA of 41% skin cells, who received compassionate off-label treatment with everolimus for refractory epilepsy. This 12-year-old-girl presented with psychomotor regression, intractable seizures, hypopigmentation along Blaschko's lines (hypomelanosis of Ito), asymmetric regional body overgrowth, and ocular anomalies, as well as left cerebral hemispheric hypertrophy with some focal underlying migration disorders. In response to the patient's increasingly frequent epileptic seizures, everolimus was initiated (after approval from the hospital ethics committee) at 5 mg/day and progressively increased to 12.5 mg/day. After 5 months of close monitoring (including neuropsychological and electroencephalographic assessment), no decrease in seizure frequency was observed. Though the physiopathological rationale was good, no significant clinical response was noticed under everolimus treatment. A clinical trial would be needed to draw conclusions, but, because the phenotype is extremely rare, it would certainly need to be conducted on an international scale.
Collapse
Affiliation(s)
- Nawale Hadouiri
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, CHU Dijon Bourgogne, 21079, Dijon, France
| | - Veronique Darmency
- Service de Neurophysiologie Clinique, Hôpital d'Enfants, CHU Dijon Bourgogne, 21079, Dijon, France
| | - Laurent Guibaud
- Radiologie Pédiatrique, Hôpital Femme Mère Enfant (HFME), Bron, France
| | - Alexis Arzimanoglou
- Service d'épileptologie Clinique, des Troubles du Sommeil et de Neurologie Fonctionnelle de l'enfant, Coordinateur du Réseau Européen pour les épilepsies Rares et Complexes, ERN EpiCARE, HCL - GH Est, Hôpital Femme Mère Enfant, Bron, France
| | - Arthur Sorlin
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, CHU Dijon Bourgogne, 21079, Dijon, France; Génétique des Anomalies du Développement, UMR1231, Université de Bourgogne, 21079, Dijon, France
| | - Virginie Carmignac
- Génétique des Anomalies du Développement, UMR1231, Université de Bourgogne, 21079, Dijon, France
| | - Jean-Baptiste Rivière
- Génétique des Anomalies du Développement, UMR1231, Université de Bourgogne, 21079, Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), CHU Dijon Bourgogne, 21079, Dijon, France
| | - Frédéric Huet
- Service de Neurophysiologie Clinique, Hôpital d'Enfants, CHU Dijon Bourgogne, 21079, Dijon, France
| | - Maxime Luu
- Centre d'Investigation Clinique Plurithématique, CHU Dijon Bourgogne, 21079, Dijon, France
| | - Marc Bardou
- Centre d'Investigation Clinique Plurithématique, CHU Dijon Bourgogne, 21079, Dijon, France
| | - Christel Thauvin-Robinet
- Génétique des Anomalies du Développement, UMR1231, Université de Bourgogne, 21079, Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), CHU Dijon Bourgogne, 21079, Dijon, France; Centre de Référence Déficiences Intellectuelles de Causes Rares Défi-Bourgogne, CHU Dijon Bourgogne, 21079, Dijon, France
| | - Pierre Vabres
- Génétique des Anomalies du Développement, UMR1231, Université de Bourgogne, 21079, Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), CHU Dijon Bourgogne, 21079, Dijon, France; Centre de Référence des Maladies Rares de la Peau et des Muqueuses d'origine Génétique (MAGEC), CHU Dijon Bourgogne, 21079, Dijon, France
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, CHU Dijon Bourgogne, 21079, Dijon, France; Génétique des Anomalies du Développement, UMR1231, Université de Bourgogne, 21079, Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), CHU Dijon Bourgogne, 21079, Dijon, France.
| |
Collapse
|
41
|
Suresh NT, E R V, U K. Multi-scale top-down approach for modelling epileptic protein-protein interaction network analysis to identify driver nodes and pathways. Comput Biol Chem 2020; 88:107323. [PMID: 32653778 DOI: 10.1016/j.compbiolchem.2020.107323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022]
Abstract
Protein - Protein Interaction Network (PPIN) analysis unveils molecular level mechanisms involved in disease condition. To explore the complex regulatory mechanisms behind epilepsy and to address the clinical and biological issues of epilepsy, in silico techniques are feasible in a cost- effective manner. In this work, a hierarchical procedure to identify influential genes and regulatory pathways in epilepsy prognosis is proposed. To obtain key genes and pathways causing epilepsy, integration of two benchmarked datasets which are exclusively devoted for complex disorders is done as an initial step. Using STRING database, PPIN is constructed for modelling protein-protein interactions. Further, key interactions are obtained from the established PPIN using network centrality measures followed by network propagation algorithm -Random Walk with Restart (RWR). The outcome of the method reveals some influential genes behind epilepsy prognosis, along with their associated pathways like PI3 kinase, VEGF signaling, Ras, Wnt signaling etc. In comparison with similar works, our results have shown improvement in identifying unique molecular functions, biological processes, gene co-occurrences etc. Also, CORUM provides an annotation for approximately 60% of similarity in human protein complexes with the obtained result. We believe that the formulated strategy can put-up the vast consideration of indigenous drugs towards meticulous identification of genes encoded by protein against several combinatorial disorders.
Collapse
Affiliation(s)
- Nikhila T Suresh
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, India
| | - Vimina E R
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| | - Krishnakumar U
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, India
| |
Collapse
|
42
|
Casillas‐Espinosa PM, Ali I, O'Brien TJ. Neurodegenerative pathways as targets for acquired epilepsy therapy development. Epilepsia Open 2020; 5:138-154. [PMID: 32524040 PMCID: PMC7278567 DOI: 10.1002/epi4.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
There is a growing body of clinical and experimental evidence that neurodegenerative diseases and epileptogenesis after an acquired brain insult may share common etiological mechanisms. Acquired epilepsy commonly develops as a comorbid condition in patients with neurodegenerative diseases such as Alzheimer's disease, although it is likely much under diagnosed in practice. Progressive neurodegeneration has also been described after traumatic brain injury, stroke, and other forms of brain insults. Moreover, recent evidence has shown that acquired epilepsy is often a progressive disorder that is associated with the development of drug resistance, cognitive decline, and worsening of other neuropsychiatric comorbidities. Therefore, new pharmacological therapies that target neurobiological pathways that underpin neurodegenerative diseases have potential to have both an anti-epileptogenic and disease-modifying effect on the seizures in patients with acquired epilepsy, and also mitigate the progressive neurocognitive and neuropsychiatric comorbidities. Here, we review the neurodegenerative pathways that are plausible targets for the development of novel therapies that could prevent the development or modify the progression of acquired epilepsy, and the supporting published experimental and clinical evidence.
Collapse
Affiliation(s)
- Pablo M. Casillas‐Espinosa
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Idrish Ali
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Terence J. O'Brien
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
- Department of NeurologyThe Alfred HospitalMelbourneVic.Australia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVic.Australia
| |
Collapse
|
43
|
Extracellular Vesicles in the Forebrain Display Reduced miR-346 and miR-331-3p in a Rat Model of Chronic Temporal Lobe Epilepsy. Mol Neurobiol 2019; 57:1674-1687. [PMID: 31813125 DOI: 10.1007/s12035-019-01797-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
Abstract
An initial precipitating injury in the brain, such as after status epilepticus (SE), evolves into chronic temporal lobe epilepsy (TLE). We investigated changes in the miRNA composition of extracellular vesicles (EVs) in the forebrain after the establishment of SE-induced chronic TLE. We induced SE in young Fischer 344 rats through graded intraperitoneal injections of kainic acid, which resulted in consistent spontaneous recurrent seizures at ~ 3 months post-SE. We isolated EVs from the entire forebrain of chronically epileptic rats and age-matched naïve control animals through an ultracentrifugation method and performed miRNA-sequencing studies to discern changes in the miRNA composition of forebrain-derived EVs in chronic epilepsy. EVs from both naïve and epileptic forebrains displayed spherical or cup-shaped morphology, a comparable size range, and CD63 expression but lacked the expression of a deep cellular marker GM130. However, miRNA-sequencing studies suggested downregulation of 3 miRNAs (miR-187-5p, miR-346, and miR-331-3p) and upregulation of 4 miRNAs (miR-490-5p, miR-376b-3p, miR-493-5p, and miR-124-5p) in EVs from epileptic forebrains with fold changes ranging from 1.5 to 2.4 (p < 0.0006; FDR < 0.05). By using geNorm and Normfinder software, we identified miR-487 and miR-221 as the best combination of reference genes for measurement of altered miRNAs found in the epileptic forebrain through qRT-PCR studies. The validation revealed that only miR-346 and miR-331-3p were significantly downregulated in EVs from the epileptic forebrain. The enrichment pathway analysis of these miRNAs showed an overrepresentation of signaling pathways that are linked to molecular mechanisms underlying chronic epilepsy, including GABA-ergic (miR-346 targets) and mTOR (miR-331-3p targets) systems. Thus, the packaging of two miRNAs into EVs in neural cells is considerably altered in chronic epilepsy. Functional studies on these two miRNAs may uncover their role in the pathophysiology and treatment of TLE.
Collapse
|
44
|
Anticonvulsant action of a selective phosphatidylinositol-3-kinase inhibitor LY294002 in pentylenetetrazole-mediated convulsions in zebrafish. Epilepsy Res 2019; 157:106207. [DOI: 10.1016/j.eplepsyres.2019.106207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/18/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022]
|
45
|
Dawson RE, Nieto Guil AF, Robertson LJ, Piltz SG, Hughes JN, Thomas PQ. Functional screening of GATOR1 complex variants reveals a role for mTORC1 deregulation in FCD and focal epilepsy. Neurobiol Dis 2019; 134:104640. [PMID: 31639411 DOI: 10.1016/j.nbd.2019.104640] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in the GAP activity toward RAGs 1 (GATOR1) complex genes (DEPDC5, NPRL2 and NPRL3) have been associated with focal epilepsy and focal cortical dysplasia (FCD). GATOR1 functions as an inhibitor of the mTORC1 signalling pathway, indicating that the downstream effects of mTORC1 deregulation underpin the disease. However, the vast majority of putative disease-causing variants have not been functionally assessed for mTORC1 repression activity. Here, we develop a novel in vitro functional assay that enables rapid assessment of GATOR1-gene variants. Surprisingly, of the 17 variants tested, we show that only six showed significantly impaired mTORC1 inhibition. To further investigate variant function in vivo, we generated a conditional Depdc5 mouse which modelled a 'second-hit' mechanism of disease. Generation of Depdc5 null 'clones' in the embryonic brain resulted in mTORC1 hyperactivity and modelled epilepsy and FCD symptoms including large dysmorphic neurons, defective migration and lower seizure thresholds. Using this model, we validated DEPDC5 variant F164del to be loss-of-function. We also show that Q542P is not functionally compromised in vivo, consistent with our in vitro findings. Overall, our data show that mTORC1 deregulation is the central pathological mechanism for GATOR1 variants and also indicates that a significant proportion of putative disease variants are pathologically inert, highlighting the importance of GATOR1 variant functional assessment.
Collapse
Affiliation(s)
- Ruby E Dawson
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Alvaro F Nieto Guil
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Louise J Robertson
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Sandra G Piltz
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - James N Hughes
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Paul Q Thomas
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; Precision Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| |
Collapse
|
46
|
FTO: An Emerging Molecular Player in Neuropsychiatric Diseases. Neuroscience 2019; 418:15-24. [DOI: 10.1016/j.neuroscience.2019.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/01/2023]
|
47
|
HPO-Shuffle: an associated gene prioritization strategy and its application in drug repurposing for the treatment of canine epilepsy. Biosci Rep 2019; 39:BSR20191247. [PMID: 31427480 PMCID: PMC6732366 DOI: 10.1042/bsr20191247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/03/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a common neurological disorder that affects mammalian species including human beings and dogs. In order to discover novel drugs for the treatment of canine epilepsy, multiomics data were analyzed to identify epilepsy associated genes. In this research, the original ranking of associated genes was obtained by two high-throughput bioinformatics experiments: Genome Wide Association Study (GWAS) and microarray analysis. The association ranking of genes was enhanced by a re-ranking system, HPO-Shuffle, which integrated information from GWAS, microarray analysis and Human Phenotype Ontology database for further downstream analysis. After applying HPO-Shuffle, the association ranking of epilepsy genes were improved. Afterward, a weighted gene coexpression network analysis (WGCNA) led to a set of gene modules, which hinted a clear relevance between the high ranked genes and the target disease. Finally, WGCNA and connectivity map (CMap) analysis were performed on the integrated dataset to discover a potential drug list, in which a well-known anticonvulsant phensuximide was included.
Collapse
|
48
|
Gruenbaum SE, Chen EC, Sandhu MRS, Deshpande K, Dhaher R, Hersey D, Eid T. Branched-Chain Amino Acids and Seizures: A Systematic Review of the Literature. CNS Drugs 2019; 33:755-770. [PMID: 31313139 DOI: 10.1007/s40263-019-00650-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Up to 40% of patients with epilepsy experience seizures despite treatment with antiepileptic drugs; however, branched-chain amino acid (BCAA) supplementation has shown promise in treating refractory epilepsy. OBJECTIVES The purpose of this systematic review was to evaluate all published studies that investigated the effects of BCAAs on seizures, emphasizing therapeutic efficacy and possible underlying mechanisms. METHODS On 31 January, 2017, the following databases were searched for relevant studies: MEDLINE (OvidSP), EMBASE (OvidSP), Scopus (Elsevier), the Cochrane Library, and the unindexed material in PubMed (National Library of Medicine/National Institutes of Health). The searches were repeated in all databases on 18 February, 2019. We only included full-length preclinical and clinical studies that were published in the English language that examined the effects of BCAA administration on seizures. RESULTS Eleven of 2045 studies met our inclusion criteria: ten studies were conducted in animal models and one study in human subjects. Seven seizure models were investigated: the strychnine (one study), pentylenetetrazole (two studies), flurothyl (one study), picrotoxin (two studies), genetic absence epilepsy in rats (one study), kainic acid (two studies), and methionine sulfoximine (one study) paradigms. Three studies investigated the effect of a BCAA mixture whereas the other studies explored the effects of individual BCAAs on seizures. In most animal models and in humans, BCAAs had potent anti-seizure effects. However, in the methionine sulfoximine model, long-term BCAA supplementation worsened seizure propagation and caused neuron loss, and in the genetic absence epilepsy in rats model, BCAAs exhibited pro-seizure effects. CONCLUSIONS The contradictory effects of BCAAs on seizure activity likely reflect differences in the complex mechanisms that underlie seizure disorders. Some of these mechanisms are likely mediated by BCAA's effects on glucose, glutamate, glutamine, and ammonia metabolism, activation of the mechanistic target of rapamycin signaling pathway, and their effects on aromatic amino acid transport and neurotransmitter synthesis. We propose that a better understanding of mechanisms by which BCAAs affect seizures and neuronal viability is needed to advance the field of BCAA supplementation in epilepsy.
Collapse
Affiliation(s)
- Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| | - Eric C Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Ketaki Deshpande
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Denise Hersey
- Lewis Science Library, Princeton University, Princeton, NJ, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
49
|
H S N, Paudel YN, K L K. Envisioning the neuroprotective effect of Metformin in experimental epilepsy: A portrait of molecular crosstalk. Life Sci 2019; 233:116686. [PMID: 31348946 DOI: 10.1016/j.lfs.2019.116686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Epilepsy is a neurological disorder characterized by an enduring predisposition to generate and aggravate epileptic seizures affecting around 1% of global population making it a serious health concern. Despite the recent advances in epilepsy research, no disease-modifying treatment able to terminate epileptogenesis have been reported yet reflecting the complexity in understanding the disease pathogenesis. To overcome the current treatment gap against epilepsy, one effective approach is to explore anti-epileptic effects from a drug that are approved to treat non-epileptic diseases. In this regard, Metformin emerged as an ideal candidate which is a first line treatment option for type 2 diabetes mellitus (T2DM), has conferred neuroprotection in several in vivo neurological disorders such as Alzheimer's diseases (AD), Parkinson's disease (PD), Stroke, Huntington's diseases (HD) including epilepsy. In addition, Metformin has ameliorated cognitive alteration, learning and memory induced by epilepsy as well as in animal model of AD. Herein, we review the promising findings demonstrated upon Metformin treatment against animal model of epilepsy however, the precise underlying mechanism of anti-epileptic potential of Metformin is not well understood. However, there is a growing understanding that Metformin demonstrates its anti-epileptic effect mainly via ameliorating brain oxidative damage, activation of AMPK, inhibition of mTOR pathway, downregulation of α-synuclein, reducing apoptosis, downregulation of BDNF and TrkB level. These reflects that Metformin being non-anti-epileptic drug (AED) has a potential to ameliorate the cellular pathways that were impaired in epilepsy reflecting its therapeutical potential against epileptic seizure that might plausibly overcome the limitations of today epilepsy treatment.
Collapse
Affiliation(s)
- Nandini H S
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Krishna K L
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru 570015, Karnataka, India.
| |
Collapse
|
50
|
Tanwar G, Mazumder AG, Bhardwaj V, Kumari S, Bharti R, Yamini, Singh D, Das P, Purohit R. Target identification, screening and in vivo evaluation of pyrrolone-fused benzosuberene compounds against human epilepsy using Zebrafish model of pentylenetetrazol-induced seizures. Sci Rep 2019; 9:7904. [PMID: 31133639 PMCID: PMC6536720 DOI: 10.1038/s41598-019-44264-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022] Open
Abstract
Pyrrolone-fused benzosuberene (PBS) compounds were semi-synthesized from α,β,γ-Himachalenes extracted from the essential oil of Cedrus deodara following amino-vinyl-bromide substituted benzosuberenes as intermediates. These PBSs compounds classified as an attractive source of therapeutics. The α-isoform of PI3K which is a pivotal modulator of PI3K/AKT/mTOR signaling pathway, responsible for neurological disorders like epilepsy, found as a potential target molecule against these 17 semi-synthesized PBS compounds using in silico ligand-based pharmacophore mapping and target screening. The compounds screened using binding affinities, ADMET properties, and toxicity that were accessed by in silico docking simulations and pharmacokinetics profiling. Ultimately two compounds viz., PBS-8 and PBS-9 were selected for further in vivo evaluation using a zebrafish (Danio rerio) model of pentylenetetrazol (PTZ)-induced clonic convulsions. Additionally, gene expression studies performed for the genes of the PI3K/AKT/mTOR pathway which further validated our results. In conclusion, these findings suggested that PBS-8 is a promising candidate that could bedeveloped as a potential antiepileptic.
Collapse
Affiliation(s)
- Garima Tanwar
- Structural Bioinformatics Laboratory, Biotechnology division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India
| | - Arindam Ghosh Mazumder
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Vijay Bhardwaj
- Structural Bioinformatics Laboratory, Biotechnology division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India
| | - Savita Kumari
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Richa Bharti
- Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Yamini
- Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Pralay Das
- Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Rituraj Purohit
- Structural Bioinformatics Laboratory, Biotechnology division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
| |
Collapse
|