1
|
Jasemi S, Simula ER, Yasushi K, Sechi LA. Unveiling the impact of simulated microgravity on HSV-1 infection, neuroinflammation, and endogenous retroviral activation in SH-SY5Y cells. J Neurovirol 2025:10.1007/s13365-025-01251-0. [PMID: 40111700 DOI: 10.1007/s13365-025-01251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Microgravity (µg) during spaceflight affects cellular and molecular functions of both human cells and microbial pathogens, influencing viral replication and the host immune system. This study aimed to investigate the effects of simulated µg on Herpes Simplex Virus-1 (HSV-1) replication, host pro-inflammatory cytokine, and human endogenous retrovirus (HERV) activation in human neuroblastoma SH-SY5Y cells. Our results show that µg has a negative impact on HSV-1 replication, leading to significantly reduced viral titers and lower expression levels of HSV-1 early genes (ICP0, ICP4, and ICP27) compared to 1 gravity (1 g) conditions. Interestingly, despite lower viral titers and HSV-1 gene expressions under µg condition, we observed higher levels of HERVs and pro-inflammatory cytokine gene expression. In addition, there was a significant correlation between HSV-1 immediate-early genes with HERVs and pro-inflammatory cytokine gene expression, with stronger correlations observed under µg conditions. Taken together, µg reduces HSV-1 replication and increases host pro-inflammatory and HERVs gene expression, which demands further investigation for human health protection in space.
Collapse
Affiliation(s)
- Seyedesomaye Jasemi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Elena Rita Simula
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Kawaguchi Yasushi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy.
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy.
| |
Collapse
|
2
|
Gilli F, Ceccarelli A. Magnetic resonance imaging approaches for studying mouse models of multiple sclerosis: A mini review. J Neurosci Res 2023. [DOI: 10.1002/jnr.25193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center Geisel School of Medicine at Dartmouth Lebanon New Hampshire USA
| | - Antonia Ceccarelli
- Department of Neurology EpiCURA Centre Hospitalier Ath Belgium
- Hearthrhythmanagement, UZB Brussels Belgium
| |
Collapse
|
3
|
Matzinger P. Autoimmunity: Are we asking the right question? Front Immunol 2022; 13:864633. [PMID: 36405714 PMCID: PMC9671104 DOI: 10.3389/fimmu.2022.864633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/20/2022] [Indexed: 09/07/2023] Open
Abstract
For decades, the main question immunologists have asked about autoimmunity is "what causes a break in self-tolerance?" We have not found good answers to that question, and I believe we are still so ignorant because it's the wrong question. Rather than a break in self-tolerance, I suggest that many autoimmune diseases might be due to defects in normal tissue physiology.
Collapse
Affiliation(s)
- Polly Matzinger
- Ghost Lab, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
4
|
Romeo MA, Montani MSG, Benedetti R, Arena A, Gaeta A, Cirone M. The dysregulation of autophagy and ER stress induced by HHV-6A infection activates pro-inflammatory pathways and promotes the release of inflammatory cytokines and cathepsin S by CNS cells. Virus Res 2022; 313:198726. [DOI: 10.1016/j.virusres.2022.198726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
5
|
Meier UC, Cipian RC, Karimi A, Ramasamy R, Middeldorp JM. Cumulative Roles for Epstein-Barr Virus, Human Endogenous Retroviruses, and Human Herpes Virus-6 in Driving an Inflammatory Cascade Underlying MS Pathogenesis. Front Immunol 2021; 12:757302. [PMID: 34790199 PMCID: PMC8592026 DOI: 10.3389/fimmu.2021.757302] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Roles for viral infections and aberrant immune responses in driving localized neuroinflammation and neurodegeneration in multiple sclerosis (MS) are the focus of intense research. Epstein-Barr virus (EBV), as a persistent and frequently reactivating virus with major immunogenic influences and a near 100% epidemiological association with MS, is considered to play a leading role in MS pathogenesis, triggering localized inflammation near or within the central nervous system (CNS). This triggering may occur directly via viral products (RNA and protein) and/or indirectly via antigenic mimicry involving B-cells, T-cells and cytokine-activated astrocytes and microglia cells damaging the myelin sheath of neurons. The genetic MS-risk factor HLA-DR2b (DRB1*1501β, DRA1*0101α) may contribute to aberrant EBV antigen-presentation and anti-EBV reactivity but also to mimicry-induced autoimmune responses characteristic of MS. A central role is proposed for inflammatory EBER1, EBV-miRNA and LMP1 containing exosomes secreted by viable reactivating EBV+ B-cells and repetitive release of EBNA1-DNA complexes from apoptotic EBV+ B-cells, forming reactive immune complexes with EBNA1-IgG and complement. This may be accompanied by cytokine- or EBV-induced expression of human endogenous retrovirus-W/-K (HERV-W/-K) elements and possibly by activation of human herpesvirus-6A (HHV-6A) in early-stage CNS lesions, each contributing to an inflammatory cascade causing the relapsing-remitting neuro-inflammatory and/or progressive features characteristic of MS. Elimination of EBV-carrying B-cells by antibody- and EBV-specific T-cell therapy may hold the promise of reducing EBV activity in the CNS, thereby limiting CNS inflammation, MS symptoms and possibly reversing disease. Other approaches targeting HHV-6 and HERV-W and limiting inflammatory kinase-signaling to treat MS are also being tested with promising results. This article presents an overview of the evidence that EBV, HHV-6, and HERV-W may have a pathogenic role in initiating and promoting MS and possible approaches to mitigate development of the disease.
Collapse
Affiliation(s)
- Ute-Christiane Meier
- Institut für Laboratoriumsmedizin, Klinikum der Universität München, München, Germany.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
6
|
Wu J, Engdahl E, Gustafsson R, Fogdell-Hahn A, Waterboer T, Hillert J, Olsson T, Alfredsson L, Hedström AK. High antibody levels against human herpesvirus-6A interact with lifestyle factors in multiple sclerosis development. Mult Scler 2021; 28:383-392. [PMID: 34124961 DOI: 10.1177/13524585211022011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Infection with human herpesvirus 6A (HHV-6A) has been suggested to increase multiple sclerosis (MS) risk. However, potential interactions between HHV-6A and environmental/lifestyle risk factors for MS have not previously been studied. METHODS We used two Swedish population-based case-control studies comprising 5993 cases and 5995 controls. Using logistic regression models, subjects with different HHV-6A antibody levels, environmental exposures, and lifestyle habits were compared regarding MS risk, by calculating odds ratios (ORs) with 95% confidence intervals (CIs). Potential interactions between high HHV-6A antibody levels and common environmental exposures and lifestyle factors were evaluated on the additive scale. RESULTS High HHV-6A antibody levels were associated with increased risk of developing MS (OR = 1.5, 95% CI = 1.4-1.6). Regarding MS risk, significant interactions were observed between high HHV-6A antibody levels and both smoking (attributable proportion (AP) = 0.2, 95% CI = 0.1-0.3), low ultraviolet radiation (UVR) exposure (AP = 0.3, 95% CI = 0.1-0.4), and low vitamin D levels (AP = 0.3, 95% CI = 0.0-0.6). CONCLUSION High HHV-6A antibody levels are associated with increased MS risk and act synergistically with common environmental/lifestyle risk factors for MS. Further research is needed to investigate potential mechanisms underlying the interactions presented in this study.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden/Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elin Engdahl
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rasmus Gustafsson
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Fogdell-Hahn
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tim Waterboer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden/Department of Research and Education, Karolinska University Hospital, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Bello-Morales R, Andreu S, Ripa I, López-Guerrero JA. HSV-1 and Endogenous Retroviruses as Risk Factors in Demyelination. Int J Mol Sci 2021; 22:ijms22115738. [PMID: 34072259 PMCID: PMC8199333 DOI: 10.3390/ijms22115738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic alphaherpesvirus that can infect the peripheral and central nervous systems, and it has been implicated in demyelinating and neurodegenerative processes. Transposable elements (TEs) are DNA sequences that can move from one genomic location to another. TEs have been linked to several diseases affecting the central nervous system (CNS), including multiple sclerosis (MS), a demyelinating disease of unknown etiology influenced by genetic and environmental factors. Exogenous viral transactivators may activate certain retrotransposons or class I TEs. In this context, several herpesviruses have been linked to MS, and one of them, HSV-1, might act as a risk factor by mediating processes such as molecular mimicry, remyelination, and activity of endogenous retroviruses (ERVs). Several herpesviruses have been involved in the regulation of human ERVs (HERVs), and HSV-1 in particular can modulate HERVs in cells involved in MS pathogenesis. This review exposes current knowledge about the relationship between HSV-1 and human ERVs, focusing on their contribution as a risk factor for MS.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence:
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (S.A.); (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Zhou Y, Cuellar-Partida G, Simpson Yap S, Lin X, Claflin S, Burdon K, Charlesworth J, Taylor B. Utilising multi-large omics data to elucidate biological mechanisms within multiple sclerosis genetic susceptibility loci. Mult Scler 2021; 27:2141-2149. [PMID: 33870794 DOI: 10.1177/13524585211004422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have succeeded in identifying over 200 susceptibility loci for multiple sclerosis (MS). However, the potential functional variants and the mechanisms by which these loci affect MS risk remain largely unexplained. OBJECTIVES We used summary data-based Mendelian randomisation to prioritise risk genes and infer potential biological mechanisms for MS risk loci. METHODS The data used consisted of DNA methylation (n = 1980) QTL (mQTL) and gene expression (n = 31,684) QTL (eQTL) derived from whole blood as well as MS GWAS summary statistics (14,802 cases, 26,703 controls). The findings were further evaluated using data derived from independent brain mQTL (n = 1160) and eQTL (n = 1194). RESULTS In whole blood, we identified two independent genomic loci (lincRNA: RP11-326C3.13 and TNFSF14) with consistent genome-wide significant pleiotropic associations across different omics layers. In brain tissue, a similar effect for the RP11-326C3.13 locus was observed but not for TNFSF14, indicating a potential tissue-specific effect for the TNFSF14 locus. CONCLUSION We provide in silico evidence for the putative biological mechanisms by which the identified DNA methylation sites and target genes are functionally relevant to MS development in different tissues. Future research targeting these genes and DNA methylation sites will determine their roles in the pathophysiology of MS.
Collapse
Affiliation(s)
- Yuan Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Steve Simpson Yap
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia/Neuroepidemiology Unit, Melbourne School of Population & Global Health, The University of Melbourne, Carlton, VIC, Australia
| | - Xin Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Suzi Claflin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kathryn Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jac Charlesworth
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
9
|
Chopra S, Myers Z, Sekhon H, Dufour A. The Nerves to Conduct a Multiple Sclerosis Crime Investigation. Int J Mol Sci 2021; 22:2498. [PMID: 33801441 PMCID: PMC7958632 DOI: 10.3390/ijms22052498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative autoimmune disease characterized by the aberrant infiltration of immune cells into the central nervous system (CNS) and by the loss of myelin. Sclerotic lesions and various inhibitory factors hamper the remyelination processes within the CNS. MS patients typically experience gradual cognitive and physical disabilities as the disease progresses. The etiology of MS is still unclear and emerging evidence suggests that microbiome composition could play a much more significant role in disease pathogenesis than was initially thought. Initially believed to be isolated to the gut microenvironment, we now know that the microbiome plays a much broader role in various tissues and is essential in the development of the immune system. Here, we present some of the unexpected roles that the microbiome plays in MS and discuss approaches for the development of next-generation treatment strategies.
Collapse
Affiliation(s)
- Sameeksha Chopra
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zoë Myers
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Henna Sekhon
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Calgary, AB T2N 4N1, Canada; (S.C.); (Z.M.); (H.S.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
10
|
Komaroff AL, Pellett PE, Jacobson S. Human Herpesviruses 6A and 6B in Brain Diseases: Association versus Causation. Clin Microbiol Rev 2020; 34:e00143-20. [PMID: 33177186 PMCID: PMC7667666 DOI: 10.1128/cmr.00143-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B), collectively termed HHV-6A/B, are neurotropic viruses that permanently infect most humans from an early age. Although most people infected with these viruses appear to suffer no ill effects, the viruses are a well-established cause of encephalitis in immunocompromised patients. In this review, we summarize the evidence that the viruses may also be one trigger for febrile seizures (including febrile status epilepticus) in immunocompetent infants and children, mesial temporal lobe epilepsy, multiple sclerosis (MS), and, possibly, Alzheimer's disease. We propose criteria for linking ubiquitous infectious agents capable of producing lifelong infection to any neurologic disease, and then we examine to what extent these criteria have been met for these viruses and these diseases.
Collapse
Affiliation(s)
- Anthony L Komaroff
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip E Pellett
- Department of Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven Jacobson
- Virology/Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Expression of HERV Genes as Possible Biomarker and Target in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20153706. [PMID: 31362360 PMCID: PMC6696274 DOI: 10.3390/ijms20153706] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are genetic parasites, in-between genetics and environment. Few HERVs retain some coding capability. Sometimes, the host has the advantage of some HERV genes; conversely, HERVs may contribute to pathogenesis. The expression of HERVs depends on several factors, and is regulated epigenetically by stimuli such as inflammation, viral and microbial infections, etc. Increased expression of HERVs occurs in physiological and pathological conditions, in one or more body sites. Several diseases have been attributed to one or more HERVs, particularly neurological diseases. The key problem is to differentiate the expression of a HERV as cause or effect of a disease. To be used as a biomarker, a correlation between the expression of a certain HERV and the disease onset and/or behavior must be found. The greater challenge is to establish a pathogenic role. The criteria defining causal connections between HERVs and diseases include the development of animal models, and disease modulation in humans, by anti-HERV therapeutic antibody. So far, statistically significant correlations between HERVs and diseases have been achieved for HERV-W and multiple sclerosis; disease reproduction in transgenic animals was achieved for HERV-W and multiple sclerosis, and for HERV-K and amyotrophic lateral sclerosis. Clinical trials for both diseases are in progress.
Collapse
|
12
|
Guan Y, Jakimovski D, Ramanathan M, Weinstock-Guttman B, Zivadinov R. The role of Epstein-Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging. Neural Regen Res 2019; 14:373-386. [PMID: 30539801 PMCID: PMC6334604 DOI: 10.4103/1673-5374.245462] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system characterized by inflammation, demyelination, and neuronal damage. Environmental and genetic factors are associated with the risk of developing MS, but the exact cause still remains unidentified. Epstein-Barr virus (EBV), vitamin D, and smoking are among the most well-established environmental risk factors in MS. Infectious mononucleosis, which is caused by delayed primary EBV infection, increases the risk of developing MS. EBV may also contribute to MS pathogenesis indirectly by activating silent human endogenous retrovirus-W. The emerging B-cell depleting therapies, particularly anti-CD20 agents such as rituximab, ocrelizumab, as well as the fully human ofatumumab, have shown promising clinical and magnetic resonance imaging benefit. One potential effect of these therapies is the depletion of memory B-cells, the primary reservoir site where EBV latency occurs. In addition, EBV potentially interacts with both genetic and other environmental factors to increase susceptibility and disease severity of MS. This review examines the role of EBV in MS pathophysiology and summarizes the recent clinical and radiological findings, with a focus on B-cells and in vivo imaging. Addressing the potential link between EBV and MS allows the better understanding of MS pathogenesis and helps to identify additional disease biomarkers that may be responsive to B-cell depleting intervention.
Collapse
Affiliation(s)
- Yi Guan
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Murali Ramanathan
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
13
|
Cheng Y, Skinner DD, Lane TE. Innate Immune Responses and Viral-Induced Neurologic Disease. J Clin Med 2018; 8:jcm8010003. [PMID: 30577473 PMCID: PMC6352557 DOI: 10.3390/jcm8010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by chronic neuroinflammation, axonal damage, and demyelination. Cellular components of the adaptive immune response are viewed as important in initiating formation of demyelinating lesions in MS patients. This notion is supported by preclinical animal models, genome-wide association studies (GWAS), as well as approved disease modifying therapies (DMTs) that suppress clinical relapse and are designed to impede infiltration of activated lymphocytes into the CNS. Nonetheless, emerging evidence demonstrates that the innate immune response e.g., neutrophils can amplify white matter damage through a variety of different mechanisms. Indeed, using a model of coronavirus-induced neurologic disease, we have demonstrated that sustained neutrophil infiltration into the CNS of infected animals correlates with increased demyelination. This brief review highlights recent evidence arguing that targeting the innate immune response may offer new therapeutic avenues for treatment of demyelinating disease including MS.
Collapse
Affiliation(s)
- Yuting Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Dominic D Skinner
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Tao C, Simpson S, Taylor BV, Blizzard L, Lucas RM, Ponsonby AL, Broadley S, van der Mei I. Onset Symptoms, Tobacco Smoking, and Progressive-Onset Phenotype Are Associated With a Delayed Onset of Multiple Sclerosis, and Marijuana Use With an Earlier Onset. Front Neurol 2018; 9:418. [PMID: 29937751 PMCID: PMC6003245 DOI: 10.3389/fneur.2018.00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
Background: Age at symptom onset (ASO) is a prognostic factor that could affect the accrual of disability in multiple sclerosis (MS) patients. Some factors are known to influence the risk of multiple sclerosis (MS), but their influence on the ASO is less well-investigated. Objective: Examine the associations between known or emerging MS risk factors and ASO. Methods: This was a multicenter study, incident cases (n = 279) with first clinical diagnosis of demyelinating event aged 18–59 years recruited at four Australian centres (latitudes 27°-43°S), from 1 November 2003 to 31 December 2006. Environmental/behavioral variables and initial symptoms were recorded at baseline interview. Linear regression was used to assess the association between risk factors and ASO. Results: Five factors were significantly associated with ASO: a history of tobacco smoking was associated with 3.05-years later ASO (p = 0.002); a history of marijuana use was associated with 6.03-years earlier ASO (p < 0.001); progressive-onset cases had 5.61-years later ASO (p = 0.001); an initial presentation of bowel & bladder and cerebral dysfunctional were associated with 3.39 (p = 0.017) and 4.37-years (p = 0.006) later ASO, respectively. Other factors, including sex, offspring number, latitude of study site, history of infectious mononucleosis, HLA-DR15 & HLA-A2 genotype, 25(OH)D levels, and ultraviolet radiation exposure were not associated with ASO. Including all five significant variables into one model explained 12% of the total variance in ASO. Conclusion: We found a novel association between a history of tobacco smoking and later onset, whereas marijuana use was associated with earlier onset. Behavioral factors seem important drivers of MS onset timing although much of the variance remains unexplained.
Collapse
Affiliation(s)
- Chunrong Tao
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,Institute for Health & Ageing, Australian Catholic University, Melbourne, VIC, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Leigh Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Canberra, ACT, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Simon Broadley
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | | | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
15
|
Abstract
Two human endogenous retroviruses of the HERV-W family are proposed as multiple sclerosis (MS) co-factors: MS-associated retrovirus (MSRV) and ERVWE1, whose env proteins showed several potentially neuropathogenic features, in vitro and in animal models. Phase II clinical trials against HERV-Wenv are ongoing. HERV-W/MSRV was repeatedly found in MS patients, in striking parallel with MS stages, active/remission phases, and therapy outcome. The HERV-Wenv protein is highly expressed in active MS plaques. Early MSRV presence in spinal fluids predicted worst MS progression 10 years in advance. Effective anti-MS therapies strongly reduced MSRV/Syncytin-1/HERV-W expression. The Epstein–Barr virus (EBV) activates HERV-W/MSRV in vitro and in vivo, in patients with infectious mononucleosis and controls with high anti-EBNA1-IgG titers. Thus, the two main EBV/MS links (infectious mononucleosis and high anti-EBNA1-IgG titers) are paralleled by activation of HERV-W/MSRV. It is hypothesized that EBV may act as initial trigger of future MS, years later, by activating MSRV, which would act as direct neuropathogenic effector, before and during MS.
Collapse
|
16
|
Mentis AFA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM. Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurol Scand 2017; 136:606-616. [PMID: 28542724 PMCID: PMC7159535 DOI: 10.1111/ane.12775] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis is an immune-mediated disease with an environmental component. According to a long-standing but unproven hypothesis dating to initial descriptions of multiple sclerosis (MS) at the end of the 19th century, viruses are either directly or indirectly implicated in MS pathogenesis. Whether viruses in MS are principally causal or simply contributory remains to be proven, but many viruses or viral elements-predominantly Epstein-Barr virus, human endogenous retroviruses (HERVs) and human herpesvirus 6 (HHV-6) but also less common viruses such as Saffold and measles viruses-are associated with MS. Here, we present an up-to-date and comprehensive review of the main candidate viruses implicated in MS pathogenesis and summarize how these viruses might cause or lead to the hallmark demyelinating and inflammatory lesions of MS. We review data from epidemiological, animal and in vitro studies and in doing so offer a transdisciplinary approach to the topic. We argue that it is crucially important not to interpret "absence of evidence" as "evidence of absence" and that future studies need to focus on distinguishing correlative from causative associations. Progress in the MS-virus field is expected to arise from an increasing body of knowledge on the interplay between viruses and HERVs in MS. Such interactions suggest common HERV-mediated pathways downstream of viral infection that cause both neuroinflammation and neurodegeneration. We also comment on the limitations of existing studies and provide future research directions for the field.
Collapse
Affiliation(s)
- A.-F. A. Mentis
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
- The Johns Hopkins University, AAP; Baltimore MD USA
| | - E. Dardiotis
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - N. Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology; B’ Department of Neurology; AHEPA University Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - E. Petinaki
- Department of Microbiology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| | - G. M. Hadjigeorgiou
- Department of Neurology; University Hospital of Larissa; University of Thessaly; Larissa Greece
| |
Collapse
|
17
|
Acute Effect of Pore-Forming Clostridium perfringens ε-Toxin on Compound Action Potentials of Optic Nerve of Mouse. eNeuro 2017; 4:eN-NWR-0051-17. [PMID: 28798954 PMCID: PMC5550839 DOI: 10.1523/eneuro.0051-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/31/2017] [Accepted: 06/16/2017] [Indexed: 11/21/2022] Open
Abstract
ε-Toxin is a pore forming toxin produced by Clostridium perfringens types B and D. It is synthesized as a less active prototoxin form that becomes fully active upon proteolytic activation. The toxin produces highly lethal enterotoxaemia in ruminants, has the ability to cross the blood–brain barrier (BBB) and specifically binds to myelinated fibers. We discovered that the toxin induced a release of ATP from isolated mice optic nerves, which are composed of myelinated fibers that are extended from the central nervous system. We also investigated the effect of the toxin on compound action potentials (CAPs) in isolated mice optic nerves. When nerves were stimulated at 100 Hz during 200 ms, the decrease of the amplitude and the area of the CAPs was attenuated in the presence of ε-toxin. The computational modelling of myelinated fibers of mouse optic nerve revealed that the experimental results can be mimicked by an increase of the conductance of myelin and agrees with the pore forming activity of the toxin which binds to myelin and could drill it by making pores. The intimate ultrastructure of myelin was not modified during the periods of time investigated. In summary, the acute action of the toxin produces a subtle functional impact on the propagation of the nerve action potential in myelinated fibers of the central nervous system with an eventual desynchronization of the information. These results may agree with the hypothesis that the toxin could be an environmental trigger of multiple sclerosis (MS).
Collapse
|
18
|
Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: An update. Mult Scler Relat Disord 2017; 14:35-45. [PMID: 28619429 DOI: 10.1016/j.msard.2017.03.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
The most recent findings linking exposure to sun and vitamin D insufficiency to multiple sclerosis (MS) are reviewed. Due to insufficient sunshine and changing lifestyles, hypovitaminosis D is widespread in temperate countries. Numerous epidemiological studies have strongly suggested that sunshine and vitamin D insufficiency contributes to MS risk in these countries. Moreover, several large genetic studies in MS patients have recently stated unequivocally that diverse abnormalities involving vitamin D metabolism are related to the risk of the disease. The important implications of such results are discussed here. Then, the interactions of hypovitaminosis D with the other genetic and environmental protective and risk factors, such as the allele HLA DRB1*1501, Epstein-Barr virus infection, obesity, smoking and sexual hormones, are summarized. Vitamin D insufficiency and sufficiency could be a risk and a protective factor, respectively, among many other factors possibly continuously modulating the global MS risk from the mother's pregnancy to the triggering of MS in adulthood. However, many interactions between these different factors occur more particularly between conception and the end of adolescence, which corresponds to the period of maturation of the immune system and thymus and may be related to the dysimmune nature of the disease. The main mechanisms of action of vitamin D in MS appear to be immunomodulatory, involving the various categories of T and B lymphocytes in the general immune system, but neuroprotector and neurotrophic mechanisms could also be exerted at the central nervous system level. Furthermore, several controlled immunological studies performed in MS patients have recently confirmed that vitamin D supplementation has multiple beneficial immunomodulatory effects. However, there is still an enduring absence of major conclusive randomized clinical trials testing vitamin D supplementation in MS patients because of the quasi-insurmountable practical difficulties that exist nowadays in conducting and completing over several years such studies involving the use of a vitamin. Nevertheless, it should be noted that similar robust statistical models used in five different association studies have already predicted a favorable vitamin D effect reducing relapses by 50-70%. If there is now little doubt that vitamin D exerts a beneficial action on the inflammatory component of MS, the results are as yet much less clear for the progressive degenerative component. Lastly, until more information becomes available, vitamin D supplementation of MS patients, using a moderate physiological dose essentially correcting their vitamin insufficiency, is recommended.
Collapse
Affiliation(s)
- Charles Pierrot-Deseilligny
- Département de Neurologie, Hôpital de la Salpêtrière, Assistance Publique Hôpitaux de Paris, Université Pierre et Marie Curie (Paris VI), 47 bd de l'Hôpital, 75013 Paris, France.
| | - Jean-Claude Souberbielle
- Service d'explorations fonctionnelles, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Université René Descartes (Paris V),149 rue de Sèvres, 75915 Paris, France.
| |
Collapse
|