1
|
Liu B, Li H, Liu X, Li F, Chen W, Kuang Y, Zhao X, Li L, Yu B, Jin X, Li Q. CircZNF208 enhances the sensitivity to X-rays instead of carbon-ions through the miR-7-5p /SNCA signal axis in non-small-cell lung cancer cells. Cell Signal 2021; 84:110012. [PMID: 33892093 DOI: 10.1016/j.cellsig.2021.110012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mounting evidence suggests that circular RNAs (circRNAs) are closely related to the regulation of gene expression during tumour development. However, the role of circRNAs in modulating the radiosensitivity of non-small cell lung cancer (NSCLC) cells has not been explored. METHODS Transcriptome sequencing was used to explore the expression profiles of circRNAs in NSCLC. The expression level of circRNAs was changed by inducing instantaneous knockdown or overexpression. Changes in proliferation and radiosensitivity of NSCLC cells were investigated using CCK-8, EDU, and clonal survivals. RESULTS By analysing the circRNA expression profile of NSCLC cells, we found that circRNA ZNF208 (circZNF208) was significantly upregulated in a radioresistant NSCLC cell line (A549-R11), which was acquired from the parental NSCLC cell line A549. Knockout experiments indicated that circZNF208 enhanced the radiosensitivity of A549 and A549-R11 cells to X-rays. Mechanistically, circZNF208 upregulated SNCA expression by acting as a sponge of miR-7-5p and subsequently promoted the resistance of NSCLC cells to low linear energy transfer (LET) X-rays. However, this effect was not observed in NSCLC cells exposed to high-LET carbon ions. CONCLUSIONS Knockdown of circZNF208 altered the radiosensitivity of patients with NSCLC to X-rays but did not significantly change the sensitivity to carbon ions. Therefore, circZNF208 might serve as a potential biomarker and therapeutic target for NSCLC treatment with radiotherapy of different modalities.
Collapse
Affiliation(s)
- Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Li
- Northwest Normal University, Lanzhou, Gansu, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Li Y, Hao S, Zhang H, Mao W, Xue J, Zhang Y, Cai Y, Chan P. Hypomethylation of SNCA in Idiopathic REM Sleep Behavior Disorder Associated With Phenoconversion. Mov Disord 2020; 36:955-962. [PMID: 33340152 DOI: 10.1002/mds.28421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Hypomethylation of intron 1 of the α-synuclein (SNCA) gene has been extensively reported in the blood of patients with α-synucleinopathies. Idiopathic rapid eye movement sleep behavior disorder represents a prodromal stage of α-synucleinopathies. Methylation of α-synuclein intron 1 in idiopathic rapid eye movement sleep behavior disorder patients is largely unexplored. The objective of the current study was to assess blood α-synuclein intron 1 methylation in patients and to explore it as a potential biomarker to predict phenoconversion and monitor disease progression. METHODS Seventy-eight polysomnography-confirmed patients and 74 healthy controls were enrolled. After an average of 3.75 years of follow up, 16 patients converted to neurodegenerative diseases (converters), whereas 59 did not (nonconverters). Blood DNA was obtained at baseline from all participants, as well as at the follow-up visit for 27 patients. DNA methylation levels were determined using bisulfite pyrosequencing methods and were compared between patients and healthy controls, converters and nonconverters, and baseline and follow-up visits. RESULTS Hypomethylation at cytosine-phosphate-guanine 10, 11, 12, 13, and 17 was found in patients compared with healthy controls. Hypomethylation at cytosine-phosphate-guanine 17 was associated with an increased risk of clinical phenoconversion, which was further enhanced with the presence of subtle motor abnormalities. In addition, it appeared that later reduction in methylation levels at cytosine-phosphate-guanine 14, 15, and 16 was associated with disease progression. CONCLUSIONS Peripheral blood α-synuclein intron 1 was hypomethylated in idiopathic rapid eye movement sleep behavior disorder patients. α-Synuclein methylation levels may be useful biomarkers to screen patients, predict phenoconversion, and monitor disease progression. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yuan Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shuwen Hao
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
| | - Hui Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jinhua Xue
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
| | - Yanli Zhang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China.,Department of Biobank, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson's Disease, Parkinson's Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson's Disease of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
3
|
Yang X, Xu S, Qian Y, He X, Chen S, Xiao Q. Hypermethylation of the Gene Coding for PGC-1α in Peripheral Blood Leukocytes of Patients With Parkinson's Disease. Front Neurosci 2020; 14:97. [PMID: 32174806 PMCID: PMC7054441 DOI: 10.3389/fnins.2020.00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Decreased expression of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is implicated in the pathophysiology of Parkinson’s disease (PD). However, our understanding of the mechanism regulating the PGC-1α expression is still limited. We sought to determine whether the epigenetic modification of PPARGC1A (the gene encoding PGC-1α) could account for its diminished expression. We performed a study of PPARGC1A risk-SNP genotypes, methylation level, and the expression in blood from 171 subjects. The mean DNA methylation level of PPARGC1A intron 1 in patients with PD was higher than that in the controls (7.18 ± 1.74 vs. 6.36 ± 1.28, P = 0.007). A detailed comparison of the DNA methylation level at each CpG site showed that CpG_1, CpG_13.14, CpG_17.18, and CpG_20 were significantly hypermethylated in patients with PD. There was a significant negative correlation between PPARGC1A methylation and expression level (R = −0.404, P < 0.001). We found no correlations between the PPARGC1A methylation level and the clinical features, while the CpG_13.14 site methylation level was positively correlated with H&Y stage (R = 0.246, P = 0.020) and was increased in people carrying the rs2970848 AA genotype compared with that in carriers of the AG/GG genotype (7.27 ± 1.86 vs. 6.65 ± 1.92, P = 0.032). Our results support a link between PPARGC1A methylation, gene expression, and variability, which indicated that a novel epigenetic regulatory mechanism controlling PPARGC1A expression influences PD pathogenesis.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of Neurology, Ruijin Hospital Affiliated with the School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoqing Xu
- Department of Neurology, Ruijin Hospital Affiliated with the School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwei Qian
- Department of Neurology, Ruijin Hospital Affiliated with the School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqin He
- Department of Neurology, Ruijin Hospital Affiliated with the School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated with the School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Xiao
- Department of Neurology, Ruijin Hospital Affiliated with the School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Gastrointestinal Dysfunctions Are Associated with IL-10 Variants in Parkinson's Disease. PARKINSONS DISEASE 2019; 2018:5908359. [PMID: 30631418 PMCID: PMC6304865 DOI: 10.1155/2018/5908359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022]
Abstract
Inflammation has been demonstrated to be involved in Parkinson's disease (PD) pathogenesis. There were evidences that the disturbance of the protective function of IL-10 gene contributed to PD. In our study, haplotype analyses were conducted of IL-10 rs1800871 and rs1800872 on 371 PD patients. Because the two SNPs exposed significant linkage disequilibrium demonstrated by Haploview software, we included 177 carriers of both rs1800871 and rs1800872 and 190 noncarriers in clinical phenotype analyses. As to nonmotor symptoms, the score of the gastrointestinal dysfunction domain in Nonmotor Symptom Scale (NMSS) was lower in the carrier group of both SNPs than in the noncarrier group in PD patients (SC: -0.198, p : 023). Other nonmotor symptoms reflected by relevant rating scales showed negative results. As to comorbidity, no significant statistical significance was observed between the two SNPs and Charlson Comorbidity Index (CCI). In conclusion, we found less severe gastrointestinal dysfunctions of both IL-10 rs1800871 and rs1800872 carriers than noncarriers in PD.
Collapse
|
5
|
Zhang Y, Shu L, Sun Q, Pan H, Guo J, Tang B. A Comprehensive Analysis of the Association Between SNCA Polymorphisms and the Risk of Parkinson's Disease. Front Mol Neurosci 2018; 11:391. [PMID: 30410434 PMCID: PMC6209653 DOI: 10.3389/fnmol.2018.00391] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Various studies have reported associations between synuclein alpha (SNCA) polymorphisms and Parkinson's disease (PD) risk. However, the results are inconsistent. We conducted a comprehensive meta-analysis of the associations between SNCA single-nucleotide polymorphisms (SNPs) and PD risk in overall populations and subpopulations by ethnicity. Methods: Standard meta-analysis was conducted according to our protocol with a cutoff point of p < 0.05. To find the most relevant SNCA SNPs, we used a cutoff point of p < 1 × 10−5 in an analysis based on the allele model. In the subgroup analysis by ethnicity, we divided the overall populations into five ethnic groups. We conducted further analysis on the most relevant SNPs using dominant and recessive models to identify the contributions of heterozygotes and homozygotes regarding each SNP. Results: In our comprehensive meta-analysis, 24,075 cases and 22,877 controls from 36 articles were included. We included 16 variants in the meta-analysis and found 12 statistically significant variants with p < 0.05. After narrowing down the variants using the p < 1 × 10−5 cutoff, in overall populations, seven SNPs increased the risk of PD (rs2736990, rs356220, rs356165, rs181489, rs356219, rs11931074, and rs2737029, with odds ratios [ORs] of 1.22–1.38) and one SNP decreased the risk (rs356186, with an OR of 0.77). In the East Asian group, rs2736990 and rs11931074 increased the risk (with ORs of 1.22–1.34). In the European group, five SNPs increased the risk (rs356219, rs181489, rs2737029, rs356165, and rs11931074, with ORs of 1.26–1.37) while one SNP decreased the risk (rs356186, with an OR of 0.77). The heterozygotes and homozygotes contributed differently depending on the variant. Conclusions: In summary, we found eight SNCA SNPs associated with PD risk, which had obvious differences between ethnicities. Seven SNPs increased the risk of PD and one SNP decreased the risk in the overall populations. In the East Asian group, rs2736990 and rs11931074 increased the risk. In the European group, rs356219, rs181489, rs2737029, rs356165, and rs11931074 increased the risk while rs356186 decreased the risk. Variants with the highest ORs and allele frequencies in our analysis should be given priority when carrying out genetic screening.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Liang D, Shu L, Pan H, Xu Q, Guo J, Yan X, Tang B, Sun Q. Clinical characteristics of PD patients with LRRK2 G2385R and R1628P variants. Neurosci Lett 2018; 685:185-189. [PMID: 30121215 DOI: 10.1016/j.neulet.2018.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 01/28/2023]
Abstract
LRRK2 is the most common genetic cause of PD. G2385R and R1628 P variants are the most common variants of LRRK2 in Chinese populations. Consensus on the clinical features of G2385R and R1628 P related PD has not been reached yet, although it had been widely studied. In our study, genotype analyses were conducted on 721 PD patients of Chinese origin. A total of 62 G2385R carriers, 32 R1628 P carriers and 623 idiopathic PD patients underwent the following clinical feature analysis. Motor symptoms, non-motor symptoms and co-morbidities were the targeted features to be analyzed. As a result, Neither the G2385R nor the R1628 P carriers showed significant clinical feature differences when compared to the idiopathic PD patients, so did the comparison between the G2385R and the R1628 P carriers. In conclusion, the clinical features of PD patients with LRRK2 G2385R or R1628 P variants were similar to those of idiopathic PD.
Collapse
Affiliation(s)
- Dongxiao Liang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China; Center for Medical Genetics, Central South University, Changsha, Hunan 410008, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China; Center for Medical Genetics, Central South University, Changsha, Hunan 410008, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
7
|
Shu L, Zhang Y, Sun Q, Pan H, Guo J, Tang B. SNCA REP1 and Parkinson's disease. Neurosci Lett 2018; 682:79-84. [PMID: 29859327 DOI: 10.1016/j.neulet.2018.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 10/01/2022]
Abstract
REP1 is a polymorphic dinucleotide repeat sequence located in the promoter region of the SNCA gene (OMIM 163890). Opinions regarding the interaction between the various REP1 alleles and Parkinson's disease (PD) or its phenotypes have been inconsistent and have thus far not been comprehensively analyzed. In this study, we searched Medline, Embase and Cochrane databases as well as the Chinese-language Wanfang and CNKI databases using strict inclusion and exclusion criteria and conducted our analysis using Revman 5.3 software. Our search produced 28 articles describing REP1 alleles and their associated PD risks and 8 articles which discussed the relationship between REP1 variation and PD phenotypes. We found that the 265-, 269-, and 271-bp alleles of REP1 (using the nomenclature established by Xia et al.) increased the risk of PD (OR: 1.81, 1.05, 1.17; p: 0.0002, 0.003, 0.002) while the 267-bp allele decreased PD risk (OR: 0.86, p: <0.00001) when taking all populations into account. By ethnicity, we observed an obvious population heterogeneity in the effects of various alleles, where the 269-, 271-, and 273-bp alleles increased PD risk (OR: 1.06, 1.22, 1.89; p: 0.001, 0.003, 0.001) and the 267-bp allele decreased PD risk (OR: 0.85; p: <0.00001) in Caucasian populations, and the 263- and 265-bp alleles increased the risk of PD (OR: 2.22, 2.03; p: 0.03, 0.0002) and the 267- and 273-bp alleles decreased PD risk (OR: 0.90, 0.78; p: 0.02, 0.03) in Asian populations. We also determined that the 267-, 269-, and 271-bp alleles occurred the most frequently, although the frequency distribution varied among different ethnicities. Phenotypic analysis demonstrated that PD patients carrying the 271-bp allele were prone to early onset PD (OR: 1.75, p: 0.02) while the 267-bp had the opposite effect (OR: 0.81; p: 0.01).
Collapse
Affiliation(s)
- Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing 100069, China; Collaborative Innovation Center for Brain Science, Shanghai 200032, China; Collaborative Innovation Center for Genetics and Development, Shanghai 200438, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing 100069, China; Collaborative Innovation Center for Brain Science, Shanghai 200032, China; Collaborative Innovation Center for Genetics and Development, Shanghai 200438, China.
| |
Collapse
|
8
|
Piper DA, Sastre D, Schüle B. Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease. Front Neurosci 2018; 12:199. [PMID: 29686602 PMCID: PMC5900030 DOI: 10.3389/fnins.2018.00199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (non A4 component of amyloid precursor, SNCA, NM_000345.3) plays a central role in the pathogenesis of Parkinson's disease (PD) and related Lewy body disorders such as Parkinson's disease dementia, Lewy body dementia, and multiple system atrophy. Since its discovery as a disease-causing gene in 1997, alpha-synuclein has been a central point of scientific interest both at the protein and gene level. Mutations, including copy number variants, missense mutations, short structural variants, and single nucleotide polymorphisms, can be causative for PD and affect conformational changes of the protein, can contribute to changes in expression of alpha-synuclein and its isoforms, and can influence regulation of temporal as well as spatial levels of alpha-synuclein in different tissues and cell types. A lot of progress has been made to understand both the physiological transcriptional and epigenetic regulation of the alpha-synuclein gene and whether changes in transcriptional regulation could lead to disease and neurodegeneration in PD and related alpha-synucleinopathies. Although the histopathological changes in these neurodegenerative disorders are similar, the temporal and spatial presentation and progression distinguishes them which could be in part due to changes or disruption of transcriptional regulation of alpha-synuclein. In this review, we describe different genetic alterations that contribute to PD and neurodegenerative conditions and review aspects of transcriptional regulation of the alpha-synuclein gene in the context of the development of PD. New technologies, advanced gene engineering and stem cell modeling, are on the horizon to shed further light on a better understanding of gene regulatory processes and exploit them for therapeutic developments.
Collapse
Affiliation(s)
- Desiree A Piper
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Danuta Sastre
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| |
Collapse
|
9
|
Chen Y, Hong T, Wang S, Mo J, Tian T, Zhou X. Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem Soc Rev 2018; 46:2844-2872. [PMID: 28352906 DOI: 10.1039/c6cs00599c] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The epigenetic modification of nucleic acids represents one of the most significant areas of study in the field of nucleic acids because it makes gene regulation more complex and heredity more complicated, thus indicating its profound impact on aspects of heredity, growth, and diseases. The recent characterization of epigenetic modifications of DNA and RNA using chemical labelling strategies has promoted the discovery of these modifications, and the newly developed single-base or single-cell resolution mapping strategies have enabled large-scale epigenetic studies in eukaryotes. Due to these technological breakthroughs, several new epigenetic marks have been discovered that have greatly extended the scope and impact of epigenetic modifications in nucleic acids over the past few years. Because epigenetics is reversible and susceptible to environmental factors, it could potentially be a promising direction for clinical medicine research. In this review, we have comprehensively discussed how these epigenetic marks are involved in disease, including the pathogenesis, prevention, diagnosis and treatment of disease. These findings have revealed that the epigenetic modification of nucleic acids has considerable significance in various areas from methodology to clinical medicine and even in biomedical applications.
Collapse
Affiliation(s)
- Yuqi Chen
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Hubei, Wuhan 430072, P. R. China.
| | | | | | | | | | | |
Collapse
|
10
|
Yan Y, Xu Z, Hu X, Qian L, Li Z, Zhou Y, Dai S, Zeng S, Gong Z. SNCA Is a Functionally Low-Expressed Gene in Lung Adenocarcinoma. Genes (Basel) 2018; 9:16. [PMID: 29300342 PMCID: PMC5793169 DOI: 10.3390/genes9010016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
There is increasing evidence for the contribution of synuclein alpha (SNCA) to the etiology of neurological disorders, such as Parkinson's disease (PD). However, little is known about the detailed role of SNCA in human cancers, especially lung cancers. Here, we evaluated the effects of SNCA on the occurrence and prognosis of lung adenocarcinoma (ADC). Comprehensive bioinformatics analyses of data obtained from the Oncomine platform, the human protein atlas (HPA) project and the cancer cell line encyclopedia (CCLE) demonstrated that SNCA expression was significantly reduced in both ADC tissues and cancer cells. The results of relevant clinical studies indicated that down-regulation of SNCA was statistically correlated with shorter overall survival time and post-progression survival time. Through analysis of datasets obtained from the Gene Expression Omnibus database, significant low levels of SNCA were identified in cisplatin-resistant ADC cells. Moreover, small interfering RNA (siRNA)-mediated knockdown of protein tyrosine kinase 7 (PTK7) elevated the expression of SNCA in the ADC cell lines H1299 and H2009. Our work demonstrates that low levels of SNCA are specifically found in ADC and that this gene may be a potential therapeutic target for this subset of lung cancers. Determination of the role of SNCA in ADC biology would give us some insightful information for further investigations.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Zhijie Xu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Xiaofang Hu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Zhi Li
- Center for Molecular Medicine, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Yangying Zhou
- Department of Medical Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Shuang Dai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
11
|
Miranda-Morales E, Meier K, Sandoval-Carrillo A, Salas-Pacheco J, Vázquez-Cárdenas P, Arias-Carrión O. Implications of DNA Methylation in Parkinson's Disease. Front Mol Neurosci 2017; 10:225. [PMID: 28769760 PMCID: PMC5513956 DOI: 10.3389/fnmol.2017.00225] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
It has been 200 years since Parkinson’s disease (PD) was first described, yet many aspects of its etiopathogenesis remain unclear. PD is a progressive and complex neurodegenerative disorder caused by genetic and environmental factors including aging, nutrition, pesticides and exposure to heavy metals. DNA methylation may be altered in response to some of these factors; therefore, it is proposed that epigenetic mechanisms, particularly DNA methylation, can have a fundamental role in gene–environment interactions that are related with PD. Epigenetic changes in PD-associated genes are now widely studied in different populations, to discover the mechanisms that contribute to disease development and identify novel biomarkers for early diagnosis and future pharmacological treatment. While initial studies sought to find associations between promoter DNA methylation and the regulation of associated genes in PD brain tissue, more recent studies have described concordant DNA methylation patterns between blood and brain tissue DNA. These data justify the use of peripheral blood samples instead of brain tissue for epigenetic studies. Here, we summarize the current data about DNA methylation changes in PD and discuss the potential of DNA methylation as a potential biomarker for PD. Additionally, we discuss environmental and nutritional factors that have been implicated in DNA methylation. Although the search for significant DNA methylation changes and gene expression analyses of PD-associated genes have yielded inconsistent and contradictory results, epigenetic modifications remain under investigation for their potential to reveal the link between environmental risk factors and the development of PD.
Collapse
Affiliation(s)
- Ernesto Miranda-Morales
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea GonzálezMexico City, Mexico.,Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - Karin Meier
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Ada Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea GonzálezMexico City, Mexico
| |
Collapse
|
12
|
Kofoed RH, Zheng J, Ferreira N, Lykke-Andersen S, Salvi M, Betzer C, Reimer L, Jensen TH, Fog K, Jensen PH. Polo-like kinase 2 modulates α-synuclein protein levels by regulating its mRNA production. Neurobiol Dis 2017. [PMID: 28648742 DOI: 10.1016/j.nbd.2017.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Variations in the α-synuclein-encoding SNCA gene represent the greatest genetic risk factor for Parkinson's disease (PD), and duplications/triplications of SNCA cause autosomal dominant familial PD. These facts closely link brain levels of α-synuclein with the risk of PD, and make lowering α-synuclein levels a therapeutic strategy for the treatment of PD and related synucleinopathies. In this paper, we corroborate previous findings on the ability of overexpressed Polo-like kinase 2 (PLK-2) to decrease cellular α-synuclein, but demonstrate that the process is independent of PLK-2 phosphorylating S129 in α-synuclein because a similar reduction is achieved with the non-phosphorable S129A mutant α-synuclein. Using a specific PLK-2 inhibitor (compound 37), we demonstrate that endogenous PLK-2 phosphorylates S129 only in some cells, but increases α-synuclein protein levels in all tested cell cultures and brain slices. PLK-2 is found to regulate the transcription of α-synuclein mRNA from both the endogenous mouse SNCA gene and transgenic vectors that only contain the open reading frame. Moreover, we are the first to show that regulation of α-synuclein by PLK-2 is of physiological importance since 10days' inhibition of endogenous PLK-2 in wt C57BL/6 mice increases endogenous α-synuclein protein levels. Our findings collectively demonstrate that PLK-2 regulates α-synuclein levels by a previously undescribed transcription-based mechanism. This mechanism is active in cells and brain tissue, opening up for alternative strategies for modulating α-synuclein levels and thereby for the possibility of modifying disease progression in synucleinopaties.
Collapse
Affiliation(s)
- Rikke H Kofoed
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| | - Jin Zheng
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| | - Nelson Ferreira
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| | - Søren Lykke-Andersen
- Aarhus University, Dept. of Molecular Biology and Genetics, C.F. Møllers Allé 3, DK-8000 Aarhus, Denmark.
| | - Mauro Salvi
- University of Padova, Dept. of Biomedical Sciences, Via U. Bassi 58/B, I-35131, Padova, Italy.
| | - Cristine Betzer
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| | - Lasse Reimer
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| | - Torben Heick Jensen
- Aarhus University, Dept. of Molecular Biology and Genetics, C.F. Møllers Allé 3, DK-8000 Aarhus, Denmark.
| | - Karina Fog
- H. Lundbeck A/S, Neurodegeneration & Biologics, Ottiliavej, DK-2500, Copenhagen, Denmark.
| | - Poul H Jensen
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 3, DK-8000 Aarhus, Denmark.
| |
Collapse
|
13
|
Deregulation of α-synuclein in Parkinson's disease: Insight from epigenetic structure and transcriptional regulation of SNCA. Prog Neurobiol 2017; 154:21-36. [PMID: 28445713 DOI: 10.1016/j.pneurobio.2017.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/19/2023]
Abstract
Understanding regulation of α-synuclein has long been a central focus for Parkinson's disease (PD) researchers. Accumulation of this protein in the Lewy body or neurites, mutations in the coding region of the gene and strong association of α-synuclein encoding gene multiplication (duplication/triplication) with familial form of PD have indicated the importance of this molecule in pathogenesis of the disease. Several years of research identified many potential faulty pathways associated with accumulation of α-synuclein inside dopaminergic neurons and its transmission to neighboring ones. Concurrently, an appreciable body of research is growing to understand the epigenetic and genetic deregulation of α-synuclein that might contribute to the disease pathology. Completion of the ENCODE (Encyclopedia of DNA Elements) project and recent advancement made in the epigenetic and trans factor mediated regulation of each gene, has tremendously accelerated the need to carefully understand the epigenetic structure of the gene (SNCA) encoding α-synuclein protein in order to decipher the regulation and contribution of α-synuclein to the pathogenesis of PD. We have also analyzed the detailed epigenetic structure of this gene with knowledge from ENCODE database, which may open new avenues in α-synuclein research. Interestingly, we have found that the gene contains several transcriptionally activate histone modifications and associated potential transcription factor binding sites in the non-coding areas that strongly suggest alternative regulatory pathways. Altogether this review will provide interesting insight of α-synuclein gene regulation from epigenetic, genetic and post-transcriptional perspectives and their potential implication in the PD pathogenesis.
Collapse
|