1
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Köhler C, Kuntke P, Sahoo P, Wahl H, Deoni SCL, Gärtner J, Dreha-Kulaczewski S, Kitzler HH. Atlas-based assessment of hypomyelination: Quantitative MRI in Pelizaeus-Merzbacher disease. Hum Brain Mapp 2024; 45:e70014. [PMID: 39230009 PMCID: PMC11372820 DOI: 10.1002/hbm.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a rare childhood hypomyelinating leukodystrophy. Quantification of the pronounced myelin deficit and delineation of subtle myelination processes are of high clinical interest. Quantitative magnetic resonance imaging (qMRI) techniques can provide in vivo insights into myelination status, its spatial distribution, and dynamics during brain maturation. They may serve as potential biomarkers to assess the efficacy of myelin-modulating therapies. However, registration techniques for image quantification and statistical comparison of affected pediatric brains, especially those of low or deviant image tissue contrast, with healthy controls are not yet established. This study aimed first to develop and compare postprocessing pipelines for atlas-based quantification of qMRI data in pediatric patients with PMD and evaluate their registration accuracy. Second, to apply an optimized pipeline to investigate spatial myelin deficiency using myelin water imaging (MWI) data from patients with PMD and healthy controls. This retrospective single-center study included five patients with PMD (mean age, 6 years ± 3.8) who underwent conventional brain MRI and diffusion tensor imaging (DTI), with MWI data available for a subset of patients. Three methods of registering PMD images to a pediatric template were investigated. These were based on (a) T1-weighted (T1w) images, (b) fractional anisotropy (FA) maps, and (c) a combination of T1w, T2-weighted, and FA images in a multimodal approach. Registration accuracy was determined by visual inspection and calculated using the structural similarity index method (SSIM). SSIM values for the registration approaches were compared using a t test. Myelin water fraction (MWF) was quantified from MWI data as an assessment of relative myelination. Mean MWF was obtained from two PMDs (mean age, 3.1 years ± 0.3) within four major white matter (WM) pathways of a pediatric atlas and compared to seven healthy controls (mean age, 3 years ± 0.2) using a Mann-Whitney U test. Our results show that visual registration accuracy estimation and computed SSIM were highest for FA-based registration, followed by multimodal, and T1w-based registration (SSIMFA = 0.67 ± 0.04 vs. SSIMmultimodal = 0.60 ± 0.03 vs. SSIMT1 = 0.40 ± 0.14). Mean MWF of patients with PMD within the WM pathways was significantly lower than in healthy controls MWFPMD = 0.0267 ± 0.021 vs. MWFcontrols = 0.1299 ± 0.039. Specifically, MWF was measurable in brain structures known to be myelinated at birth (brainstem) or postnatally (projection fibers) but was scarcely detectable in other brain regions (commissural and association fibers). Taken together, our results indicate that registration accuracy was highest with an FA-based registration pipeline, providing an alternative to conventional T1w-based registration approaches in the case of hypomyelinating leukodystrophies missing normative intrinsic tissue contrasts. The applied atlas-based analysis of MWF data revealed that the extent of spatial myelin deficiency in patients with PMD was most pronounced in commissural and association and to a lesser degree in brainstem and projection pathways.
Collapse
Affiliation(s)
- Caroline Köhler
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Prativa Sahoo
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Hannes Wahl
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sean C L Deoni
- Advanced Baby Imaging Lab, School of Engineering, Brown University, Providence, Rhode Island, USA
- Maternal, Newborn, and Child Health Discovery and Tools, Bill and Melinda Gates Foundation, Seattle, Washington, USA
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Hagen H Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Dreha-Kulaczewski S, Sahoo P, Preusse M, Gkalimani I, Dechent P, Helms G, Hofer S, Steinfeld R, Gärtner J. Folate receptor α deficiency - Myelin-sensitive MRI as a reliable biomarker to monitor the efficacy and long-term outcome of a new therapeutic approach. J Inherit Metab Dis 2024; 47:387-403. [PMID: 38200656 DOI: 10.1002/jimd.12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Cerebral folate transport deficiency, caused by a genetic defect in folate receptor α, is a devastating neurometabolic disorder that, if untreated, leads to epileptic encephalopathy, psychomotor decline and hypomyelination. Currently, there are limited data on effective dosage and duration of treatment, though early diagnosis and therapy with folinic acid appears critical. The aim of this long-term study was to identify new therapeutic approaches and novel biomarkers for assessing efficacy, focusing on myelin-sensitive MRI. Clinical, biochemical, structural and quantitative MRI parameters of seven patients with genetically confirmed folate receptor α deficiency were acquired over 13 years. Multimodal MRI approaches comprised MR-spectroscopy (MRS), magnetization transfer (MTI) and diffusion tensor imaging (DTI) sequences. Patients started oral treatment immediately following diagnosis or in an interval of up to 2.5 years. Escalation to intravenous and intrathecal administration was performed in the absence of effects. Five patients improved, one with a presymptomatic start of therapy remained symptom-free, and one with inconsistent treatment deteriorated. While CSF 5-methyltetrahydrofolate and MRS parameters normalized immediately after therapy initiation, myelin-sensitive MTI and DTI measures correlated with gradual clinical improvement and ongoing myelination under therapy. Early initiation of treatment at sufficient doses, considering early intrathecal applications, is critical for favorable outcome. The majority of patients showed clinical improvements that correlated best with MTI parameters, allowing individualized monitoring of myelination recovery. Presymptomatic therapy seems to ensure normal development and warrants newborn screening. Furthermore, the quantitative parameters of myelin-sensitive MRI for therapy assessments can now be used for hypomyelination disorders in general.
Collapse
Affiliation(s)
- Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Prativa Sahoo
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Preusse
- Kinderkrankenhaus Amsterdamer Strasse, Klinik für Kinder- und Jugendmedizin, Köln, Germany
| | - Irini Gkalimani
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Dechent
- MR-Research in Neuroscience, Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Gunther Helms
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Sabine Hofer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Steinfeld
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Yamamoto A, Shimizu-Motohashi Y, Ishiyama A, Kurosawa K, Sasaki M, Sato N, Osaka H, Takanashi JI, Inoue K. An Open-Label Administration of Bioavailable-Form Curcumin in Patients With Pelizaeus-Merzbacher Disease. Pediatr Neurol 2024; 151:80-83. [PMID: 38134864 DOI: 10.1016/j.pediatrneurol.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Two preclinical studies using mouse models of Pelizeaus-Merzbacher disease (PMD) have revealed the potential therapeutic effects of curcumin. In this study, we examined the effects of curcumin in patients with PMD. METHODS We conducted a study administering an open-label oral bioavailable form of curcumin in nine patients genetically confirmed to have PMD (five to 20 years; mean 11 years) for 12 months (low doses for two months followed by high doses for 10 months). We evaluated changes in clinical symptoms as the primary end point using two scales, Gross Motor Function Measure (GMFM) and the PMD Functional Disability Score (PMD-FDS). The level of myelination by brain magnetic resonance imaging (MRI) and the electrophysiological state by auditory brainstem response (ABR) were evaluated as secondary end points. The safety and tolerability of oral curcumin were also examined. RESULTS Increase in GMFM and PMD-FDS were noted in five and three patients, respectively, but overall, no statistically significant improvement was demonstrated. We found no clear improvement in their brain MRI or ABR. No adverse events associated with oral administration of curcumin were observed. CONCLUSIONS Although we failed to demonstrate any significant therapeutic effects of curcumin after 12 months, its tolerability and safety were confirmed. This study does not exclude the possibility of therapeutic effects of curcumin, and a trial of longer duration should be considered to compare the natural history of the disease with the effects of curcumin.
Collapse
Affiliation(s)
- Akiyo Yamamoto
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotuke, Japan
| | - Jun-Ichi Takanashi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.
| |
Collapse
|
5
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
6
|
Trepanier AM, Aguilar S, Kamholz J, Laukka JJ. The natural history of Pelizaeus-Merzbacher disease caused by PLP1 duplication: A multiyear case series. Clin Case Rep 2023; 11:e7814. [PMID: 37636890 PMCID: PMC10457477 DOI: 10.1002/ccr3.7814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
This study aimed to characterize the clinical features, developmental milestones, and the natural history of Pelizaeus-Merzbacher disease (PMD) associated with PLP1 gene duplications. The study examined 16 PMD Patients ranging in age from 7 to 48 years, who had a documented PLP1 gene duplication. The study examined and analyzed the medical and developmental histories of the subjects utilizing a combination of resources that included medical history questionnaires, medical record reviews, and a 31-point functional disability scale that had been previously validated. The data extracted from the medical records and questionnaires for analysis included information related to medical and developmental histories, level of ambulation and cognition, and degree of functional disability. The summation of findings among the study population demonstrated that the presenting symptoms, developmental milestones achieved, and progression of symptoms reported are consistent with many previous studies of patients with PLP1 duplications. All patients exhibited onset within the first year of life, with nystagmus predominating as the first symptom noticed. All patients exhibited delays in both motor and language development; however, many individuals were able to meet several developmental milestones. They exhibited some degree of continued motor impairment with none having the ability to walk independently. All patients were able to complete at least some of the cognition achievements and although not all were verbal, a number were able to use communication devices to complete these tasks. A critical tool of the study was the functional disability scale which provided a major advantage in helping quantify the clinical course of PMD, and for several, we were able to gather this information at more than one point in time. These reported findings in our cohort contribute important insight into the clinical heterogeneity and potential underlying mechanisms that define the molecular pathogenesis of the disease. This is one of only a small number of natural history studies examining the clinical course of a cohort of patients with PLP1 duplications within the context of a validated functional disability scoring system. This study is unique in that it is limited to subjects with PLP1 gene duplications. This study demonstrated many commonalities to other studies that have characterized the features of PMD and other PLP1-related disorders but also provide significant new insights into the evolving story that marks the natural history.
Collapse
Affiliation(s)
- Angela M. Trepanier
- Center for Molecular Medicine and GeneticsWayne State University School of MedicineDetroitMichiganUSA
| | - Sienna Aguilar
- Center for Molecular Medicine and GeneticsWayne State University School of MedicineDetroitMichiganUSA
- Invitae, Inc.San FranciscoCaliforniaUSA
| | - John Kamholz
- Center for Molecular Medicine and GeneticsWayne State University School of MedicineDetroitMichiganUSA
- Department of NeurologyUniversity of Iowa Carver College of MedicineIowa CityIowaUSA
| | - Jeremy J. Laukka
- Department of Medical EducationUniversity of Toledo College of Medicine & Life SciencesToledoOhioUSA
- Department of NeurologyUniversity of Toledo College of Medicine & Life SciencesToledoOhioUSA
| |
Collapse
|
7
|
Harting I, Garbade SF, Rosendaal SD, Mohr A, Sherbini O, Vanderver A, Wolf NI. Identification of PMD subgroups using a myelination score for PMD. Eur J Paediatr Neurol 2022; 41:71-79. [PMID: 36368233 PMCID: PMC11348679 DOI: 10.1016/j.ejpn.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The clinical spectrum of Pelizaeus-Merzbacher disease (PMD), a common hypomyelinating leukodystrophy, ranges between severe neonatal onset and a relatively stable presentation with later onset and mainly lower limb spasticity. In view of emerging treatment options and in order to grade severity and progression, we developed a PMD myelination score. METHODS Myelination was scored in 15 anatomic sites (items) on conventional T2-and T1w images in controls (n = 328) and 28 PMD patients (53 MRI; n = 5 connatal, n = 3 transitional, n = 10 classic, n = 3 intermediate, n = 2 PLP0, n = 3 SPG2, n = 2 female). Items included in the score were selected based on interrater variability, practicability of scoring and importance of scoring items for discrimination between patients and controls and between patient subgroups. Bicaudate ratio, maximal sagittal pons diameter, and visual assessment of midsagittal corpus callosum were separately recorded. RESULTS The resulting myelination score consisting of 8 T2-and 5 T1-items differentiates patients and controls as well as patient subgroups at first MRI. There was very little myelin and early loss in severely affected connatal and transitional patients, more, though still severely deficient myelin in classic PMD, ongoing myelination during childhood in classic and intermediate PMD. Atrophy, present in 50% of patients, increased with age at imaging. CONCLUSIONS The proposed myelination score allows stratification of PMD patients and standardized assessment of follow-up. Loss of myelin in severely affected and PLP0 patients and progressing myelination in classic and intermediate PMD must be considered when evaluating treatment efficacy.
Collapse
Affiliation(s)
- Inga Harting
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 60120, Heidelberg, Germany
| | - Sven F Garbade
- Centre for Child and Adolescent Medicine, Clinic I, Division of Child Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | | | - Alexander Mohr
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 60120, Heidelberg, Germany
| | - Omar Sherbini
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, VU University, and Amsterdam Neuroscience, Cellular&Molecular Mechanisms, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Laukka JJ, Kain KM, Rathnam AS, Sohi J, Khatib D, Kamholz J, Stanley JA. Altered high-energy phosphate and membrane metabolism in Pelizaeus–Merzbacher disease using phosphorus magnetic resonance spectroscopy. Brain Commun 2022; 4:fcac202. [PMID: 36003325 PMCID: PMC9396944 DOI: 10.1093/braincomms/fcac202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/06/2022] [Accepted: 08/04/2022] [Indexed: 11/14/2022] Open
Abstract
Pelizaeus–Merzbacher disease is an X-linked recessive leucodystrophy of the central nervous system caused by mutations affecting the major myelin protein, proteolipid protein 1. The extent of the altered in vivo neurochemistry of protein, proteolipid protein 1 duplications, the most common form of Pelizaeus–Merzbacher disease, is, however, poorly understood. Phosphorus magnetic resonance spectroscopy is the only in vivo technique that can assess the biochemistry associated with high-energy phosphate and membrane phospholipid metabolism across different cortical, subcortical and white matter areas. In this cross-sectional study, whole-brain, multi-voxel phosphorus magnetic resonance spectroscopy was acquired at 3 T on 14 patients with Pelizaeus–Merzbacher disease with protein, proteolipid protein 1 duplications and 23 healthy controls (all males). Anabolic and catabolic levels of membrane phospholipids (phosphocholine and phosphoethanolamine, and glycerophosphoethanolamine and glycerophosphocholine, respectively), as well as phosphocreatine, inorganic orthophosphate and adenosine triphosphate levels relative to the total phosphorus magnetic resonance spectroscopy signal from 12 different cortical and subcortical areas were compared between the two groups. Independent of brain area, phosphocholine, glycerophosphoethanolamine and inorganic orthophosphate levels were significantly lower (P = 0.0025, P < 0.0001 and P = 0.0002) and phosphocreatine levels were significantly higher (P < 0.0001) in Pelizaeus–Merzbacher disease patients compared with controls. Additionally, there was a significant group-by-brain area interaction for phosphocreatine with post-hoc analyses demonstrating significantly higher phosphocreatine levels in patients with Pelizaeus–Merzbacher disease compared with controls across multiple brain areas (anterior and posterior white matter, superior parietal lobe, posterior cingulate cortex, hippocampus, occipital cortex, striatum and thalamus; all P ≤ 0.0042). Phosphoethanolamine, glycerophosphoethanolamine and adenosine triphosphate levels were not significantly different between groups. For the first-time, widespread alterations in phosphorus magnetic resonance spectroscopy metabolite levels of Pelizaeus–Merzbacher disease patients are being reported. Specifically, increased high-energy phosphate storage levels of phosphocreatine concomitant with decreased inorganic orthophosphate across multiple areas suggest a widespread reduction in the high-energy phosphate utilization in Pelizaeus–Merzbacher disease, and the membrane phospholipid metabolite deficits suggest a widespread degradation in the neuropil content/maintenance of patients with Pelizaeus–Merzbacher disease which includes axons, dendrites and astrocytes within cortex and the myelin microstructure and oligodendrocytes within white matter. These results provide greater insight into the neuropathology of Pelizaeus–Merzbacher disease both in terms of energy expenditure and membrane phospholipid metabolites. Future longitudinal studies are warranted to investigate the utility of phosphorus magnetic resonance spectroscopy as surrogate biomarkers in monitoring treatment intervention for Pelizaeus–Merzbacher disease.
Collapse
Affiliation(s)
- Jeremy J Laukka
- Department of Medical Education, University of Toledo College of Medicine and Life Sciences , Toledo, OH , USA
- Department of Neurology, University of Toledo College of Medicine and Life Sciences , Toledo, OH , USA
| | - Kevin M Kain
- College of Osteopathic Medicine, Kansas City University , Kansas City, MO , USA
| | | | - Jasloveleen Sohi
- Department of Neurology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine , MI , USA
| | - Dalal Khatib
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine , Detroit, MI , USA
| | - John Kamholz
- Department of Neurology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine , MI , USA
- Department of Neurology, University of Iowa Carver College of Medicine , Iowa City, IA , USA
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine , Detroit, MI , USA
| |
Collapse
|
9
|
Zarekiani P, Nogueira Pinto H, Hol EM, Bugiani M, de Vries HE. The neurovascular unit in leukodystrophies: towards solving the puzzle. Fluids Barriers CNS 2022; 19:18. [PMID: 35227276 PMCID: PMC8887016 DOI: 10.1186/s12987-022-00316-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
The neurovascular unit (NVU) is a highly organized multicellular system localized in the brain, formed by neuronal, glial (astrocytes, oligodendrocytes, and microglia) and vascular (endothelial cells and pericytes) cells. The blood-brain barrier, a complex and dynamic endothelial cell barrier in the brain microvasculature that separates the blood from the brain parenchyma, is a component of the NVU. In a variety of neurological disorders, including Alzheimer's disease, multiple sclerosis, and stroke, dysfunctions of the NVU occurs. There is, however, a lack of knowledge regarding the NVU function in leukodystrophies, which are rare monogenic disorders that primarily affect the white matter. Since leukodystrophies are rare diseases, human brain tissue availability is scarce and representative animal models that significantly recapitulate the disease are difficult to develop. The introduction of human induced pluripotent stem cells (hiPSC) now makes it possible to surpass these limitations while maintaining the ability to work in a biologically relevant human context and safeguarding the genetic background of the patient. This review aims to provide further insights into the NVU functioning in leukodystrophies, with a special focus on iPSC-derived models that can be used to dissect neurovascular pathophysiology in these diseases.
Collapse
Affiliation(s)
- Parand Zarekiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Henrique Nogueira Pinto
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Zarekiani P, Breur M, Wolf NI, de Vries HE, van der Knaap MS, Bugiani M. Pathology of the neurovascular unit in leukodystrophies. Acta Neuropathol Commun 2021; 9:103. [PMID: 34082828 PMCID: PMC8173888 DOI: 10.1186/s40478-021-01206-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The blood-brain barrier is a dynamic endothelial cell barrier in the brain microvasculature that separates the blood from the brain parenchyma. Specialized brain endothelial cells, astrocytes, neurons, microglia and pericytes together compose the neurovascular unit and interact to maintain blood-brain barrier function. A disturbed brain barrier function is reported in most common neurological disorders and may play a role in disease pathogenesis. However, a comprehensive overview of how the neurovascular unit is affected in a wide range of rare disorders is lacking. Our aim was to provide further insights into the neuropathology of the neurovascular unit in leukodystrophies to unravel its potential pathogenic role in these diseases. Leukodystrophies are monogenic disorders of the white matter due to defects in any of its structural components. Single leukodystrophies are exceedingly rare, and availability of human tissue is unique. Expression of selective neurovascular unit markers such as claudin-5, zona occludens 1, laminin, PDGFRβ, aquaporin-4 and α-dystroglycan was investigated in eight different leukodystrophies using immunohistochemistry. We observed tight junction rearrangements, indicative of endothelial dysfunction, in five out of eight assessed leukodystrophies of different origin and an altered aquaporin-4 distribution in all. Aquaporin-4 redistribution indicates a general astrocytic dysfunction in leukodystrophies, even in those not directly related to astrocytic pathology or without prominent reactive astrogliosis. These findings provide further evidence for dysfunction in the orchestration of the neurovascular unit in leukodystrophies and contribute to a better understanding of the underlying disease mechanism.
Collapse
Affiliation(s)
- Parand Zarekiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, de Boelelaan 1117, 1081HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjolein Breur
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nicole I. Wolf
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjo S. van der Knaap
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Child Neurology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam and Amsterdam Neuroscience, de Boelelaan 1117, 1081HV Amsterdam, The Netherlands
- Amsterdam Leukodystrophy Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Expanding the Clinical and Mutational Spectrum of the PLP1-Related Hypomyelination of Early Myelinated Structures (HEMS). Brain Sci 2021; 11:brainsci11010093. [PMID: 33450882 PMCID: PMC7828325 DOI: 10.3390/brainsci11010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
The PLP1 gene, located on chromosome Xq22, encodes the proteolipid protein 1 and its isoform DM20. Mutations in PLP1 cause a spectrum of white matter disorders of variable severity. Here we report on four additional HEMS patients from three families harboring three novel PLP1 mutations in exon 3B detected by targeted next-generation sequencing. Patients experienced psychomotor delay or nystagmus in the first year of age and then developed ataxic-spastic or ataxic syndrome, compatible with a phenotype of intermediate severity in the spectrum of PLP1-related disorders. Regression occurred at the beginning of the third decade of the eldest patient. Extrapyramidal involvement was rarely observed. Brain MRI confirmed the involvement of structures that physiologically myelinate early, although the pattern of abnormalities may differ depending on the age at which the study is performed. These new cases contribute to expanding the phenotypic and genotypic spectrum of HEMS. Additional studies, especially enriched by systematic functional evaluations and long-term follow-up, are welcome to better delineate the natural history of this rare hypomyelinating leukodystrophy.
Collapse
|
12
|
Abstract
Hypomyelinating leukodystrophies constitute a subset of genetic white matter disorders characterized by a primary lack of myelin deposition. Most patients with severe hypomyelination present in infancy or early childhood and develop severe neurological deficits, but the clinical presentation can also be mild with onset of symptoms in adolescence or adulthood. MRI can be used to visualize the process of myelination in detail, and MRI pattern recognition can provide a clinical diagnosis in many patients. Next-generation sequencing provides a definitive diagnosis in 80-90% of patients. Genes associated with hypomyelination include those that encode structural myelin proteins but also many that encode proteins involved in RNA translation and some lysosomal proteins. The precise pathomechanisms remain to be elucidated. Improved understanding of the process of myelination, the metabolic axonal support functions of myelin and the proposed contribution of myelin to CNS plasticity provide possible explanations as to why almost all patients with hypomyelination experience slow clinical decline after a long phase of stability. In this Review, we provide an overview of the hypomyelinating leukodystrophies, the advances in our understanding of myelin biology and of the genes involved in these disorders, and the insights these advances have provided into their clinical presentations and evolution.
Collapse
|
13
|
Prior C, Muñoz-Calero M, Gómez-Gonzalez C, Martinez-Montero P, Barrio L, Poo P, Martorell L, Molano J. A novel PLP1 deletion causing classic Pelizaeus-Merzbacher disease. J Neurol Sci 2019; 397:135-137. [DOI: 10.1016/j.jns.2018.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022]
|
14
|
Tantzer S, Sperle K, Kenaley K, Taube J, Hobson GM. Morpholino Antisense Oligomers as a Potential Therapeutic Option for the Correction of Alternative Splicing in PMD, SPG2, and HEMS. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:420-432. [PMID: 30195779 PMCID: PMC6036941 DOI: 10.1016/j.omtn.2018.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 01/10/2023]
Abstract
DNA variants of the proteolipid protein 1 gene (PLP1) that shift PLP1/DM20 alternative splicing away from the PLP1 form toward DM20 cause the allelic X-linked leukodystrophies Pelizaeus-Merzbacher disease (PMD), spastic paraplegia 2 (SPG2), and hypomyelination of early myelinating structures (HEMS). We designed a morpholino oligomer (MO-PLP) to block use of the DM20 5' splice donor site, thereby shifting alternative splicing toward the PLP1 5' splice site. Treatment of an immature oligodendrocyte cell line with MO-PLP significantly shifted alternative splicing toward PLP1 expression from the endogenous gene and from transfected human minigene splicing constructs harboring patient variants known to reduce the amount of the PLP1 spliced product. Additionally, a single intracerebroventricular injection of MO-PLP into the brains of neonatal mice, carrying a deletion of an intronic splicing enhancer identified in a PMD patient that reduces the Plp1 spliced form, corrected alternative splicing at both RNA and protein levels in the CNS. The effect lasted to post-natal day 90, well beyond the early post-natal spike in myelination and PLP production. Further, the single injection produced a sustained reduction of inflammatory markers in the brains of the mice. Our results suggest that morpholino oligomers have therapeutic potential for the treatment of PMD, SPG2, and HEMS.
Collapse
Affiliation(s)
- Stephanie Tantzer
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Karen Sperle
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kaitlin Kenaley
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Pediatrics/Neonatology, Christiana Care Health System, Newark, DE 19713, USA
| | - Jennifer Taube
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
15
|
Velasco Parra HM, Maradei Anaya SJ, Acosta Guio JC, Arteaga Diaz CE, Prieto Rivera JC. Clinical and mutational spectrum of Colombian patients with Pelizaeus Merzbacher Disease. Colomb Med (Cali) 2018; 49:182-187. [PMID: 30104812 PMCID: PMC6084915 DOI: 10.25100/cm.v49i2.2522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/25/2017] [Accepted: 11/02/2017] [Indexed: 11/11/2022] Open
Abstract
CASE PRESENTATION Pelizaeus Merzbacher Disease (PMD) is an X-linked developmental defect of myelination that causes childhood chronic spastic encephalopathy. Its genetic etiology can be either a duplication (or other gene dosage alterations) or a punctual mutation at the PLP1 locus. Clinically, it presents with developmental delay, nystagmus and, spasticity, supported by neuroimaging in which the defect of myelination is evident. We present a series of seven Colombian patients diagnosed with this leucodystrophy, describing their genotypic and phenotypic characteristics and heterogeneity. CLINICAL FINDINGS All patients included were male, 6 months to 16 years of age. Mean age at onset of symptoms was 8 months. Mean age at diagnosis was 5 years 5 months, being classic PMD most frequently diagnosed, as compared to the connatal phenotype. All cases had a primary diagnosis of developmental delay on 100%, and in 28.7% of cases, early onset nystagmus was described. 85.7% of patients had spasticity, 71.4% cerebellar signs, 57.0% hypotonia, and 28.5% had an abnormal movement disorder. Only three patients were able to achieve gait, though altered. In the two patients who had a diagnosis of connatal PMD maturational ages in danger zones according to the WHO Abbreviated Scale of Psychosocial Development were documented. All cases had abnormalities in neuroimages. MOLECULAR ANALYSIS AND RESULTS Molecular studies were used in the majority of the cases to confirm the diagnosis (85.7 %). For two cases molecular confirmation was not considered necessary given their affected male brothers had already been tested. PLP1 gene dosage alterations (duplications) were found in 28.5 % of the patients (two siblings), whereas three different single nucleotide variants were detected. CLINICAL RELEVANCE According to these findings, as authors we propose the diagnostic algorithm in Colombian population to begin on a high clinical suspicion, followed by paraclinical extension, moving on to the molecular confirmation by using approaches to simultaneously sequence the PLP1 gene in order to detect point mutations and in/dels and performing a copy number variation analysis for the detection of gene dosage alterations.
Collapse
Affiliation(s)
- Harvy Mauricio Velasco Parra
- Maestria en Genética Humana, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Hospital Militar Central, Bogotá, Colombia
- Instituto de Ortopedia Infantil Roosevelt, Bogotá, Colombia
| | | | - Johanna Carolina Acosta Guio
- Maestria en Genética Humana, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Instituto de Ortopedia Infantil Roosevelt, Bogotá, Colombia
| | | | - Juan Carlos Prieto Rivera
- Genetica Medica, Facultad de Medicina, Pontificia Universidad Javeriana. Bogotá, Colombia
- Hospital La Victoria, Bogotá, Colombia
| |
Collapse
|
16
|
Auditory function in Pelizaeus–Merzbacher disease. J Neurol 2018; 265:1580-1589. [DOI: 10.1007/s00415-018-8884-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
|
17
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:823-858.e11. [DOI: 10.1016/b978-0-323-42876-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked disorder caused by mutations in the PLP1 gene, which encodes the proteolipid protein of myelinating oligodendroglia. PMD exhibits phenotypic variability that reflects its considerable genotypic heterogeneity, but all forms of the disease result in central hypomyelination associated with early neurologic dysfunction, progressive deterioration, and ultimately death. PMD has been classified into three major subtypes, according to the age of presentation: connatal PMD, classic PMD, and transitional PMD, combining features of both connatal and classic forms. Two other less severe phenotypes were subsequently described, including the spastic paraplegia syndrome and PLP1-null disease. These disorders may be associated with duplications, as well as with point, missense, and null mutations within the PLP1 gene. A number of clinically similar Pelizaeus-Merzbacher-like disorders (PMLD) are considered in the differential diagnosis of PMD, the most prominent of which is PMLD-1, caused by misexpression of the GJC2 gene encoding connexin-47. No effective therapy for PMD exists. Yet, as a relatively pure central nervous system hypomyelinating disorder, with limited involvement of the peripheral nervous system and little attendant neuronal pathology, PMD is an attractive therapeutic target for neural stem cell and glial progenitor cell transplantation, efforts at which are now underway in a number of centers internationally.
Collapse
Affiliation(s)
- M Joana Osório
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
19
|
Nevin ZS, Factor DC, Karl RT, Douvaras P, Laukka J, Windrem MS, Goldman SA, Fossati V, Hobson GM, Tesar PJ. Modeling the Mutational and Phenotypic Landscapes of Pelizaeus-Merzbacher Disease with Human iPSC-Derived Oligodendrocytes. Am J Hum Genet 2017; 100:617-634. [PMID: 28366443 DOI: 10.1016/j.ajhg.2017.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a pediatric disease of myelin in the central nervous system and manifests with a wide spectrum of clinical severities. Although PMD is a rare monogenic disease, hundreds of mutations in the X-linked myelin gene proteolipid protein 1 (PLP1) have been identified in humans. Attempts to identify a common pathogenic process underlying PMD have been complicated by an incomplete understanding of PLP1 dysfunction and limited access to primary human oligodendrocytes. To address this, we generated panels of human induced pluripotent stem cells (hiPSCs) and hiPSC-derived oligodendrocytes from 12 individuals with mutations spanning the genetic and clinical diversity of PMD-including point mutations and duplication, triplication, and deletion of PLP1-and developed an in vitro platform for molecular and cellular characterization of all 12 mutations simultaneously. We identified individual and shared defects in PLP1 mRNA expression and splicing, oligodendrocyte progenitor development, and oligodendrocyte morphology and capacity for myelination. These observations enabled classification of PMD subgroups by cell-intrinsic phenotypes and identified a subset of mutations for targeted testing of small-molecule modulators of the endoplasmic reticulum stress response, which improved both morphologic and myelination defects. Collectively, these data provide insights into the pathogeneses of a variety of PLP1 mutations and suggest that disparate etiologies of PMD could require specific treatment approaches for subsets of individuals. More broadly, this study demonstrates the versatility of a hiPSC-based panel spanning the mutational heterogeneity within a single disease and establishes a widely applicable platform for genotype-phenotype correlation and drug screening in any human myelin disorder.
Collapse
Affiliation(s)
- Zachary S Nevin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel C Factor
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert T Karl
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Jeremy Laukka
- Departments of Neurology and Neuroscience, College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Neuroscience, Faculty of Medicine and Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Valentina Fossati
- New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
20
|
Sarret C, Lemaire JJ, Tonduti D, Sontheimer A, Coste J, Pereira B, Feschet F, Roche B, Boespflug-Tanguy O. Time-course of myelination and atrophy on cerebral imaging in 35 patients with PLP1-related disorders. Dev Med Child Neurol 2016; 58:706-13. [PMID: 26786043 DOI: 10.1111/dmcn.13025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 11/27/2022]
Abstract
AIM Brain magnetic resonance imaging (MRI) motor development score (MDS) correlations were used to analyze the natural time-course of hypomyelinating PLP1-related disorders (Pelizaeus-Merzbacher disease [PMD] and spastic paraplegia type 2). METHOD Thirty-five male patients (ranging from 0.7-43.5y at the first MRI) with PLP1-related disorder were prospectively followed over 7 years. Patients were classified according to best motor function acquired before 5 years (MDS) into five categories (from PMD0 without motor acquisition to PMD4 with autonomous walking). We determined myelination and atrophy scores and measured corpus callosum area, volume of cerebellum, white matter and grey matter on 63 MRI. RESULTS Age-adjusted multivariate analysis revealed that patients with PMD0-1 had higher-severity atrophy scores and smaller corpus callosum area than did patients with PMD2 and PMD3-4. Myelination score increased until 12 years. There was evidence that the mean myelination differed in frontal white matter, arcuate fibres, and internal capsules among the groups. Most patients showed worsening atrophy (brain, cerebellum, corpus callosum), whereas grey matter and white matter proportions did not change. INTERPRETATION Brain atrophy and myelination of anterior cerebral regions appear to be pertinent biomarkers of motor development. The time-course of inter- and intra-individual cerebral white matter and grey matter atrophy suggests that both oligodendrocytes and neurons are involved in the physiopathology of PLP1-related disorders.
Collapse
Affiliation(s)
- Catherine Sarret
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France.,Department of Paediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France.,Department of Neurosurgery, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Davide Tonduti
- Inserm U1141 Paris Diderot Sorbonne University-Paris Cité, DHU PROTECT, Robert Debré Hospital, Paris, France.,Department of Child Neurology, Neurological Institute C. Besta Foundation IRCCS, Milan, Italy
| | - Anna Sontheimer
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France
| | - Jerome Coste
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France.,Biostatistics Unit (DRCI), Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Fabien Feschet
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France
| | - Basile Roche
- Image-Guided Clinical Neuroscience and Connectomics (IGCNC), Clermont University, University of Auvergne, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Inserm U1141 Paris Diderot Sorbonne University-Paris Cité, DHU PROTECT, Robert Debré Hospital, Paris, France.,Department of Child Neurology and Metabolic Diseases, Leukodystrophies Reference Centre, Robert Debré Hospital, Paris, France
| |
Collapse
|
21
|
Affiliation(s)
- Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
22
|
The magnetic resonance imaging spectrum of Pelizaeus-Merzbacher disease: A multicenter study of 19 patients. Brain Dev 2016; 38:571-80. [PMID: 26774704 DOI: 10.1016/j.braindev.2015.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/21/2022]
Abstract
PURPOSE We retrospectively evaluated the imaging spectrum of Pelizaeus-Merzbacher disease (PMD) in correlation with the clinical course and genetic abnormality. METHODS We collected the magnetic resonance imaging (MRI) findings of 19 genetically proven PMD patients (all males, aged 0-29years old) using our integrated web-based MRI data collection system from 14 hospitals. The patterns of hypomyelination were determined mainly by the signals of the cerebrum, corticospinal tract, and brainstem on T2-weighted images (T2WI). We assessed the degree of myelination age on T1-weighted images (T1WI) and T2WI independently, and we evaluated cerebellar and callosal atrophy. The clinical severity and genetic abnormalities (causal mutations of the proteolipid protein gene PLP1) were analyzed together with the imaging findings. RESULTS The clinical stage tended to be more severe when the whole brainstem, or corticospinal tract in the internal capsule showed abnormally high intensity on T2WI. Diffuse T2-high signal of brainstem was observed only in the patients with PLP1 point mutation. Myelination age "before birth" on T1WI is a second manifestation correlated with the clinically severe phenotypes. On the other hand, eight patients whose myelination ages were > 4months on T1WI were associated with mild clinical phenotypes. Four of them showed almost complete myelination on T1WI with a discrepancy in myelination age between T1WI and T2WI. A random and patchy pattern of myelination on T2WI was noted in one patient with PLP1 point mutation. Advanced myelination was observed in three of the seven followed-up patients. Four patients had atrophy of the cerebellum, and 17 patients had atrophy of the corpus callosum. CONCLUSION Our multicenter study has demonstrated a wide variety of imaging findings of PMD. Signal intensity of brainstem and corticospinal tract of internal capsule would be the points to presume clinical severity in PMD patients. The spectrum of MRI findings should be kept in mind to diagnose PMD and to differentiate from other demyelinating leukodystrophies.
Collapse
|
23
|
Osaka H, Inoue K. Pathophysiology and emerging therapeutic strategies in Pelizaeus–Merzbacher disease. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1106315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Zanigni S, Terlizzi R, Tonon C, Testa C, Manners DN, Capellari S, Gallassi R, Poda R, Gramegna LL, Calandra-Buonaura G, Sambati L, Cortelli P, Lodi R. Brain magnetic resonance metabolic and microstructural changes in adult-onset autosomal dominant leukodystrophy. Brain Res Bull 2015; 117:24-31. [PMID: 26189928 DOI: 10.1016/j.brainresbull.2015.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION adult-onset autosomal dominant leukodystrophy (ADLD) is a rare inherited disorder due to a duplication of lamin-B1 (LMNB1) gene. The aim of this study was to investigate brain metabolic and microstructural alterations by using advanced MR techniques. METHODS we performed brain MR scans including single-voxel proton-MR Spectroscopy ((1)H-MRS) of the lateral ventricles and parietal white matter and diffusion tensor imaging (DTI) in 4 subjects with LMNB1 gene duplication, 6 non-mutated relatives and 7 unrelated healthy controls. Cervical and thoracic spinal cord MR was performed in three symptomatic subjects with LMNB1 mutation. All participants underwent clinical and neuropsychological evaluation. RESULTS all subjects with LMNB1 gene duplication presented pathological accumulation of lactate in lateral ventricles CSF and no alterations of brain white matter absolute metabolites concentrations or metabolites/Cr ratios. We found increased white matter intra- and extracellular water transverse relaxation times. Tract-based spatial statistics analysis detected a significantly reduced fractional anisotropy in the genu of the corpus callosum in mutated cases compared to unrelated healthy controls and non-mutated relatives. Moreover, we detected different degrees of the typical white matter signal intensity alterations and brain and spinal atrophy at conventional MRI in symptomatic subjects with LMNB1 mutation. A mild impairment of executive functions was found in subjects with LMNB1 gene mutation. CONCLUSION in subjects with LMNB1 gene duplication, we found a pathological increase in CSF lactate, likely due to active demyelination along with glial activation, and microstructural changes in the genu of the corpus callosum possibly underpinning the mild neuropsychological deficits.
Collapse
Affiliation(s)
- Stefano Zanigni
- Functional MR Unit, Policlinico S. Orsola - Malpighi, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rossana Terlizzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Tonon
- Functional MR Unit, Policlinico S. Orsola - Malpighi, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Claudia Testa
- Functional MR Unit, Policlinico S. Orsola - Malpighi, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - David Neil Manners
- Functional MR Unit, Policlinico S. Orsola - Malpighi, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Roberto Gallassi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Roberto Poda
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Functional MR Unit, Policlinico S. Orsola - Malpighi, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luisa Sambati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Functional MR Unit, Policlinico S. Orsola - Malpighi, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Kevelam SH, Taube JR, van Spaendonk RML, Bertini E, Sperle K, Tarnopolsky M, Tonduti D, Valente EM, Travaglini L, Sistermans EA, Bernard G, Catsman-Berrevoets CE, van Karnebeek CDM, Østergaard JR, Friederich RL, Fawzi Elsaid M, Schieving JH, Tarailo-Graovac M, Orcesi S, Steenweg ME, van Berkel CGM, Waisfisz Q, Abbink TEM, van der Knaap MS, Hobson GM, Wolf NI. Altered PLP1 splicing causes hypomyelination of early myelinating structures. Ann Clin Transl Neurol 2015; 2:648-61. [PMID: 26125040 PMCID: PMC4479525 DOI: 10.1002/acn3.203] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022] Open
Abstract
Objective The objective of this study was to investigate the genetic etiology of the X-linked disorder “Hypomyelination of Early Myelinating Structures” (HEMS). Methods We included 16 patients from 10 families diagnosed with HEMS by brain MRI criteria. Exome sequencing was used to search for causal mutations. In silico analysis of effects of the mutations on splicing and RNA folding was performed. In vitro gene splicing was examined in RNA from patients’ fibroblasts and an immortalized immature oligodendrocyte cell line after transfection with mutant minigene splicing constructs. Results All patients had unusual hemizygous mutations of PLP1 located in exon 3B (one deletion, one missense and two silent), which is spliced out in isoform DM20, or in intron 3 (five mutations). The deletion led to truncation of PLP1, but not DM20. Four mutations were predicted to affect PLP1/DM20 alternative splicing by creating exonic splicing silencer motifs or new splice donor sites or by affecting the local RNA structure of the PLP1 splice donor site. Four deep intronic mutations were predicted to destabilize a long-distance interaction structure in the secondary PLP1 RNA fragment involved in regulating PLP1/DM20 alternative splicing. Splicing studies in fibroblasts and transfected cells confirmed a decreased PLP1/DM20 ratio. Interpretation Brain structures that normally myelinate early are poorly myelinated in HEMS, while they are the best myelinated structures in Pelizaeus–Merzbacher disease, also caused by PLP1 alterations. Our data extend the phenotypic spectrum of PLP1-related disorders indicating that normal PLP1/DM20 alternative splicing is essential for early myelination and support the need to include intron 3 in diagnostic sequencing.
Collapse
Affiliation(s)
- Sietske H Kevelam
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands ; Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Jennifer R Taube
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children Wilmington, Delaware
| | | | - Enrico Bertini
- Unit for Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, IRCCS Rome, Italy
| | - Karen Sperle
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children Wilmington, Delaware
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster Children's Hospital Hamilton, Ontario, Canada
| | - Davide Tonduti
- Child Neuropsychiatry Unit, Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Enza Maria Valente
- Department of Medicine and Surgery, University of Salerno Salerno, Italy ; CSS-Mendel Institute, IRCCS Casa Sollievo della Sofferenza San Giovanni Rotondo, Italy
| | - Lorena Travaglini
- Unit for Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, IRCCS Rome, Italy
| | - Erik A Sistermans
- Department of Clinical Genetics, VU University Medical Center Amsterdam, The Netherlands
| | - Geneviève Bernard
- Division of Pediatric Neurology, Departments of Pediatrics, Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Center Montreal, Quebec, Canada
| | - Coriene E Catsman-Berrevoets
- Department of Pediatric Neurology, Erasmus University Hospital - Sophia Children's Hospital Rotterdam, The Netherlands
| | - Clara D M van Karnebeek
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, Centre for Molecular Medicine and Therapeutics, University of British Columbia Vancouver, Canada
| | - John R Østergaard
- Centre for Rare diseases, Department of Paediatrics, Aarhus University Hospital Aarhus, Denmark
| | - Richard L Friederich
- Department of Child Neurology, Kaiser Permanente Pediatric Specialties Roseville, California
| | | | - Jolanda H Schieving
- Department of Child Neurology, Radboud University Medical Center Nijmegen, The Netherlands
| | - Maja Tarailo-Graovac
- Department of Medical Genetics, University of British Colombia Vancouver, Canada
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, C. Mondino National Neurological Institute Pavia, Italy
| | - Marjan E Steenweg
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands ; Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Carola G M van Berkel
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center Amsterdam, The Netherlands
| | - Truus E M Abbink
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands ; Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands ; Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands ; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, The Netherlands
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children Wilmington, Delaware ; Department of Biological Sciences, University of Delaware Newark, Delaware ; Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University Philadelphia, Pennsylvania
| | - Nicole I Wolf
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands ; Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| |
Collapse
|
26
|
Laukka JJ, Makki MI, Lafleur T, Stanley J, Kamholz J, Garbern JY. Diffusion tensor imaging of patients with proteolipid protein 1 gene mutations. J Neurosci Res 2014; 92:1723-32. [PMID: 25156430 DOI: 10.1002/jnr.23458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/10/2014] [Accepted: 07/05/2014] [Indexed: 11/08/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked disorder of the central nervous system (CNS) caused by a wide variety of mutations affecting proteolipid protein 1 (PLP1). We assessed the effects of PLP1 mutations on water diffusion in CNS white matter by using diffusion tensor imaging. Twelve patients with different PLP1 point mutations encompassing a range of clinical phenotypes were analyzed, and the results were compared with a group of 12 age-matched controls. The parallel (λ// ), perpendicular (λ⊥ ), and apparent diffusion coefficients (ADC) and fractional anisotropy were measured in both limbs of the internal capsule, the genu and splenium of corpus callosum, the base of the pons, and the cerebral peduncles. The mean ADC and λ⊥ in the PMD patient group were both significantly increased in all selected structures, except for the base of the pons, compared with controls. PMD patients with the most severe disease, however, had a significant increase of both λ// and λ⊥ . In contrast, more mildly affected patients had much smaller changes in λ// and λ⊥ . These data suggest that myelin, the structure responsible in part for the λ⊥ barrier, is the major site of disease pathogenesis in this heterogeneous group of patients. Axons, in contrast, the structures mainly responsible for λ// , are much less affected, except within the subgroup of patients with the most severe disease. Clinical disability in patients with PLP1 point mutation is thus likely determined by the extent of pathological involvement of both myelin and axons, with alterations of both structures causing the most severe disease. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeremy J Laukka
- Department of Neuroscience, University of Toledo, Toledo, Ohio; Center of Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | | | | | | | | | | |
Collapse
|
27
|
Taube JR, Sperle K, Banser L, Seeman P, Cavan BCV, Garbern JY, Hobson GM. PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing. Hum Mol Genet 2014; 23:5464-78. [PMID: 24890387 DOI: 10.1093/hmg/ddu271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5' splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We investigated the ability of sequences throughout PLP1 intron 3 to regulate alternative splicing using a splicing minigene construct transfected into the oligodendrocyte cell line, Oli-neu. Our data reveal that the alternative splice of PLP1 is regulated by a long-distance interaction between two highly conserved elements that are separated by 581 bases within the 1071-base intron 3. Further, our data suggest that a base-pairing secondary structure forms between these two elements, and we demonstrate that mutations of either element designed to destabilize the secondary structure decreased the PLP1/DM20 ratio, while swap mutations designed to restore the structure brought the PLP1/DM20 ratio to near normal levels. Sequence analysis of intron 3 in families with clinical symptoms of PMD who did not have coding-region mutations revealed mutations that segregated with disease in three families. We showed that these patient mutations, which potentially destabilize the secondary structure, also reduced the PLP1/DM20 ratio. This is the first report of patient mutations causing disease by disruption of a long-distance intronic interaction controlling alternative splicing. This finding has important implications for molecular diagnostics of PMD.
Collapse
Affiliation(s)
- Jennifer R Taube
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Karen Sperle
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Linda Banser
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Pavel Seeman
- Department of Child Neurology, DNA Laboratory, 2nd School of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | | | - James Y Garbern
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA and Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|