1
|
Wang HL, Zhang CL, Qiu YM, Chen AQ, Li YN, Hu B. Dysfunction of the Blood-brain Barrier in Cerebral Microbleeds: from Bedside to Bench. Aging Dis 2021; 12:1898-1919. [PMID: 34881076 PMCID: PMC8612614 DOI: 10.14336/ad.2021.0514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Cerebral microbleeds (CMBs) are a disorder of cerebral microvessels that are characterized as small (<10 mm), hypointense, round or ovoid lesions seen on T2*-weighted gradient echo MRI. There is a high prevalence of CMBs in community-dwelling healthy older people. An increasing number of studies have demonstrated the significance of CMBs in stroke, dementia, Parkinson's disease, gait disturbances and late-life depression. Blood-brain barrier (BBB) dysfunction is considered to be the event that initializes CMBs development. However, the pathogenesis of CMBs has not yet been clearly elucidated. In this review, we introduce the pathogenesis of CMBs, hypertensive vasculopathy and cerebral amyloid angiopathy, and review recent research that has advanced our understanding of the mechanisms underlying BBB dysfunction and CMBs presence. CMBs-associated risk factors can exacerbate BBB breakdown through the vulnerability of BBB anatomical and functional changes. Finally, we discuss potential pharmacological approaches to target the BBB as therapy for CMBs.
Collapse
Affiliation(s)
| | | | | | - An-qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Aida Y, Kamide T, Ishii H, Kitao Y, Uchiyama N, Nakada M, Hori O. Soluble receptor for advanced glycation end products as a biomarker of symptomatic vasospasm in subarachnoid hemorrhage. J Neurosurg 2021; 134:122-130. [PMID: 31675694 DOI: 10.3171/2019.8.jns191269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/16/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The receptor for advanced glycation end products (RAGE) is a membrane protein associated with the induction of oxidative stress and inflammation in several pathological conditions. Previous studies have demonstrated that soluble RAGE (sRAGE) acts as a decoy for RAGE and protects cells against RAGE-mediated injury. The authors and other groups have reported that the expression of RAGE increases after brain ischemia and subarachnoid hemorrhage (SAH), and deletion of RAGE or overexpression of sRAGE improves neuronal survival. It has also been demonstrated that the plasma sRAGE level could be a predictor of the outcome after ischemic stroke. This study aimed to evaluate plasma sRAGE as a biomarker for symptomatic vasospasm (SVS) in SAH patients, as well as a rat model. METHODS The authors measured and compared plasma sRAGE levels in 27 SAH patients (7 with SVS and 20 without SVS) from day 5 to day 14 post-SAH. They also examined plasma sRAGE levels and expression of RAGE and heme oxygenase-1 (HO-1) in a rat SAH model. RESULTS The relative plasma sRAGE levels were significantly lower in the SVS group than in the non-SVS group of patients. A cut-off value of 0.84 for predicting SVS was considered to be appropriate for the relative plasma sRAGE levels on day 7 versus day 5. In the rat SAH model, plasma sRAGE levels were significantly lower than those in sham-treated rats, and the expressions of RAGE and HO-1 were enhanced in the SAH group compared with the non-SAH group. CONCLUSIONS Plasma sRAGE levels can be used as a potential biomarker for predicting SVS after SAH.
Collapse
Affiliation(s)
| | | | - Hiroshi Ishii
- 2Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Yasuko Kitao
- 2Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | | | | | - Osamu Hori
- 2Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
3
|
Jiang CT, Wu WF, Deng YH, Ge JW. Modulators of microglia activation and polarization in ischemic stroke (Review). Mol Med Rep 2020; 21:2006-2018. [PMID: 32323760 PMCID: PMC7115206 DOI: 10.3892/mmr.2020.11003] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is one of the leading causes of mortality and disability worldwide. However, there is a current lack of effective therapies available. As the resident macrophages of the brain, microglia can monitor the microenvironment and initiate immune responses. In response to various brain injuries, such as ischemic stroke, microglia are activated and polarized into the proinflammatory M1 phenotype or the anti‑inflammatory M2 phenotype. The immunomodulatory molecules, such as cytokines and chemokines, generated by these microglia are closely associated with secondary brain damage or repair, respectively, following ischemic stroke. It has been shown that M1 microglia promote secondary brain damage, whilst M2 microglia facilitate recovery following stroke. In addition, autophagy is also reportedly involved in the pathology of ischemic stroke through regulating the activation and function of microglia. Therefore, this review aimed to provide a comprehensive overview of microglia activation, their functions and changes, and the modulators of these processes, including transcription factors, membrane receptors, ion channel proteins and genes, in ischemic stroke. The effects of autophagy on microglia polarization in ischemic stroke were also reviewed. Finally, future research areas of ischemic stroke and the implications of the current knowledge for the development of novel therapeutics for ischemic stroke were identified.
Collapse
Affiliation(s)
- Cheng-Ting Jiang
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wan-Feng Wu
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yi-Hui Deng
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Jin-Wen Ge
- Hunan Province Key Laboratory of Cerebrovascular Disease Prevention and Treatment of Integrated Traditional Chinese and Western Medicine, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
4
|
Lu Y, Huang H, Liu C, Zeng Y, Wang R, Wang C, Wei Y, Lan Y. Association of S100B polymorphisms and serum S100B with risk of systemic lupus erythematous in a Chinese population. Genet Mol Biol 2019; 42:321-328. [PMID: 31271591 PMCID: PMC6726149 DOI: 10.1590/1678-4685-gmb-2017-0354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 07/18/2018] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to investigate whether the S100B polymorphisms are
associated with systemic lupus erythematous (SLE) in a Chinese population. A
total of 313 SLE patients and 396 control subjects were enrolled in the present
study. The genotypes of three SNPs (rs9722, rs881827 and rs1051169) in S100B
gene were detected by single base extension polymerase chain reaction (SBE-PCR).
Serum S100B levels were determined by enzyme-linked immunosorbent assay (ELISA).
Rs1051169 was associated with an increased risk of SLE (C vs. G: adjusted
OR=1.46, 95% CI, 1.18-1.80, p=0.001; CC vs. GG: adjusted
OR=1.99, 95% CI, 1.32-3.02, p=0.001; CC+GC vs. GG: adjusted
OR=1.54, 95% CI, 1.13-2.11, p=0.007; CC vs. GC+GG: adjusted
OR=1.67, 95% CI, 1.16-2.42, p=0.006). Haplotype analysis showed
that the G-G-C haplotype was associated with an increased risk of SLE (OR=1.50,
95% CI, 1.14-1.98, p=0.004). Stratified analyses showed that
the rs1051169 polymorphism was associated with an increased risk of neurologic
disorder in SLE patients (C vs. G: OR=1.78, 95% CI, 1.22-2.59,
p=0.003; GC vs. GG: OR=2.33, 95% CI, 1.14-4.77, P=0.019; CC
vs. GG: OR=3.02, 95% CI, 1.39-6.53, p=0.004; CC+GC vs. GG:
OR=2.57, 95% CI=1.31-5.04, p=0.005). In addition, SLE patients
with neurologic disorder carrying the rs1051169 GC/CC genotypes present a higher
serum S100B levels compared with that carrying the GG genotype
(p < 0.05). Our results indicate that the rs1051169
polymorphism may be involved in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yulan Lu
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise 533000, Guangxi, China
| | - Huatuo Huang
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise 533000, Guangxi, China
| | - Chunhong Liu
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise 533000, Guangxi, China
| | - Yonglong Zeng
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise 533000, Guangxi, China
| | - Rong Wang
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise 533000, Guangxi, China
| | - Chunfang Wang
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise 533000, Guangxi, China
| | - Yesheng Wei
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road II, Baise 533000, Guangxi, China
| | - Yan Lan
- Department of Dermatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
5
|
Khrulev AE, Nikitina AA, Khruleva NS. Specific risk factors for cerebrovascular disorders in patients with chronic kidney disease in the pre-dialysis period. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2019. [DOI: 10.15829/1728-8800-2019-3-88-93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cerebral vascular disorders are one of the leading causes of disability and mortality in patients with chronic kidney disease (CKD). The article presents the currently available data on risk factors (RF) for the development of cerebrovascular disorders in pre-dialysis patients with CKD. Two groups of RF are identified: traditional and non-traditional (specific). Traditional RF, which include arterial hypertension, diabetes mellitus and hypercholesterolemia, independently affect the cerebral vascular bed and get worse against the background of CKD. Specific RF is associated with features of the CKD pathogenesis. It includes increased blood levels of homocysteine, β2-microglobulin, impaired calcium-phosphorus metabolism, accumulation of uremic toxins and toxins of intestinal bacteria, anemia and other factors. In the present review, special attention is paid to specific RF and pathogenetic mechanisms of the development of cerebrovascular disorders in predialysis patients with CKD. Timely detection of cerebral risk factors may lead to the improvement of early diagnosis and prevention of cerebral vascular disorders, optimization of therapy for patients with CKD.
Collapse
|
6
|
Sulaj A, Kopf S, Gröne E, Gröne HJ, Hoffmann S, Schleicher E, Häring HU, Schwenger V, Herzig S, Fleming T, Nawroth PP, von Bauer R. ALCAM a novel biomarker in patients with type 2 diabetes mellitus complicated with diabetic nephropathy. J Diabetes Complications 2017; 31:1058-1065. [PMID: 28325697 DOI: 10.1016/j.jdiacomp.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIM Activated leukocyte cell adhesion molecule (ALCAM/CD166) functions analogue to the receptor of advanced glycation end products, which has been implicated in the development of diabetic nephropathy (DN). We investigated the expression of ALCAM and its ligand S100B in patients with DN. METHODS A total of 34 non-diabetic patients, 29 patients with type 2 diabetes and normal albuminuria and 107 patients with type 2 diabetes complicated with DN were assessed for serum concentration of soluble ALCAM (sALCAM) by ELISA. Expression of ALCAM and S100B in kidney histology from patients with DN was determined by immunohistochemistry. Cell expression of ALCAM and S100B was analyzed through confocal immunofluorescence microscopy. RESULTS Serum concentration of sALCAM was increased in diabetic patients with DN compared to non-diabetic (59.85±14.99ng/ml vs. 126.88±66.45ng/ml, P<0.0001). Moreover sALCAM correlated positively with HbA1c (R=0.31, P<0.0001), as well as with the stages of chronic kidney disease and negatively correlated with eGFR (R=-0.20, P<0.05). In diabetic patients with normal albuminuria sALCAM was increased compared to patients with DN (126.88±66.45ng/ml vs. 197.50±37.17ng/ml, P<0.0001). In diabetic patients, ALCAM expression was significantly upregulated in both the glomeruli and tubules (P<0.001). ALCAM expression in the glomeruli correlated with presence of sclerosis (R=0.25, P<0.001) and localized mainly in the podocytes supporting the hypothesis that membrane bound ALCAM drives diabetic nephropathy and thus explaining sALCAM decrease in diabetic patients with DN. The expression of S100B was increased significantly in the glomeruli of diabetic patients (P<0.001), but not in the tubules. S100B was as well localized in the podocytes. CONCLUSIONS This study identifies for the first time ALCAM as a potential mediator in the late complications of diabetes in the kidney.
Collapse
Affiliation(s)
- Alba Sulaj
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany.
| | - Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Elisabeth Gröne
- Division of Cellular and Molecular Pathology, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division of Cellular and Molecular Pathology, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Sigrid Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68135 Mannheim, Germany
| | - Erwin Schleicher
- Department of Internal Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, University of Tübingen, 72074 Tübingen, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer IDC, Helmholtz Center Munich and Joint Heidelberg-IDC Translational, Diabetes Program, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany; Institute for Diabetes and Cancer IDC, Helmholtz Center Munich and Joint Heidelberg-IDC Translational, Diabetes Program, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Rüdiger von Bauer
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Wang F, Zou ZR, Yuan D, Gong Y, Zhang L, Chen X, Sun T, Yu HL. Correlation between serum S100β protein levels and cognitive dysfunction in patients with cerebral small vessel disease: a case-control study. Biosci Rep 2017; 37:BSR20160446. [PMID: 28143956 PMCID: PMC5484012 DOI: 10.1042/bsr20160446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 11/17/2022] Open
Abstract
The present study was designed to explore the correlation between serum S100β levels and cognitive dysfunction in patients with cerebral small vessel disease (SVD). A total of 172 SVD patients participated in the study, and they were assigned to patients with no cognitive impairment (NCI group) and those with vascular cognitive impairment no dementia (VCIND group). In total, 105 people were recruited into the normal control group. Serum S100β protein level was detected by ELISA. A receiver operating characteristic (ROC) curve was employed for the predictive value of serum S100β in diagnosing SVD with cognitive dysfunction. Pearson correlation analysis was used to examine the association of S100β level with mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) and the association of S100β levels with hypertension. Logistic regression analysis was used to analyze risk factors of SVD. The serum S100β levels in the VCIND group were higher than those in the NCI and normal control groups. Logistic regression analysis revealed that a high serum S100β protein level, hypertension, and high low density lipoprotein-cholesterol (LDL-C) level were the independent risk factors for SVD. In addition, hypertension patients showed higher S100β levels than those with normal blood pressure and the normal control group, and there was a positive correlation between S100β level and blood pressure. The concentration of serum S100β level was related to impairment of cognition function of VCIND patients, therefore, early detection of serum S100β was of great value for diagnosis of SVD.
Collapse
Affiliation(s)
- Fei Wang
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| | - Zhi-Rong Zou
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, P.R. China
| | - Dong Yuan
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| | - Yi Gong
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| | - Li Zhang
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, P.R. China
| | - Xun Chen
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| | - Tao Sun
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| | - Hua-Lin Yu
- Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, P.R. China
| |
Collapse
|
8
|
van Nieuwenhuizen KM, Hendrikse J, Klijn CJM. New microbleed after blood-brain barrier leakage in intracerebral haemorrhage. BMJ Case Rep 2017; 2017:bcr-2016-218794. [PMID: 28450470 DOI: 10.1136/bcr-2016-218794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Cerebral microbleeds are increasingly recognised as biomarkers of small vessel disease. Several preclinical and clinical studies have suggested that chronic disruption of the blood-brain barrier is one of the mechanisms for the development of cerebral microbleeds.A 51-year-old man experienced two left parieto-occipital lobar intracerebral haemorrhages (ICHs) in the timespan of 2 years. Multiple microbleeds surrounding the two haemorrhages were found on MRI, but not at location distant from the haemorrhages. Ten months after the last haemorrhage, an MRI demonstrated a right occipital focus of contrast enhancement. Twenty months after the last ICH, a new cerebral microbleed had developed exactly at the location of the earlier contrast enhancement.This case demonstrates that blood-brain barrier disruption may be an important factor preceding the development of cerebral microbleeds.
Collapse
Affiliation(s)
- Koen M van Nieuwenhuizen
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Neurology, Donders Institute for Brain Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Lau WL, Huisa BN, Fisher M. The Cerebrovascular-Chronic Kidney Disease Connection: Perspectives and Mechanisms. Transl Stroke Res 2016; 8:67-76. [PMID: 27628245 PMCID: PMC5241336 DOI: 10.1007/s12975-016-0499-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/21/2016] [Accepted: 08/25/2016] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is an independent risk factor for the development of cerebrovascular disease, particularly small vessel disease which can manifest in a variety of phenotypes ranging from lacunes to microbleeds. Small vessel disease likely contributes to cognitive dysfunction in the CKD population. Non-traditional risk factors for vascular injury in uremia include loss of calcification inhibitors, hyperphosphatemia, increased blood pressure variability, elastinolysis, platelet dysfunction, and chronic inflammation. In this review, we discuss the putative pathways by which these mechanisms may promote cerebrovascular disease and thus increase risk of future stroke in CKD patients.
Collapse
Affiliation(s)
- Wei Ling Lau
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - Branko N Huisa
- Department of Neurology, University of California, San Diego, CA, USA
| | - Mark Fisher
- Departments of Neurology, Anatomy & Neurobiology, and Pathology & Laboratory Medicine, University of California, Irvine, CA, USA. .,Department of Neurology, UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall, Room 121, Orange, CA, 92868, USA.
| |
Collapse
|
10
|
Liu J, Wang D, Xiong Y, Liu B, Wei C, Ma Z, Wu B, Yuan R, Tang H, Liu M. A cohort study of relationship between serum calcium levels and cerebral microbleeds (CMBs) in ischemic stroke patients with AF and/or RHD. Medicine (Baltimore) 2016; 95:e4033. [PMID: 27368027 PMCID: PMC4937941 DOI: 10.1097/md.0000000000004033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Calcium is an essential element for life and has cerebroprotective property in stroke patients. Low serum calcium levels were found to be related to large hematoma volumes in intracerebral hemorrhagic patients and hemorrhagic transformation in ischemic stroke patients after thrombolysis. However, their impact on hemorrhage-prone small vessel disease represented by cerebral microbleeds (CMBs) is uncertain. We aim to investigate whether low serum calcium levels are associated with presence and location of CMBs.Ischemic stroke patients with atrial fibrillation (AF) and/or rheumatic heart disease admitted to our hospital were consecutively and prospectively enrolled. Demographic and clinical information were collected and analyzed according to the occurrence and location of CMBs, and levels of serum calcium. We used logistic regression analysis to estimate the multivariable adjusted relationship between serum calcium levels and the presence or location of CMBs.Among the 67 patients (28 males; mean age, 67.3 years) in the final analysis, 39 (58.2%) were found to have CMBs. After adjustment for age, sex, smoking habits, drinking habits, and renal impairment, the presence of CMBs and deep CMBs was, respectively, 4.96- and 4.83-fold higher in patients with lower serum calcium levels (≤2.15 mmol/L) than in patients with higher serum calcium levels.Lower serum calcium levels (≤2.15 mmol/L) are independently associated with the presence of CMBs and deep CMBs in ischemic stroke patients with AF and/or rheumatic heart disease, which should be verified and extended in large cohorts, with other types of stroke patients and the general population.
Collapse
Affiliation(s)
- Junfeng Liu
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Deren Wang
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yao Xiong
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Bian Liu
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chenchen Wei
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhenxing Ma
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Bo Wu
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ruozhen Yuan
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hehan Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ming Liu
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Correspondence: Ming Liu, Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu, 610041, Sichuan Province, People's Republic of China (e-mail: )
| |
Collapse
|
11
|
Lower Serum Caveolin-1 Is Associated with Cerebral Microbleeds in Patients with Acute Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9026787. [PMID: 27119011 PMCID: PMC4826928 DOI: 10.1155/2016/9026787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/02/2016] [Accepted: 03/13/2016] [Indexed: 11/18/2022]
Abstract
Caveolin-1 (Cav-1) plays pivotal roles in the endothelial damage following stroke. The present study aimed to investigate whether serum Cav-1 level is associated with the presence of cerebral small vessel disease (cSVD) in patients with acute ischemic stroke. To this end, 156 patients were consecutively enrolled. Cranial magnetic resonance imaging was analyzed to determine the surrogates of cSVD, including cerebral microbleeds (CMBs), silent lacunar infarcts (SLIs), and white matter hyperintensities (WMHs). After adjusting for potential confounders, patients with low Cav-1 level had a higher risk of CMBs than patients with high Cav-1 level (OR: 4.05, 95% CI: 1.77-9.30). However, there was no relationship between Cav-1 and the presence of SLIs or WMHs. When CMBs were stratified by location and number, a similar association was found in patients with deep or infratentorial CMBs (OR: 4.04, 95% CI: 1.59-10.25) and with multiple CMBs (OR: 3.18, 95% CI: 1.16-8.72). These results suggest lower serum Cav-1 levels may be associated with CMBs, especially those that are multiple and located in deep brain or infratentorial structures, in patients with acute ischemic stroke. Cav-1 may be involved in the pathophysiology of CMBs, and may act as a potential target for treating cSVD.
Collapse
|
12
|
Glushakova OY, Glushakov AV, Miller ER, Valadka AB, Hayes RL. Biomarkers for acute diagnosis and management of stroke in neurointensive care units. Brain Circ 2016; 2:28-47. [PMID: 30276272 PMCID: PMC6126247 DOI: 10.4103/2394-8108.178546] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022] Open
Abstract
The effectiveness of current management of critically ill stroke patients depends on rapid assessment of the type of stroke, ischemic or hemorrhagic, and on a patient's general clinical status. Thrombolytic therapy with recombinant tissue plasminogen activator (r-tPA) is the only effective treatment for ischemic stroke approved by the Food and Drug Administration (FDA), whereas no treatment has been shown to be effective for hemorrhagic stroke. Furthermore, a narrow therapeutic window and fear of precipitating intracranial hemorrhage by administering r-tPA cause many clinicians to avoid using this treatment. Thus, rapid and objective assessments of stroke type at admission would increase the number of patients with ischemic stroke receiving r-tPA treatment and thereby, improve outcome for many additional stroke patients. Considerable literature suggests that brain-specific protein biomarkers of glial [i.e. S100 calcium-binding protein B (S100B), glial fibrillary acidic protein (GFAP)] and neuronal cells [e.g., ubiquitin C-terminal hydrolase-L1 (UCH-L1), neuron-specific enolase (NSE), αII-spectrin breakdown products SBDP120, SBDP145, and SBDP150, myelin basic protein (MBP), neurofilament light chain (NF-L), tau protein, visinin-like protein-1 (VLP 1), NR2 peptide] injury that could be detected in the cerebrospinal fluid (CSF) and peripheral blood might provide valuable and timely diagnostic information for stroke necessary to make prompt management and decisions, especially when the time of stroke onset cannot be determined. This information could include injury severity, prognosis of short-term and long-term outcomes, and discrimination of ischemic or hemorrhagic stroke. This chapter reviews the current status of the development of biomarker-based diagnosis of stroke and its potential application to improve stroke care.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Alexander V Glushakov
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Emmy R Miller
- Department of Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Alex B Valadka
- Department of Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | | |
Collapse
|