1
|
Lin L, Guo C, Jin H, Huang H, Luo F, Wang Y, Li D, Zhang Y, Xu Y, Zhu C, Zeng F, He H, Chen J, Zhang W, Yu W. Integrative multi-omics approach using random forest and artificial neural network models for early diagnosis and immune infiltration characterization in ischemic stroke. Front Neurol 2024; 15:1475582. [PMID: 39697434 PMCID: PMC11652371 DOI: 10.3389/fneur.2024.1475582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Background Ischemic stroke (IS) is a significant global health issue, causing high rates of morbidity, mortality, and disability. Since conventional Diagnosis methods for IS have several shortcomings. It is critical to create new Diagnosis models in order to enhance existing Diagnosis approaches. Methods We utilized gene expression data from the Gene Expression Omnibus (GEO) databases GSE16561 and GSE22255 to identify differentially expressed genes (DEGs) associated with IS. DEGs analysis using the Limma package, as well as GO and KEGG enrichment analyses, were performed. Furthermore, PPI networks were constructed using DEGs from the String database, and Random Forest models were utilized to screen key DEGs. Additionally, an artificial neural network model was developed for IS classification. Use the GSE58294 dataset to evaluate the effectiveness of the scoring model on healthy controls and ischemic stroke samples. The effectiveness of the scoring model was evaluated through AUC analysis, and CIBERSORT analysis was conducted to estimate the immune landscape and explore the correlation between gene expression and immune cell infiltration. Results A total of 26 significant DEGs associated with IS were identified. Metascape analysis revealed enriched biological processes and pathways related to IS. 10 key DEGs (ARG1, DUSP1, F13A1, NFIL3, CCR7, ADM, PTGS2, ID3, FAIM3, HLA-DQB1) were selected using Random Forest and artificial neural network models. The area under the ROC curve (AUC) for the IS classification model was found to be near 1, indicating its high accuracy. Additionally, the analysis of the immune landscape demonstrated elevated immune-related networks in IS patients compared to healthy controls. Conclusion The study uncovers the involvement of specific genes and immune cells in the pathogenesis of IS, suggesting their importance in understanding and potentially targeting the disease.
Collapse
Affiliation(s)
- Ling Lin
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Chunmao Guo
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Hanna Jin
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Haixiong Huang
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
- Clinical Laboratory, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Fan Luo
- Department of Neurology, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, Shaanxi, China
| | - Ying Wang
- Department of Geriatrics, Xi’an Baoshi Flower Changqing Hospital, Xi’an, Shaanxi, China
| | - Dongqi Li
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Yuanxin Zhang
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Yuqian Xu
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Chanyan Zhu
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Fengshan Zeng
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Huahua He
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| | - Jie Chen
- Department of Neurology, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, Shaanxi, China
| | - Wei Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Wenlin Yu
- Department of Neurology, Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong, China
| |
Collapse
|
2
|
Tang X, Wei C, Zhang R, You J, Chen X. CCL21/CCR7 axis regulates demyelination and vascular cognitive impairment in a mouse model for chronic cerebral hypoperfusion. Neurol Res 2023; 45:248-259. [PMID: 36215431 DOI: 10.1080/01616412.2022.2132456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES White matter lesions (WML) are usually accompanied by cognitive decline, which consist of axonal loss and demyelination. CC chemokine ligand 21 (CCL21) and its receptor C-C chemokine receptor 7 (CCR7) belong to the chemokine family, which are involved in many diseases. However, their function in the central nervous system (CNS) is still unexplored. This study aimed to explore the role of CCL21/CCR7 axis in the pathological process of chronic ischemia-induced WML. METHODS Bilateral common carotid artery stenosis (BCAS) was employed in C57BL/6 mice as the in vivo WML model. Microarray analysis was performed to detect the overall molecular changes induced in the endothelial cells by BCAS. Q-PCR, Western blotting, and immunofluorescence staining were performed to evaluate expression levels of the related molecules. The mice were injected with LV-CCL21-GFP virus in the corpus callosum to overexpress CCL21. WML degree was determined via MRI, and cognitive ability was assessed by Y-maze and novel object recognition tests. Myelin sheath integrity was evaluated via immunofluorescence staining. RESULTS CCL21 was significantly downregulated in endothelial cells after BCAS and CCL21 overexpression alleviated BCAS-induced cognitive deficits and demyelination. Furthermore, CCR7 was found to be mainly expressed in oligodendrocytes (OLs) after exposed to hypoxia and CCR7 silencing blocked the protective effects induced by CCL21 overexpression. Conclusions CCL21/CCR7 axis may play a key role in demyelination induced by BCAS. This might provide a novel therapeutic target for WML.
Collapse
Affiliation(s)
- Xuelian Tang
- These authors have contributed equally to this work and share the first authorship
| | - Cunsheng Wei
- These authors have contributed equally to this work and share the first authorship
| | - Rui Zhang
- Department of Neurology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jie You
- Department of Neurology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Xuemei Chen
- Department of Neurology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Nouri-Vaskeh M, Khalili N, Sadighi A, Yazdani Y, Zand R. Biomarkers for Transient Ischemic Attack: A Brief Perspective of Current Reports and Future Horizons. J Clin Med 2022; 11:jcm11041046. [PMID: 35207321 PMCID: PMC8877275 DOI: 10.3390/jcm11041046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Cerebrovascular disease is the leading cause of long-term disability in the world and the third-leading cause of death in the United States. The early diagnosis of transient ischemic attack (TIA) is of great importance for reducing the mortality and morbidity of cerebrovascular diseases. Patients with TIA have a high risk of early subsequent ischemic stroke and the development of permanent nervous system lesions. The diagnosis of TIA remains a clinical diagnosis that highly relies on the patient's medical history assessment. There is a growing list of biomarkers associated with different components of the ischemic cascade in the brain. In this review, we take a closer look at the biomarkers of TIA and their validity with a focus on the more clinically important ones using recent evidence of their reliability for practical usage.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr 7618815676, Iran;
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran 1419733151, Iran
| | - Neda Khalili
- School of Medicine, Tehran University of Medical Sciences, Tehran 1449614535, Iran;
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Alireza Sadighi
- Neuroscience Institute, Geisinger Health System, Danville, PA 17822, USA;
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Ramin Zand
- Neuroscience Institute, Geisinger Health System, Danville, PA 17822, USA;
- Neuroscience Institute, Pennsylvania State University, State College, PA 16801, USA
- Correspondence: or ; Tel.: +1-570-808-7330; Fax: +1-570-808-3209
| |
Collapse
|
4
|
Ahn JH, Park JH, Lee TK, Yang GE, Shin MC, Cho JH, Won MH, Lee CH. Age‑dependent alterations in the immunoreactivity of macrophage inflammatory protein‑3α and its receptor CCR6 in the gerbil hippocampus. Mol Med Rep 2020; 22:1317-1324. [PMID: 32627009 PMCID: PMC7339448 DOI: 10.3892/mmr.2020.11216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation is a primary characteristic of the aging brain. During normal aging, macrophage inflammatory protein-3α (MIP-3α) and its receptor C-C chemokine receptor type 6 (CCR6) serve pivotal roles in the neuroinflammatory process in the brain. The aim of the present study was to investigate age-dependent alterations in the immunoreactivity of MIP-3α and CCR6 in the gerbil hippocampus at postnatal month (PM) 1, 6, 12 and 24 via immunohistochemistry. In the PM 1 group, both MIP-3α and CCR6 immunoreactivity were observed primarily in the stratum pyramidale in the hippocampus proper and in the granule cell layer in the dentate gyrus. In the PM 6 and PM 12 groups, MIP-3α in the stratum pyramidale and granule cell layer was decreased compared with the PM 1 group, and CCR6 immunoreactivity in both layers was faint. In the PM 24 group, MIP-3α expression in the stratum pyramidale and granule cell layer was higher than that in the PM 1 group, and CCR6 immunoreactivity in both layers was increased compared with the PM 12 group; however, it was decreased compared with the PM 1 group. In conclusion, MIP-3α and CCR6 immunoreactivity were altered in the hippocampus during normal aging. The results of the current study suggested that age-dependent alterations of MIP-3α and CCR6 may be associated with age-related neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Tae-Kyung Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| |
Collapse
|
5
|
Lee JC, Shin BN, Cho JH, Lee TK, Kim IH, Noh Y, Kim SS, Lee HA, Kim YM, Kim H, Cho JH, Park JH, Ahn JH, Kang IJ, Hwang IK, Won MH, Shin MC. Brain ischemic preconditioning protects against moderate, not severe, transient global cerebral ischemic injury. Metab Brain Dis 2018; 33:1193-1201. [PMID: 29644488 DOI: 10.1007/s11011-018-0231-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Ischemic preconditioning (IPC) in the brain increases ischemic tolerance to subsequent ischemic insults. In this study, we examined whether IPC protects neurons and attenuates microgliosis or not in the hippocampus following severe transient global cerebral ischemia (TCI) in gerbils. Gerbils were assigned to 8 groups; 5- and 15-min sham operated groups, 5-min and 15-min TCI operated groups, IPC plus 5- and 15-min sham operated groups, and IPC plus 5- and 15-min TCI operated groups. IPC was induced by subjecting animals to 2-min transient ischemia 1 day before 5-min TCI for a typical transient ischemia and 15-min TCI for severe transient ischemia. Neuronal damage was examined by cresyl violet staining and Fluoro-Jade B histofluorescence staining. In addition, microglial activation was examined using immunohistochemistry for Iba-1 (a marker for microglia). Delayed neuronal death and microgliosis was found in the CA1 alone in the 5-min TCI operated group at 5 days post-ischemia, and, in the 15-min TCI operated group, neuronal death and microgliosis was shown in all CA areas (CA1-3) and the dentate gyrus. IPC displayed neuroprotection and attenuated microglial activation in the 5-min TCI operated group. However, in the 15-min TCI operated group, IPC did not show neuroprotection and not attenuate microglial activation. Our present findings indicate that IPC hardly protect against severe transient cerebral ischemic injury.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Bich-Na Shin
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - In Hye Kim
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - YooHun Noh
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - Sung-Su Kim
- Famenity Company, Gwacheon, 13837, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeyoung Kim
- Department of Anesthesiology and Pain Medicine, Chungju Hospital, Konkuk University School of Medicine, Chungju, 27376, Republic of Korea
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, 24252, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Lee JC, Park CW, Shin MC, Cho JH, Lee HA, Kim YM, Park JH, Ahn JH, Cho JH, Tae HJ, Hwang IK, Lee TK, Won MH, Kang IJ. Tumor necrosis factor receptor 2 is required for ischemic preconditioning-mediated neuroprotection in the hippocampus following a subsequent longer transient cerebral ischemia. Neurochem Int 2018; 118:292-303. [PMID: 29777731 DOI: 10.1016/j.neuint.2018.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/26/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
Tumor Necrosis Factor-α (TNF-α) is a proinflammatory cytokine implicated in neuronal damage in response to cerebral ischemia. Ischemic preconditioning (IPC) provides neuroprotection against a subsequent severer or longer transient ischemia by ischemic tolerance. Here, we focused on the role of TNF-α in IPC-mediated neuroprotection against neuronal death following a subsequent longer transient cerebral ischemia (TCI). Gerbils used in this study were randomly assigned to eight groups; sham group, TCI operated group, IPC plus (+) sham group, IPC + TCI operated group, sham + etanercept (an inhibitor of TNF-a) group, TCI + etanercept group, IPC + sham + etanercept group, and IPC + TCI + etanercept group. IPC was induced by a 2-min sublethal transient ischemia, which was operated 1 day prior to a longer (5-min) TCI. A significant death of neurons was found in the stratum pyramidale (SP) in the CA1 area (CA1) of the hippocampus 5 days after TCI; however, IPC protected SP neurons from TCI. We found that TNF-α immunoreactivity was significantly increased in CA1 pyramidal neurons in the TCI and IPC + TCI groups compared to the sham group. TNF-R1 expression in CA1 pyramidal neurons of the TCI group was also increased 1 and 2 days after TCI; however, in the IPC + TCI group, TNF-R1 expression was significantly lower than that in the TCI group. On the other hand, we did not detect TNF-R2 immunoreactivity in CA1 pyramidal neurons 1 and 2 days after TCI; meanwhile, in the IPC + TCI group, TNF-R2 expression was significantly increased compared to TNF-R2 expression at 1 and 2 days after TCI. In addition, in this group, TNF-R2 was newly expressed in pericytes, which are important cells in the blood brain barrier, from 1 day after TCI. When we treated etanercept to the IPC + TCI group, IPC-induced neuroprotection was significantly weakened. In brief, this study indicates that IPC confers neuroprotection against TCI by TNF-α signaling through TNF-R2 and suggests that the enhancement of TNF-R2 expression by IPC may be a legitimate strategy for a therapeutic intervention of TCI.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea
| | - Chan Woo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252 Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252 Republic of Korea
| | - Jeong Hwi Cho
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk, 54596 Republic of Korea
| | - Hyun-Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk, 54596 Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341 Republic of Korea.
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon, 24252 Republic of Korea.
| |
Collapse
|
7
|
Roles of HIF-1α, VEGF, and NF-κB in Ischemic Preconditioning-Mediated Neuroprotection of Hippocampal CA1 Pyramidal Neurons Against a Subsequent Transient Cerebral Ischemia. Mol Neurobiol 2016; 54:6984-6998. [DOI: 10.1007/s12035-016-0219-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
8
|
Giocanti-Auregan A, Vacca O, Bénard R, Cao S, Siqueiros L, Montañez C, Paques M, Sahel JA, Sennlaub F, Guillonneau X, Rendon A, Tadayoni R. Altered astrocyte morphology and vascular development in dystrophin-Dp71-null mice. Glia 2015; 64:716-29. [PMID: 26711882 DOI: 10.1002/glia.22956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/28/2015] [Accepted: 12/02/2015] [Indexed: 01/14/2023]
Abstract
Understanding retinal vascular development is crucial because many retinal vascular diseases such as diabetic retinopathy (in adults) or retinopathy of prematurity (in children) are among the leading causes of blindness. Given the localization of the protein Dp71 around the retinal vessels in adult mice and its role in maintaining retinal homeostasis, the aim of this study was to determine if Dp71 was involved in astrocyte and vascular development regulation. An experimental study in mouse retinas was conducted. Using a dual immunolabeling with antibodies to Dp71 and anti-GFAP for astrocytes on retinal sections and isolated astrocytes, it was found that Dp71 was expressed in wild-type (WT) mouse astrocytes from early developmental stages to adult stage. In Dp71-null mice, a reduction in GFAP-immunopositive astrocytes was observed as early as postnatal day 6 (P6) compared with WT mice. Using real-time PCR, it was showed that Dp71 mRNA was stable between P1 and P6, in parallel with post-natal vascular development. Regarding morphology in Dp71-null and WT mice, a significant decrease in overall astrocyte process number in Dp71-null retinas at P6 to adult age was found. Using fluorescence-conjugated isolectin Griffonia simplicifolia on whole mount retinas, subsequent delay of developing vascular network at the same age in Dp71-null mice was found. An evidence that the Dystrophin Dp71, a membrane-associated cytoskeletal protein and one of the smaller Duchenne muscular dystrophy gene products, regulates astrocyte morphology and density and is associated with subsequent normal blood vessel development was provided.
Collapse
Affiliation(s)
- Audrey Giocanti-Auregan
- Ophthalmology Department, Avicenne Hospital, 125 Rue De Stalingrad, Bobigny, France.,Institut De La Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S, 968, Paris, F-75012, France.,INSERM, U_968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Ophélie Vacca
- Institut De La Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S, 968, Paris, F-75012, France.,INSERM, U_968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Romain Bénard
- Institut De La Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S, 968, Paris, F-75012, France.,INSERM, U_968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Sijia Cao
- Institut De La Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S, 968, Paris, F-75012, France.,INSERM, U_968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Lourdes Siqueiros
- Institut De La Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S, 968, Paris, F-75012, France.,INSERM, U_968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Cecilia Montañez
- Department of Genetics & Molecular Biology, Research Centre for Advanced Studies, IPN, Av. I.P.N. 2508, Mexico City, C.P., 07360, Mexico
| | - Michel Paques
- Institut De La Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S, 968, Paris, F-75012, France.,INSERM, U_968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Centre Hospitalier National D'ophtalmologie Des Quinze-Vingts, DHU View Maintain, INSERM-DHOS CIC 1423, Paris, F-75012, France
| | - José-Alain Sahel
- Institut De La Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S, 968, Paris, F-75012, France.,INSERM, U_968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Centre Hospitalier National D'ophtalmologie Des Quinze-Vingts, DHU View Maintain, INSERM-DHOS CIC 1423, Paris, F-75012, France.,Fondation Ophtalmologique Rothschild, Paris, F-75019, France
| | - Florian Sennlaub
- Institut De La Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S, 968, Paris, F-75012, France.,INSERM, U_968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Xavier Guillonneau
- Institut De La Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S, 968, Paris, F-75012, France.,INSERM, U_968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Alvaro Rendon
- Institut De La Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S, 968, Paris, F-75012, France.,INSERM, U_968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France
| | - Ramin Tadayoni
- Institut De La Vision, Sorbonne Universités, UPMC Univ Paris 06, UMR_S, 968, Paris, F-75012, France.,INSERM, U_968, Paris, F-75012, France.,CNRS, UMR_7210, Paris, F-75012, France.,Ophthalmology Department, Hôpital Lariboisière, AP-HP, University Paris 7, Sorbonne Paris Cité, 2 Rue Ambroise Paré, Paris, 75010, France
| |
Collapse
|
9
|
Lee JC, Tae HJ, Chen BH, Cho JH, Kim IH, Ahn JH, Park JH, Shin BN, Lee HY, Cho YS, Cho JH, Hong S, Choi SY, Won MH, Park CW. Failure in neuroprotection of remote limb ischemic postconditioning in the hippocampus of a gerbil model of transient cerebral ischemia. J Neurol Sci 2015; 358:377-84. [DOI: 10.1016/j.jns.2015.09.371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/05/2015] [Accepted: 09/27/2015] [Indexed: 10/23/2022]
|