1
|
Venkatesh A, McKenty T, Ali S, Sonntag D, Ravipaty S, Cui Y, Slate D, Lin Q, Christiansen A, Jacobson S, Kach J, Lim KH, Srinivasan V, Zinshteyn B, Aznarez I, Huryn LA, Li Z, Hufnagel RB, Liau G, Anderson K, Hoger J. Antisense Oligonucleotide STK-002 Increases OPA1 in Retina and Improves Mitochondrial Function in Autosomal Dominant Optic Atrophy Cells. Nucleic Acid Ther 2024; 34:221-233. [PMID: 39264859 PMCID: PMC11564677 DOI: 10.1089/nat.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/12/2024] [Indexed: 09/14/2024] Open
Abstract
Autosomal dominant optic atrophy (ADOA) is an inherited optic neuropathy most frequently associated with OPA1 mutations. Most variants result in haploinsufficiency, and patient cells express roughly half of the normal levels of OPA1 protein. OPA1 is a mitochondrial GTPase that is essential for normal mitochondrial function. We identified and characterized STK-002, an antisense oligonucleotide (ASO) designed to prevent the incorporation of a naturally occurring alternatively spliced nonproductive exon in OPA1. STK-002 dose dependently reduced the inclusion of this exon, and increased OPA1 protein in human cells, including ADOA patient-derived fibroblasts. ADOA patient cells manifest reduced mitochondrial respiration, and treatment with STK-002 improved the parameters of mitochondrial respiratory function in these cells. Since STK-002 increases OPA1 through the wild-type allele, we assessed retinal OPA1 in wild-type cynomolgus monkeys and rabbits after intravitreal administration of STK-002 or a rabbit-specific surrogate. Increased OPA1 protein was produced in retinal tissue in both species at 4 weeks after ASO injection and persisted in monkeys at 8 weeks. STK-002 and enhanced OPA1 immunofluorescence were visualized in retinal ganglion cells of cynomolgus monkeys treated with the ASO. Cumulatively, these data support the progression of STK-002 toward the clinic as the first potential disease-modifying treatment for ADOA.
Collapse
Affiliation(s)
| | | | - Syed Ali
- Stoke Therapeutics, Bedford, Massachusetts, USA
| | | | | | - Yanyan Cui
- Stoke Therapeutics, Bedford, Massachusetts, USA
| | | | - Qian Lin
- Stoke Therapeutics, Bedford, Massachusetts, USA
| | | | | | - Jacob Kach
- Stoke Therapeutics, Bedford, Massachusetts, USA
| | | | | | | | | | - Laryssa A. Huryn
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhiyu Li
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gene Liau
- Stoke Therapeutics, Bedford, Massachusetts, USA
| | | | - Jeff Hoger
- Stoke Therapeutics, Bedford, Massachusetts, USA
| |
Collapse
|
2
|
Lewis LSC, Skiba NP, Hao Y, Bomze HM, Arshavsky VY, Cartoni R, Gospe SM. Compartmental Differences in the Retinal Ganglion Cell Mitochondrial Proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593032. [PMID: 38766051 PMCID: PMC11100734 DOI: 10.1101/2024.05.07.593032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Among neurons, retinal ganglion cells (RGCs) are uniquely sensitive to mitochondrial dysfunction. The RGC is highly polarized, with a somatodendritic compartment in the inner retina and an axonal compartment projecting to targets in the brain. The drastically dissimilar functions of these compartments implies that mitochondria face different bioenergetic and other physiological demands. We hypothesized that compartmental differences in mitochondrial biology would be reflected by disparities in mitochondrial protein composition. Here, we describe a protocol to isolate intact mitochondria separately from mouse RGC somatodendritic and axonal compartments by immunoprecipitating labeled mitochondria from RGC MitoTag mice. Using mass spectrometry, 471 and 357 proteins were identified in RGC somatodendritic and axonal mitochondrial immunoprecipitates, respectively. We identified 10 mitochondrial proteins exclusively in the somatodendritic compartment and 19 enriched ≥2-fold there, while 3 proteins were exclusively identified and 18 enriched in the axonal compartment. Our observation of compartment-specific enrichment of mitochondrial proteins was validated through immunofluorescence analysis of the localization and relative abundance of superoxide dismutase ( SOD2 ), sideroflexin-3 ( SFXN3 ) and trifunctional enzyme subunit alpha ( HADHA ) in retina and optic nerve specimens. The identified compartmental differences in RGC mitochondrial composition may provide promising leads for uncovering physiologically relevant pathways amenable to therapeutic intervention for optic neuropathies.
Collapse
|
3
|
Sanz-Morello B, Ahmadi H, Vohra R, Saruhanian S, Freude KK, Hamann S, Kolko M. Oxidative Stress in Optic Neuropathies. Antioxidants (Basel) 2021; 10:1538. [PMID: 34679672 PMCID: PMC8532958 DOI: 10.3390/antiox10101538] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 01/23/2023] Open
Abstract
Increasing evidence indicates that changes in the redox system may contribute to the pathogenesis of multiple optic neuropathies. Optic neuropathies are characterized by the neurodegeneration of the inner-most retinal neurons, the retinal ganglion cells (RGCs), and their axons, which form the optic nerve. Often, optic neuropathies are asymptomatic until advanced stages, when visual impairment or blindness is unavoidable despite existing treatments. In this review, we describe systemic and, whenever possible, ocular redox dysregulations observed in patients with glaucoma, ischemic optic neuropathy, optic neuritis, hereditary optic neuropathies (i.e., Leber's hereditary optic neuropathy and autosomal dominant optic atrophy), nutritional and toxic optic neuropathies, and optic disc drusen. We discuss aspects related to anti/oxidative stress biomarkers that need further investigation and features related to study design that should be optimized to generate more valuable and comparable results. Understanding the role of oxidative stress in optic neuropathies can serve to develop therapeutic strategies directed at the redox system to arrest the neurodegenerative processes in the retina and RGCs and ultimately prevent vision loss.
Collapse
Affiliation(s)
- Berta Sanz-Morello
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
| | - Hamid Ahmadi
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Rupali Vohra
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (S.S.); (K.K.F.)
| | - Sarkis Saruhanian
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (S.S.); (K.K.F.)
| | - Kristine Karla Freude
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (S.S.); (K.K.F.)
| | - Steffen Hamann
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (B.S.-M.); (H.A.); (R.V.)
- Department of Ophthalmology, Rigshospitalet, 2600 Glostrup, Denmark;
| |
Collapse
|
4
|
Emery JM, Ortiz RM. Mitofusin 2: A link between mitochondrial function and substrate metabolism? Mitochondrion 2021; 61:125-137. [PMID: 34536562 DOI: 10.1016/j.mito.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/22/2021] [Accepted: 09/13/2021] [Indexed: 01/18/2023]
Abstract
Mitochondria are dynamic, interactive organelles that connect cellular signaling and whole-cell homeostasis. This "mitochatting" allows the cell to receive information about the mitochondria's condition before accommodating energy demands. Mitofusin 2 (Mfn2), an outer mitochondrial membrane fusion protein specializes in mediating mitochondrial homeostasis. Early studies defined the biological significance of Mfn2, while latter studies highlighted its role in substrate metabolism. However, determining Mfn2 potential to contribute to energy homeostasis needs study. This review summarizes current literature on mitochondrial metabolic processes, dynamics, and evidence of interactions among Mfn2 and regulatory processes that may link Mfn2's role in maintaining mitochondrial function and substrate metabolism.
Collapse
Affiliation(s)
- Janna M Emery
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, United States.
| | - Rudy M Ortiz
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, United States
| |
Collapse
|
5
|
Robert P, Nguyen PMC, Richard A, Grenier C, Chevrollier A, Munier M, Grimaud L, Proux C, Champin T, Lelièvre E, Sarzi E, Vessières E, Henni S, Prunier D, Reynier P, Lenaers G, Fassot C, Henrion D, Loufrani L. Protective role of the mitochondrial fusion protein OPA1 in hypertension. FASEB J 2021; 35:e21678. [PMID: 34133045 DOI: 10.1096/fj.202000238rrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/11/2022]
Abstract
Hypertension is associated with excessive reactive oxygen species (ROS) production in vascular cells. Mitochondria undergo fusion and fission, a process playing a role in mitochondrial function. OPA1 is essential for mitochondrial fusion. Loss of OPA1 is associated with ROS production and cell dysfunction. We hypothesized that mitochondria fusion could reduce oxidative stress that defect in fusion would exacerbate hypertension. Using (a) Opa1 haploinsufficiency in isolated resistance arteries from Opa1+/- mice, (b) primary vascular cells from Opa1+/- mice, and (c) RNA interference experiments with siRNA against Opa1 in vascular cells, we investigated the role of mitochondria fusion in hypertension. In hypertension, Opa1 haploinsufficiency induced altered mitochondrial cristae structure both in vascular smooth muscle and endothelial cells but did not modify protein level of long and short forms of OPA1. In addition, we demonstrated an increase of mitochondrial ROS production, associated with a decrease of superoxide dismutase 1 protein expression. We also observed an increase of apoptosis in vascular cells and a decreased VSMCs proliferation. Blood pressure, vascular contractility, as well as endothelium-dependent and -independent relaxation were similar in Opa1+/- , WT, L-NAME-treated Opa1+/- and WT mice. Nevertheless, chronic NO-synthase inhibition with L-NAME induced a greater hypertension in Opa1+/- than in WT mice without compensatory arterial wall hypertrophy. This was associated with a stronger reduction in endothelium-dependent relaxation due to excessive ROS production. Our results highlight the protective role of mitochondria fusion in the vasculature during hypertension by limiting mitochondria ROS production.
Collapse
Affiliation(s)
- Pauline Robert
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Phuc Minh Chau Nguyen
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Alexis Richard
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Céline Grenier
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Arnaud Chevrollier
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Mathilde Munier
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Linda Grimaud
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Coralyne Proux
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Tristan Champin
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Eric Lelièvre
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
| | - Emmanuelle Sarzi
- Institute for Neurosciences of Montpellier-INSERM U1051, Montpellier, France
| | - Emilie Vessières
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Samir Henni
- University Hospital (CHU) of Angers, Angers, France
| | - Delphine Prunier
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
- University Hospital (CHU) of Angers, Angers, France
| | - Pascal Reynier
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
- University Hospital (CHU) of Angers, Angers, France
| | - Guys Lenaers
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
- University Hospital (CHU) of Angers, Angers, France
| | - Céline Fassot
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| | - Daniel Henrion
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
- University Hospital (CHU) of Angers, Angers, France
| | - Laurent Loufrani
- MITOVASC Institute and CARFI Facility, University of Angers, Angers, France
- UMR CNRS 6015, Angers, France
- INSERM U1083, Angers, France
| |
Collapse
|
6
|
Zhi FY, Liu J, Ma XP, Hong J, Zhang J, Zhang D, Zhao Y, Wu LJ, Yang YT, Wu DY, Xie C, Wu LX, Zhang CH. Manual Acupuncture for Optic Atrophy: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1735967. [PMID: 30713567 PMCID: PMC6332962 DOI: 10.1155/2019/1735967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/11/2018] [Accepted: 12/11/2018] [Indexed: 11/18/2022]
Abstract
Objectives. This systematic review aims to critically evaluate the efficacy of manual acupuncture for optic atrophy. Eight English and Chinese databases, including Cochrane Library, EMbase, PubMed, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database, China Science and Technology Journal Database (VIP), and Chinese Biomedical Literature Database (CBM), as well as ongoing trials registered with the WHO International Clinical Trials Registry Platform, were searched to identify eligible randomized controlled trials (RCTs) studying manual acupuncture for optic atrophy compared to medication alone. The quality of evidence was assessed using Cochrane Collaboration's risk of bias tool. Meta-analysis was performed using Review Manager version 5.3. Nine studies were identified and included for meta-analysis. The meta-analysis showed significant differences in favor of manual acupuncture or manual acupuncture plus medication compared with medication alone in the following outcome measures: visual acuity (MD = 0.18, 95% CI [0.17, 0.20], P < 0.00001), mean sensitivity of visual field (MD = 2.11, 95% CI [1.90, 2.32], P < 0.00001), the latent period of P-VEP100 (MD = -6.80, 95% CI [-8.94, -4.66], P < 0.00001), the total effectiveness (264 eyes) (OR = 3.22, 95% CI [1.88, 5.51], P<0.0001), and the total effectiveness (344 participants) (OR = 4.29, 95% CI [2.56, 7.19], P < 0.00001). Despite statistical advantages of manual acupuncture in the literature, due to serious methodological flaws in study design, it cannot be concluded that manual acupuncture is more effective than medicine alone. It is essential that a properly controlled clinical trial is designed and controls are established to exclude placebo effects.
Collapse
Affiliation(s)
- Fang-Yuan Zhi
- Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Jie Liu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Xiao-Peng Ma
- Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Jue Hong
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Ji Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Dan Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Yue Zhao
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Li-Jie Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Yan-Ting Yang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Dan-Yan Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Chen Xie
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Ling-Xiang Wu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Cui-Hong Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| |
Collapse
|
7
|
Pretegiani E, Rosini F, Rufa A, Gallus G, Cardaioli E, Da Pozzo P, Bianchi S, Serchi V, Collura M, Franceschini R, Bianchi Marzoli S, Dotti M, Federico A. Genotype-phenotype and OCT correlations in Autosomal Dominant Optic Atrophy related to OPA1 gene mutations: Report of 13 Italian families. J Neurol Sci 2017; 382:29-35. [DOI: 10.1016/j.jns.2017.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
|
8
|
Chun BY, Rizzo JF. Dominant Optic Atrophy and Leber's Hereditary Optic Neuropathy: Update on Clinical Features and Current Therapeutic Approaches. Semin Pediatr Neurol 2017; 24:129-134. [PMID: 28941528 DOI: 10.1016/j.spen.2017.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dominant optic atrophy (DOA) and Leber hereditary optic neuropathy (LHON) are the two most common inherited optic neuropathies encountered in clinical practice. This review provides a summary of recent advances in the understanding of the clinical manifestations, current treatments, and ongoing clinical trials of these two optic neuropathies. Substantial progress has been made in the understanding of the clinical, genetic, and pathophysiological basis of DOA and LHON. Pathogenic OPA1 gene mutations in DOA and 3 primary mutations of mitochondrial DNA in LHON-induced mitochondrial dysfunction, which in turn leads to increased reactive oxygen species levels in mitochondria and possibly insufficient ATP production. The pathologic hallmark of these inherited optic neuropathies is primary degeneration of retinal ganglion cells, preferentially in the papillomacular bundle, which results in temporal optic disc pallor and central or cecocentral visual loss. There are no effective treatments for patients with LHON and DOA, although clinical trials are underway for the former. Translational research for these diseases is entering an accelerated phase with the availability of animal models, and a variety of pharmacological and genetic therapies are being developed.
Collapse
Affiliation(s)
- Bo Young Chun
- Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu, Korea; Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, Korea
| | - Joseph F Rizzo
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA.
| |
Collapse
|
9
|
Dominant optic atrophy: updates on the pathophysiology and clinical manifestations of the optic atrophy 1 mutation. Curr Opin Ophthalmol 2016; 27:475-480. [PMID: 27585216 DOI: 10.1097/icu.0000000000000314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW Review recent advances in clinical and experimental studies of dominant optic atrophy (DOA) to better understand the complexities of pathophysiology caused by the optic atrophy 1 (OPA1) mutation. RECENT FINDINGS DOA is the most commonly diagnosed inherited optic atrophy, causing progressive bilateral visual loss that begins early in life. During the past 25 years, there has been substantial progress in the understanding of the clinical, genetic, and pathophysiological basis of this disease. The histopathological hallmark of DOA is the primary degeneration of retinal ganglion cells, preferentially in the papillomacular bundle, which results temporal optic disc pallor and cecocentral scotomata in patients with DOA. Loss of OPA1 protein function by OPA1 gene mutations causes mitochondrial dysfunction because of the loss of mitochondrial fusion, impaired mitochondrial oxidative phosphorylation, increases in reactive oxygen species, and altered calcium homeostasis. These factors lead to apoptosis of retinal ganglion cells by a haploinsufficiency mechanism. SUMMARY Improved understanding of the pathophysiology of DOA provides insights that can be used to develop therapeutic approaches to the DOA.
Collapse
|
10
|
A randomized, placebo-controlled trial of the benzoquinone idebenone in a mouse model of OPA1-related dominant optic atrophy reveals a limited therapeutic effect on retinal ganglion cell dendropathy and visual function. Neuroscience 2016; 319:92-106. [PMID: 26820596 DOI: 10.1016/j.neuroscience.2016.01.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/19/2022]
Abstract
Dominant optic atrophy (DOA) arises from mutations in the OPA1 gene that promotes fusion of the inner mitochondrial membrane and plays a role in maintaining ATP levels. Patients display optic disc pallor, retinal ganglion cell (RGC) loss and bilaterally reduced vision. We report a randomized, placebo-controlled trial of idebenone at 2000 mg/kg/day in 56 Opa1 mutant mice (B6;C3-Opa1(Q285STOP)), with RGC dendropathy and visual loss, and 63 wildtype mice. We assessed cellular responses in the retina, brain and liver and RGC morphology, by diolistic labeling, Sholl analysis and quantification of dendritic morphometric features. Vision was assessed by optokinetic responses. ATP levels were raised by 0.57 nmol/mg (97.73%, p=0.035) in brain from idebenone-treated Opa1 mutant mice, but in the liver there was an 80.35% (p=0.011) increase in oxidative damage. NQO1 expression in Opa1 mutant mice was reduced in the brain (to 30.5%, p=0.002) but not in retina, and neither expression level was induced by idebenone. ON-center RGCs failed to show major recovery, other than improvements in secondary dendritic length (by 53.89%, p=0.052) and dendritic territory (by 2.22 × 10(4) μm(2) or 90.24%, p=0.074). An improvement in optokinetic response was observed (by 12.2 ± 3.2s, p=0.003), but this effect was not sustained over time. OFF-center RGCs from idebenone-treated wildtype mice showed shrinkage in total dendritic length by 2.40 mm (48.05%, p=0.025) and a 47.37% diminished Sholl profile (p=0.029). Visual function in wildtype idebenone-treated mice was impaired (2.9 fewer head turns than placebo, p=0.007). Idebenone appears largely ineffective in protecting Opa1 heterozygous RGCs from dendropathy. The detrimental effect of idebenone in wildtype mice has not been previously observed and raises some concerns.
Collapse
|