1
|
Pang S, Ren Z, Ding H, Chan P. Short-chain fatty acids mediate enteric and central nervous system homeostasis in Parkinson's disease: Innovative therapies and their translation. Neural Regen Res 2026; 21:938-956. [PMID: 40313087 DOI: 10.4103/nrr.nrr-d-24-01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/16/2025] [Indexed: 05/03/2025] Open
Abstract
Short-chain fatty acids, metabolites produced by the fermentation of dietary fiber by gut microbiota, have garnered significant attention due to their correlation with neurodegenerative diseases, particularly Parkinson's disease. In this review, we summarize the changes in short-chain fatty acid levels and the abundance of short-chain fatty acid-producing bacteria in various samples from patients with Parkinson's disease, highlighting the critical role of gut homeostasis imbalance in the pathogenesis and progression of the disease. Focusing on the nervous system, we discuss the molecular mechanisms by which short-chain fatty acids influence the homeostasis of both the enteric nervous system and the central nervous system. We identify key processes, including the activation of G protein-coupled receptors and the inhibition of histone deacetylases by short-chain fatty acids. Importantly, structural or functional disruptions in the enteric nervous system mediated by these fatty acids may lead to abnormal α-synuclein expression and gastrointestinal dysmotility, which could serve as an initiating event in Parkinson's disease. Furthermore, we propose that short-chain fatty acids help establish communication between the enteric nervous system and the central nervous system via the vagal nerve, immune circulation, and endocrine signaling. This communication may shed light on their potential role in the transmission of α-synuclein from the gut to the brain. Finally, we elucidate novel treatment strategies for Parkinson's disease that target short-chain fatty acids and examine the challenges associated with translating short-chain fatty acid-based therapies into clinical practice. In conclusion, this review emphasizes the pivotal role of short-chain fatty acids in regulating gut-brain axis integrity and their significance in the pathogenesis of Parkinson's disease from the perspective of the nervous system. Moreover, it highlights the potential value of short-chain fatty acids in early intervention for Parkinson's disease. Future research into the molecular mechanisms of short-chain fatty acids and their synergistic interactions with other gut metabolites is likely to advance the clinical translation of innovative short-chain fatty acid-based therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Shimin Pang
- Department of Neurobiology and Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhili Ren
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hui Ding
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurobiology and Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China
- Clinical and Research Center for Parkinson's Disease, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Chakraborty P, Laird AS. Understanding activity of butyrate at a cellular level. Neural Regen Res 2025; 20:2323-2324. [PMID: 39359090 PMCID: PMC11759013 DOI: 10.4103/nrr.nrr-d-24-00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Prapti Chakraborty
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Angela S. Laird
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
3
|
Chen J, Zhu L, Wang F, Zhu Y, Chen J, Liang C, Liu B, Pang A, Yang X. Plasma Metabolites as Mediators Between Gut Microbiota and Parkinson's Disease: Insights from Mendelian Randomization. Mol Neurobiol 2025; 62:7945-7956. [PMID: 39962023 DOI: 10.1007/s12035-025-04765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 02/08/2025] [Indexed: 05/15/2025]
Abstract
Recent evidence supports the causal role of both plasma metabolites and gut microbiota (GM) in Parkinson's disease (PD). However, it remains unclear whether GM are responsible for causing PD through plasma metabolites. Here, we used Mendelian randomization (MR) to investigate the intrinsic causal relationships among GM, plasma metabolites, and PD. Summary statistics were derived from a GWAS of 1400 metabolites (N = 8299), GM (N = 18,340), and PD (Ncase = 33,674 and Ncontrol = 449,056). We used two-step/mediation MR (TSMR) to study the mediating effect of plasma metabolites on the association between GM and the risk of developing PD. We detected 54 genetic traits that were causally associated with PD development. According to the TSMR analysis, ceramide had a mediating effect on the relationship between the genus Clostridium sensu stricto 1 and the risk of developing PD (15.35% mediation; 95% CI = 1.29-32.75%). 7-Alpha-hydroxy-3-oxo-4-cholestenoate had a mediating effect on the relationship between the genus Eubacterium xylanophilum group and the risk of developing PD (11.04% mediation; 95% CI = 0.11-27.07%). In the present study, we used MR analysis to investigate the connections among GM, plasma metabolites, and PD. This comprehensive investigation offers insights into the pathogenic mechanisms of PD and the roles of the intestinal microbiota and metabolites in this disease.
Collapse
Affiliation(s)
- Jianzhun Chen
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, P.R. China
| | - Liuhui Zhu
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, P.R. China
| | - Fang Wang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, P.R. China
| | - Yangfan Zhu
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, P.R. China
| | - Jieyu Chen
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, P.R. China
| | - Chunyu Liang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, P.R. China
| | - Bin Liu
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, P.R. China
| | - Ailan Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, P.R. China.
| | - Xinglong Yang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, P.R. China.
| |
Collapse
|
4
|
Peng Z, Hou T, Yang K, Zhang J, Mao YH, Hou X. Microecologics and Exercise: Targeting the Microbiota-Gut-Brain Axis for Central Nervous System Disease Intervention. Nutrients 2025; 17:1769. [PMID: 40507038 PMCID: PMC12157277 DOI: 10.3390/nu17111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
The gut microbiota (GM) may play a crucial role in the development and progression of central nervous system (CNS) diseases. Microecologics and exercise can influence the composition and function of GM, thereby exerting positive effects on the CNS. Combined interventions of exercise and microecologics are expected to more comprehensively and effectively address CNS diseases through the microbiota-gut-brain axis (MGBA), potentially outperforming single interventions. However, there is currently a lack of relevant reviews on this topic. In this review, we examine the associations between changes in the microbiota and CNS diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and autism spectrum disorder (ASD). We also summarize studies on various types of microecologics (such as probiotics, prebiotics, synbiotics, and postbiotics) and exercise in improving CNS disease symptoms. Although current individual studies on microecologics and exercise have achieved certain results, the mechanisms underlying their synergistic effects remain unclear. This review aims to explore the theoretical basis, potential mechanisms, and clinical application prospects of combined interventions of microecologics and exercise in improving CNS diseases through the MGBA, providing a scientific basis for the development of more comprehensive and effective therapeutic interventions.
Collapse
Affiliation(s)
- Zhixing Peng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
| | - Tingting Hou
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
| | - Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
| | - Jiangyu Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou Sport University, Guangzhou 510500, China
| | - Xiaohui Hou
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
5
|
Mukhopadhya I, Louis P. Gut microbiota-derived short-chain fatty acids and their role in human health and disease. Nat Rev Microbiol 2025:10.1038/s41579-025-01183-w. [PMID: 40360779 DOI: 10.1038/s41579-025-01183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 05/15/2025]
Abstract
Short-chain fatty acids (SCFAs) are a group of organic compounds produced by the fermentation of dietary fibre by the human gut microbiota. They play diverse roles in different physiological processes of the host with implications for human health and disease. This Review provides an overview of the complex microbial metabolism underlying SCFA formation, considering microbial interactions and modulating factors of the gut environment. We explore the multifaceted mechanistic interactions between SCFAs and the host, with a particular focus on the local actions of SCFAs in the gut and their complex interactions with the immune system. We also discuss how these actions influence intestinal and extraintestinal diseases and emerging therapeutic strategies using SCFAs.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Petra Louis
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
6
|
Welathanthree M, Keating DJ, Macefield VG, Carnevale D, Marques FZ, R Muralitharan R. Cross-talk between microbiota-gut-brain axis and blood pressure regulation. Clin Sci (Lond) 2025; 139:CS20240787. [PMID: 40341472 DOI: 10.1042/cs20240787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/12/2025] [Indexed: 05/10/2025]
Abstract
Hypertension, or high blood pressure (BP), is a widespread condition affecting one in three adults globally. Despite the availability of treatment options, 50% of hypertensive patients in countries such as Australia fail to achieve adequate BP control, often due to a lack of response to current therapies. Diet plays a crucial role in BP regulation. A high-fibre diet reduces BP through the gut microbiome and the production of microbial metabolites known as short-chain fatty acids (SCFAs). However, the mechanisms of BP regulation by SCFAs remained still unclear. A novel hypothesis we explore in this review is that these microbial metabolites may regulate BP via the activation of central mechanisms, a phenomenon called the gut-brain axis. While substantial evidence in animal models and humans supports the protective role of SCFAs in hypertension, the precise mechanisms remain unclear. SCFA stimulates the release of neurotransmitters and hormones such as serotonin, cholecystokinin, glucagon-like peptide 1 and peptide YY by enteroendocrine cells, a rare population of cells lining the gastrointestinal tract. These hormones bind to their receptors on the peripheral nervous system nerves, such as the vagus and spinal nerves, conveying information to the brain. The mechanisms by which information is relayed from the gut microbiome to the brain likely involve the immune system and gut-derived neurotransmitters and hormones. A deeper understanding of these pathways and mechanisms will facilitate the development of novel therapeutics for hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Malindi Welathanthree
- Hypertension Research Laboratory, Victorian Heart Institute and Department of Pharmacology, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia
| | | | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy
| | - Francine Z Marques
- Hypertension Research Laboratory, Victorian Heart Institute and Department of Pharmacology, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Rikeish R Muralitharan
- Hypertension Research Laboratory, Victorian Heart Institute and Department of Pharmacology, Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Origüela V, Lopez-Zaplana A. Gut Microbiota: An Immersion in Dysbiosis, Associated Pathologies, and Probiotics. Microorganisms 2025; 13:1084. [PMID: 40431257 PMCID: PMC12113704 DOI: 10.3390/microorganisms13051084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
The importance of the microbiome, particularly the gut microbiota and its implications for health, is well established. However, an increasing number of studies further strengthen the link between an imbalanced gut microbiota and a greater predisposition to different diseases. The gut microbiota constitutes a fundamental ecosystem for maintaining human health. Its alteration, known as dysbiosis, is associated with a wide range of conditions, including intestinal, metabolic, immunological, or neurological pathologies, among others. In recent years, there has been a substantial increase in knowledge about probiotics-bacterial species that enhance health or address various diseases-with numerous studies reporting their benefits in preventing or improving these conditions. This review aims to analyze the most common pathologies resulting from an imbalance in the gut microbiota, as well as detail the most important and known gut probiotics, their functions, and mechanisms of action in relation to these conditions.
Collapse
Affiliation(s)
- Valentina Origüela
- Department of Physiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain;
| | | |
Collapse
|
8
|
O'Mahony AG, Mazzocchi M, Morris A, Morales-Prieto N, Guinane C, Wyatt SL, Collins LM, Sullivan AM, O'Keeffe GW. The class-IIa HDAC inhibitor TMP269 promotes BMP-Smad signalling and is neuroprotective in in vitro and in vivo 6-hydroxydopamine models of Parkinson's disease. Neuropharmacology 2025; 268:110319. [PMID: 39842624 DOI: 10.1016/j.neuropharm.2025.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Degeneration of midbrain nigrostriatal dopaminergic neurons is a pathological hallmark of Parkinson's disease (PD). Peripheral delivery of a compound(s) to arrest or slow this dopaminergic degeneration is a key therapeutic goal. Pan-inhibitors of histone deacetylase (HDAC) enzymes, key epigenetic regulators, have shown therapeutic promise in PD models. However as there are several classes of HDACs (ClassI-IV), class-specific inhibition will be important to ensure target specificity. Here we examine the neuroprotective potential of the Class-IIa HDAC inhibitor, TMP269. We show that TMP269 protected against 6-hydroxydopamine (6-OHDA)-induced neurite injury in SH-SY5Y cells and cultured rat ventral mesencephalic dopaminergic neurons. We find that TMP269 upregulated the neurotrophic factor BMP2 and BMP-Smad dependent transcription signalling in SH-SY5Y cells, which was necessary for its neuroprotective effect against 6-OHDA-induced injury. Furthermore, peripheral continuous infusion of 0.5 mg/kg of TMP269 for 7 days via a mini-osmotic pump, reduced forelimb impairments induced by striatal 6-OHDA administration. TMP269 also protected dopaminergic neurons in the substantia nigra and their striatal terminals from striatal 6-OHDA-induced neurodegeneration and prevented the 6-OHDA-induced increases in the numbers of IBA1-positive microglia in the striatum and substantia nigra in vivo. TMP269 also prevented 6-OHDA-induced decreases in BMP2, pSmad1/5 and acetylated histone 3 levels, and it reversed 6-OHDA-induced increase in nuclear HDAC5 in dopaminergic neurons in the substantia nigra. These data add to the growing body of evidence that Class-IIa specific HDAC inhibitors may be pharmacological agents of interest for peripheral delivery with the goal of neuroprotection in PD.
Collapse
Affiliation(s)
- Adam G O'Mahony
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland
| | - Martina Mazzocchi
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland
| | - Alex Morris
- Department of Biological Sciences, Munster Technological University (MTU), Cork Campus, Cork, Ireland
| | - Noelia Morales-Prieto
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland
| | - Caitriona Guinane
- Department of Biological Sciences, Munster Technological University (MTU), Cork Campus, Cork, Ireland
| | - Sean L Wyatt
- Cardiff School of Biosciences, Cardiff University, Wales, UK
| | - Louise M Collins
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland; Department of Physiology, School of Medicine, UCC, Cork, Ireland
| | - Aideen M Sullivan
- Department of Pharmacology and Therapeutics, School of Medicine, UCC, Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, School of Medicine, University College Cork (UCC), Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| |
Collapse
|
9
|
Qu Y, An K, Wang D, Yu H, Li J, Min Z, Xiong Y, Xue Z, Mao Z. Short-Chain Fatty Acid Aggregates Alpha-Synuclein Accumulation and Neuroinflammation via GPR43-NLRP3 Signaling Pathway in a Model Parkinson's Disease. Mol Neurobiol 2025; 62:6612-6625. [PMID: 39904963 DOI: 10.1007/s12035-025-04726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Parkinson's disease (PD) is characterized by the aggregation of α-synuclein (α-syn) and the loss of dopaminergic (DA) neurons, with growing evidence suggesting a significant role of gut microbiota and their metabolites in the disease's pathogenesis. This study explores the effects of short-chain fatty acids (SCFAs) on PD progression, focusing on the G protein-coupled receptor 43 (GPR43) and the NLRP3 signaling pathway in both in vitro and in vivo models. Employing the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model and SH-SY5Y cells with SCFAs-treated, this study investigated the impact of SCFAs on α-syn deposition, DA loss, and neuroinflammation. In vitro, supernatant from STC-1 cells was administered to SH-SY5Y cells, and the effects were assessed following the knockdown of NLRP3 or GPR43. In vivo, mice were treated with NLRP3 or GPR43 inhibitors after feeding with SCFAs, and the motor deficits, α-syn pathology, DA neuronal loss, and inflammatory responses were observed. SCFAs were found to exacerbate motor and gastrointestinal dysfunctions in PD models, intensifying α-syn pathology and neuroinflammation. The activation of the NLRP3 inflammasome through GPR43 emerged as a key pathological mechanism, with inhibition of these molecules mitigating the observed effects. Such interventions reduced α-syn accumulation, DA loss, and inflammatory responses, highlighting the pivotal role of the SCFA/GPR43-NLRP3 pathway in PD. The findings from this study elucidate a critical link between gut-derived metabolic changes and neuroinflammatory processes in PD via the SCFA/GPR43-NLRP3 pathway. Targeting this pathway offers a promising therapeutic strategy and enriches our understanding of the gut-brain axis' role in PD progression.
Collapse
Affiliation(s)
- Yi Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke An
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haoheng Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Xue
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Si J, Yu K, Hao J, Wang J, Zhang L. The therapeutic effects and mechanisms of glucagon-like peptide-1 receptor agonists in neurocognitive disorders. Ther Adv Neurol Disord 2025; 18:17562864251332035. [PMID: 40291753 PMCID: PMC12033604 DOI: 10.1177/17562864251332035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic cerebral hypoperfusion (CCH) represents a key pathogenic contributor to neurocognitive disorders. It can lead to multifaceted pathological alterations including neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, synaptic plasticity deficits, and mitochondrial dysfunction. The glucagon-like peptide-1 receptor (GLP-1R), ubiquitously expressed across multiple organ systems, exerts neuroprotective effects by maintaining intracellular homeostasis and mitigating neuronal damage triggered by oxidative stress, inflammatory cascades, apoptotic signaling, and ischemic insults. Furthermore, GLP-1R activity is modulated by gut microbiota composition and short-chain fatty acid abundance, implicating the gut-brain axis in its regulatory influence on neurological function. This review systematically examines the pathophysiological mechanisms underlying CCH and highlights the therapeutic potential of GLP-1R activation. Specifically, GLP-1R-targeted interventions attenuate hypoperfusion-induced damage through pleiotropic pathways and gut-brain crosstalk, thereby offering novel perspectives for advancing both fundamental research and clinical management of neurocognitive disorders.
Collapse
Affiliation(s)
- Junchen Si
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Kai Yu
- Department of Burn and Plastic Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, No. 45 Huashan Road, Liaocheng, Shandong 252000, China
| |
Collapse
|
11
|
Ramadan YN, Alqifari SF, Alshehri K, Alhowiti A, Mirghani H, Alrasheed T, Aljohani F, Alghamdi A, Hetta HF. Microbiome Gut-Brain-Axis: Impact on Brain Development and Mental Health. Mol Neurobiol 2025:10.1007/s12035-025-04846-0. [PMID: 40234288 DOI: 10.1007/s12035-025-04846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
The current discovery that the gut microbiome, which contains roughly 100 trillion microbes, affects health and disease has catalyzed a boom in multidisciplinary research efforts focused on understanding this relationship. Also, it is commonly demonstrated that the gut and the CNS are closely related in a bidirectional pathway. A balanced gut microbiome is essential for regular brain activities and emotional responses. On the other hand, the CNS regulates the majority of GI physiology. Any disruption in this bidirectional pathway led to a progression of health problems in both directions, neurological and gastrointestinal diseases. In this review, we hope to shed light on the complicated connections of the microbiome-gut-brain axis and the critical roles of gut microbiome in the early development of the brain in order to get a deeper knowledge of microbiome-mediated pathological conditions and management options through rebalancing of gut microbiome.
Collapse
Affiliation(s)
- Yasmin N Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt.
| | - Saleh F Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Khaled Alshehri
- Department of Internal Medicine (Neurology), Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amirah Alhowiti
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Hyder Mirghani
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Alrasheed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal Aljohani
- Division of Medicine and Gastroenterology, Department of Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulaziz Alghamdi
- Department of Medicine, Division of Psychiatry, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
12
|
Zhu W, Hu Y, Shi Y, Bao H, Cheng X, Jiang M, Peng Z, Song J, Fang F, Jian C, Yuan W, Chen J, Shu X. Sleep deprivation accelerates Parkinson's disease via modulating gut microbiota associated microglial activation and oxidative stress. Microbiol Res 2025; 293:128077. [PMID: 39889629 DOI: 10.1016/j.micres.2025.128077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/01/2024] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
The interplay between Parkinson's disease (PD) and sleep disturbances suggests that sleep problems constitute a risk factor for PD progression, but the underlying mechanisms remain unclear. Microglial activation and oxidative stress are considered to play an important role in the pathogenesis of aging and neurodegenerative diseases. We hypothesized that sleep deprivation (SD) could exacerbate PD progression via modulating microglial activation and oxidative stress. To test this hypothesis, we established a PD mouse model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), then subjected the mice to SD. A battery of behavioral tests, including rotarod, pole, adhesive removal, and open field tests, were used to assess motor function. Our study showed that SD exacerbated motor deficits, loss of tyrosine hydroxylase (TH), microglial activation and oxidative stress damage in PD model mice. Fecal microbiota transplantation experiments revealed that SD mediated PD progression, microglial activation and oxidative stress via the gut microbiota. 16S rRNA sequencing analysis indicated that SD increased the abundances of bacteria such as Bacteroidaceae, while decreasing the abundances of bacteria including Lactobacillus. Non-targeted metabolomic analysis of gut microbiota-derived metabolites revealed that SD significantly increased the production of adenosine (ADO), a purine metabolite. Probiotic supplementation reversed the effects of SD on motor deficits, dopaminergic neuron loss, microglial activation and oxidative stress damage in PD mice; it also decreased SD-induced ADO production. Administration of Adenosine A2A receptor (A2AR) inhibitors, Istradefylline (Ist), attenuated the roles of SD and ADO in promoting microglial activation, oxidative stress and PD progression. Taken together, our findings indicate that SD accelerates PD progression via regulating microbiota associated microglial activation and oxidative stress, suggesting that efforts to improve sleep quality can be used to prevent and treat PD.
Collapse
Affiliation(s)
- Wenzhong Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yuan Hu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yongping Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Haijun Bao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No,1277, Wuhan, Hubei 430022, China
| | - Xukai Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Mi Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Zuojie Peng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Jia Song
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Feifei Fang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Chenxing Jian
- Department of Colorectal Surgery, Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Wenzheng Yuan
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jinghuang Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No,1277, Wuhan, Hubei 430022, China.
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
13
|
Avagliano C, De Caro C, Cuozzo M, Roberti R, Russo E, La Rana G, Russo R. Sodium Butyrate ameliorates pain and mood disorders in a mouse model of Parkinson disease. Biomed Pharmacother 2025; 184:117903. [PMID: 39938349 DOI: 10.1016/j.biopha.2025.117903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Pain is one of non-motor features of Parkinson's disease (PD) that significantly impacts on patients' quality of life and increases the risk of developing psychiatric disorders. The mechanisms underlying pain in PD are poorly understood and the classic pharmacological treatments supplying to dopamine depletion have limited therapeutic effects on this symptom. It has been demonstrated that short chain fatty acids (SCFAs) play a key role in several central nervous system diseases including PD; low serum and faecal levels of SCFAs have been described in PD patients. Among SCFAs, the gut microbial metabolite butyrate has a neuroprotective and anti-inflammatory effect, influencing neurological and behavioural processes. Using a 6-hydroxydopamine (6-OHDA) induced-PD mouse model, we evaluated the effects of sodium butyrate (BuNa) treatment on pain and mood-related behaviour, exporing the role of PPARs, opioid and endocannabinoid systems. Our results demonstrated that repeated BuNa treatment (100 mg/kg po) in PD-mice reduced pain hypersensitivity as well as depressive- and anxiety-lke behaviour both on day 7 and day 14 after 6-OHDA injection. Moreover, AM281(CB1R antagonist), GW6471 (PPAR-alpha antagonist), and naloxone (opioid receptor antagonist), reduced BuNa efficacy. Finally, BuNa treatment was associated with a significant reduction of pro-inflammatory cytokines at spinal and supraspinal levels. In conclusion, our results demonstrate that increasing endogenous butyrate concentration reduces PD comorbidities such as pain and psychiatric symptoms, restoring opioidergic and endocannabinergic pathways.
Collapse
Affiliation(s)
- Carmen Avagliano
- CEINGE-Biotechnlogies Advances, via Gaetano Salvatore 486, Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Carmen De Caro
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Mariarosaria Cuozzo
- CEINGE-Biotechnlogies Advances, via Gaetano Salvatore 486, Naples, Italy; Department of Anatomy and Neuroscience, APC Microbiome, University Collage of Cork, Ireland.
| | - Roberta Roberti
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Viale Europa, Catanzaro 88100, Italy.
| | - Emilio Russo
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Viale Europa, Catanzaro 88100, Italy.
| | - Giovanna La Rana
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Roberto Russo
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| |
Collapse
|
14
|
Chenghan M, Wanxin L, Bangcheng Z, Yao H, Qinxi L, Ting Z, Xiaojie L, Kun Z, Yingqian Z, Zhihui Z. Short-chain fatty acids mediate gut microbiota-brain communication and protect the blood-brain barrier integrity. Ann N Y Acad Sci 2025; 1545:116-131. [PMID: 39998158 DOI: 10.1111/nyas.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The human gut, with a complex community of microbes, is essential for maintaining overall health. This gut microbiota engages in two-way communication with the central nervous system, collectively known as the gut microbiota-brain axis. Alterations in gut microbiota have been associated with various neurological disorders, and disruptions to the blood-brain barrier (BBB) may be crucial, though the exact mechanisms remain unknown. In the current study, we investigated the impacts of short-chain fatty acids (SCFAs) on the integrity of the BBB, which was compromised by orally administered antibiotics in rhesus monkeys and C57BL/6n mice. Our results showed that SCFA supplementation notably enhanced BBB integrity in rhesus monkeys with gut dysbiosis. Similar outcomes were observed in mice with gut dysbiosis, accompanied by decreased cortical claudin-5 mRNA levels. In particular, propionate, but not acetate or butyrate, could reverse the antibiotic-induced BBB permeability increase in mice. Additionally, in vitro studies demonstrated that propionate boosted the expression of tight junction proteins in brain endothelial cells. These results suggest that the propionate can maintain BBB integrity through a free fatty acid receptor 2-dependent mechanism. This study offers new insights into the gut-brain axis and underscores potential therapeutic targets for interventions based on gut microbiota.
Collapse
Affiliation(s)
- Mei Chenghan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
- Guizhou Academy of Testing and Analysis, Guizhou Academy of Sciences, Guiyang, China
| | - Li Wanxin
- Department of Pharmacy, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | | | - He Yao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Li Qinxi
- Sichuan Junhui Biotechnology Co., Ltd, Chengdu, China
| | - Zhang Ting
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Li Xiaojie
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Kun
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Zhang Yingqian
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Junhui Biotechnology Co., Ltd, Chengdu, China
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhong Zhihui
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Neurological Disease Modeling and Translational Research, Institute of Neurological Diseases, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Yassin LK, Nakhal MM, Alderei A, Almehairbi A, Mydeen AB, Akour A, Hamad MIK. Exploring the microbiota-gut-brain axis: impact on brain structure and function. Front Neuroanat 2025; 19:1504065. [PMID: 40012737 PMCID: PMC11860919 DOI: 10.3389/fnana.2025.1504065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
The microbiota-gut-brain axis (MGBA) plays a significant role in the maintenance of brain structure and function. The MGBA serves as a conduit between the CNS and the ENS, facilitating communication between the emotional and cognitive centers of the brain via diverse pathways. In the initial stages of this review, we will examine the way how MGBA affects neurogenesis, neuronal dendritic morphology, axonal myelination, microglia structure, brain blood barrier (BBB) structure and permeability, and synaptic structure. Furthermore, we will review the potential mechanistic pathways of neuroplasticity through MGBA influence. The short-chain fatty acids (SCFAs) play a pivotal role in the MGBA, where they can modify the BBB. We will therefore discuss how SCFAs can influence microglia, neuronal, and astrocyte function, as well as their role in brain disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD). Subsequently, we will examine the technical strategies employed to study MGBA interactions, including using germ-free (GF) animals, probiotics, fecal microbiota transplantation (FMT), and antibiotics-induced dysbiosis. Finally, we will examine how particular bacterial strains can affect brain structure and function. By gaining a deeper understanding of the MGBA, it may be possible to facilitate research into microbial-based pharmacological interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayishal B. Mydeen
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
17
|
Zhang J, Fu Z, Wen F, Lyu P, Huang S, Cai X, Zhang Z, Zhang Y, Fan C, Man W, Sun X, Huang Y. Electroacupuncture ameliorated locomotor symptoms in MPTP-induced mice model of Parkinson's disease by regulating autophagy via Nrf2 signaling. J Neurophysiol 2025; 133:490-501. [PMID: 39745671 DOI: 10.1152/jn.00497.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/25/2025] Open
Abstract
Parkinson's disease (PD) is a prevalent and challenging neurodegenerative disorder, and may involve impaired autophagy. Nuclear factor erythroid-2-related factor 2 (Nrf2) is crucial for regulating autophagy-related genes and maintaining cellular homeostasis. Electroacupuncture (EA), a complementary and alternative therapy for PD, has gained widespread clinical application. In this study, we investigate whether EA at Baihui (GV20) and Taichong (LR3) acupoints modulates autophagy through the Nrf2 pathway, providing neuroprotection in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. Using wild-type and Nrf2 knockout (KO) mice, we examined EA's effects on dopaminergic neuron survival, α-synuclein expression, motor function and the underlying mechanisms. Results showed that EA treatment significantly reduced dopaminergic neuron loss and α-synuclein expression, and improved motor deficits while restoring autophagy, as evidenced by increased autophagy markers (Atg7, LC3II) and decreased p62 levels. Transmission electron microscopy confirmed a rise in autophagosomes and lysosomes in the MPTP + EA group. EA also enhanced nuclear Nrf2 expression and activated Nrf2 signaling. Importantly, Nrf2 KO mice did not exhibit neuroprotection or increased autophagy-related proteins following EA treatment. In conclusion, our research demonstrated that EA ameliorated defective autophagy and activated the Nrf2 signaling pathway, which collectively contribute to its neuroprotective effects against MPTP-induced neurotoxicity.NEW & NOTEWORTHY In this study, we explored the potential mechanism of electroacupuncture (EA) therapy at the GV20 and LR3 acupoints of Parkinson's disease (PD). We demonstrated EA therapy's neuroprotective effect on PD, through ameliorating defective autophagy and activating the nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway whereas the regulation of EA on autophagy was absent in Nrf2 knockout (KO) mice. Our study not only provides new insights into the therapeutic mechanisms of EA but also suggests a promising strategy for PD treatment.
Collapse
Affiliation(s)
- Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiyi Fu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Feng Wen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Peilin Lyu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Shengtao Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaowen Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhinan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Ying Zhang
- Department of Ultrasonic Diagnosis, General Hospital of Southern Theater Command of PLA, Guangzhou, People's Republic of China
| | - Chun Fan
- League Committee, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xiaomin Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Jiao F, Zhou L, Wu Z. The microbiota-gut-brain axis: a potential target in the small-molecule compounds and gene therapeutic strategies for Parkinson's disease. Neurol Sci 2025; 46:561-578. [PMID: 39546084 PMCID: PMC11772541 DOI: 10.1007/s10072-024-07878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUNDS Parkinson's disease (PD) is a common neurodegenerative disorder characterized by motor symptoms and non-motor symptoms. It has been found that intestinal issues usually precede motor symptoms. Microorganisms in the gastrointestinal tract can affect central nervous system through the microbiota-gut-brain axis. Accumulating evidence has shown that disturbances in the microbiota-gut-brain axis are linked with PD. Thus, this pathway appears to be a promising therapeutic target for treatment of PD. OBJECTIVES In this review, we mainly described gut dysbiosis in PD and their underlying mechanisms for mediating neuroinflammation and peripheral immune response in PD pathology and futher discussed the potential small-molecule compounds and genic therapeutic strategies targeting the microbiota-gut-brain axis and their applications in PD. CONCLUSIONS Studies have found that some small molecule compounds and alterations of inflammation-related genes can improve the motor and non-motor symptoms of PD by improving the microbiota-gut-brain axis, which may provide potentially beneficial drugs and molecular targets for the therapies of PD.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, No. 45, Jianshe South Road, Jining City, Shandong Province, 272067, P. R. China.
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong, 272067, P. R. China.
| | - Lincong Zhou
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Zaixin Wu
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, PR China
| |
Collapse
|
19
|
Kumar D, Bishnoi M, Kondepudi KK, Sharma SS. Gut Microbiota-Based Interventions for Parkinson's Disease: Neuroprotective Mechanisms and Current Perspective. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10433-x. [PMID: 39809955 DOI: 10.1007/s12602-024-10433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis. Neuroprotective effects of these interventions are mediated by several mechanisms, including the enhancement of neurotrophin and activation of the PI3K/AKT/mTOR signaling pathway, GLP-1-mediated gut-brain axis signaling, Nrf2/ARE pathway, and autophagy. Other pathways, such as free fatty acid receptor activation, synaptic plasticity improvement, and blood-brain and gut barrier integrity maintenance, also contribute to neuroprotection. Furthermore, the inhibition of the TLR4/NF-кB pathway, MAPK pathway, GSK-3β signaling pathway, miR-155-5p-mediated neuroinflammation, and ferroptosis could account for their protective effects. Clinical studies involving gut microbiota-based interventions have shown therapeutic benefits in PD patients, particularly in improving gastrointestinal dysfunction and some neurological symptoms. However, the effectiveness in alleviating motor symptoms remains mild. Large-scale clinical trials are still needed to confirm these findings. This review emphasizes the neuroprotective mechanisms of gut microbiota-based interventions in PD as supported by both preclinical and clinical studies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biomanufacturing Institute (NABI), Knowledge City-Sector 81, S.A.S. Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biomanufacturing Institute (NABI), Knowledge City-Sector 81, S.A.S. Nagar, Punjab, 140306, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
20
|
Hosseininasab SSM, Ebrahimi R, Yaghoobpoor S, Kazemi K, Khakpour Y, Hajibeygi R, Mohamadkhani A, Fathi M, Vakili K, Tavasol A, Tutunchian Z, Fazel T, Fathi M, Hajiesmaeili M. Alzheimer's disease and infectious agents: a comprehensive review of pathogenic mechanisms and microRNA roles. Front Neurosci 2025; 18:1513095. [PMID: 39840010 PMCID: PMC11747386 DOI: 10.3389/fnins.2024.1513095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent type of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles. There are various theories concerning the causes of AD, but the connection between viral and bacterial infections and their potential role in the pathogenesis of AD has become a fascinating area of research for the field. Various viruses such as Herpes simplex virus 1 (HSV-1), Epstein-Barr virus (EBV), Cytomegalovirus (CMV), influenza viruses, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as well as bacteria such as Chlamydia pneumoniae (CP), Helicobacter pylori (HP), Porphyromonas gingivalis (P. gingivalis), Spirochetes and eukaryotic unicellular parasites (e.g., Toxoplasma gondii), have been linked to AD due to their ability to activate the immune system, induce inflammation and increase oxidative stress, thereby leading to cognitive decline and AD. In addition, microRNAs (miRNAs) might play a crucial role in the pathogenesis mechanisms of these pathogens since they are utilized to target various protein-coding genes, allowing for immune evasion, maintaining latency, and suppressing cellular signaling molecules. Also, they can regulate gene expression in human cells. This article provides an overview of the association between AD and various infectious agents, with a focus on the mechanisms by which these pathogens may be related to the pathogenesis of AD. These findings suggest important areas for further research to be explored in future studies.
Collapse
Affiliation(s)
- Seyyed Sam Mehdi Hosseininasab
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Khakpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tutunchian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Fazel
- Student Research Committee, School of International Campus, Guilan University of Medical Sciences, Tehran, Iran
| | - Mohammad Fathi
- Department of Anesthesiology, Critical Care Quality Improvement Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
González Molina LA, Dolga AM, Rots MG, Sarno F. The Promise of Epigenetic Editing for Treating Brain Disorders. Subcell Biochem 2025; 108:111-190. [PMID: 39820862 DOI: 10.1007/978-3-031-75980-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Brain disorders, especially neurodegenerative diseases, affect millions of people worldwide. There is no causal treatment available; therefore, there is an unmet clinical need for finding therapeutic options for these diseases. Epigenetic research has resulted in identification of various genomic loci with differential disease-specific epigenetic modifications, mainly DNA methylation. These biomarkers, although not yet translated into clinically approved options, offer therapeutic targets as epigenetic modifications are reversible. Indeed, clinical trials are designed to inhibit epigenetic writers, erasers, or readers using epigenetic drugs to interfere with epigenetic dysregulation in brain disorders. However, since such drugs elicit genome-wide effects and potentially cause toxicity, the recent developments in the field of epigenetic editing are gaining widespread attention. In this review, we provide examples of epigenetic biomarkers and epi-drugs, while describing efforts in the field of epigenetic editing, to eventually make a difference for the currently incurable brain disorders.
Collapse
Affiliation(s)
- Luis A González Molina
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Federica Sarno
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
22
|
Feng M, Zou Z, Shou P, Peng W, Liu M, Li X. Gut microbiota and Parkinson's disease: potential links and the role of fecal microbiota transplantation. Front Aging Neurosci 2024; 16:1479343. [PMID: 39679259 PMCID: PMC11638248 DOI: 10.3389/fnagi.2024.1479343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and seriously affects the quality of life of elderly patients. PD is characterized by the loss of dopaminergic neurons in the substantia nigra as well as abnormal accumulation of α-synuclein in neurons. Recent research has deepened our understanding of the gut microbiota, revealing that it participates in the pathological process of PD through the gut-brain axis, suggesting that the gut may be the source of PD. Therefore, studying the relationship between gut microbiota and PD is crucial for improving our understanding of the disease's prevention, diagnosis, and treatment. In this review, we first describe the bidirectional regulation of the gut-brain axis by the gut microbiota and the mechanisms underlying the involvement of gut microbiota and their metabolites in PD. We then summarize the different species of gut microbiota found in patients with PD and their correlations with clinical symptoms. Finally, we review the most comprehensive animal and human studies on treating PD through fecal microbiota transplantation (FMT), discussing the challenges and considerations associated with this treatment approach.
Collapse
Affiliation(s)
- Maosen Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhiyan Zou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Pingping Shou
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wei Peng
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Mingxue Liu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
23
|
Nagamine T. The Role of the Gut Microbiota in Individuals with Irritable Bowel Syndrome: A Scoping Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1895. [PMID: 39597080 PMCID: PMC11596400 DOI: 10.3390/medicina60111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Irritable bowel syndrome (IBS) represents the most prevalent disorder of brain-gut interaction, affecting approximately 10% of the global population. The objective of this study was to examine the mechanisms by which the gut microbiota contributes to the development of IBS. To this end, a review of articles that examined the gut microbiota of IBS patients was conducted. A search was conducted using PubMed and J-STAGE for articles published over the past five years that relate to the gut microbiota in patients with IBS. Individuals diagnosed with IBS display a reduction in alpha diversity and a decline in butyrate-producing bacteria, which collectively indicate a state of dysbiosis within their gut microbiota. Butyrate plays a dual role in the body, acting as a source of nutrition for the intestinal epithelium while also regulating the expression of dopamine transporters and D2 receptors in the central nervous system through epigenetic mechanisms. These characteristics may be linked to dysfunction of the central dopamine D2 pathway and play a role in the formation of various symptoms in IBS.
Collapse
Affiliation(s)
- Takahiko Nagamine
- Department of Psychiatric Internal Medicine, Sunlight Brain Research Center, Hofu 7470066, Japan; ; Fax: +81-835-25-6610
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Bunkyou 1138510, Japan
| |
Collapse
|
24
|
Yao L, Yang Y, Yang X, Rezaei MJ. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson's Disease. Mol Neurobiol 2024; 61:9078-9109. [PMID: 38587699 DOI: 10.1007/s12035-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, leading to motor and non-motor symptoms. Emerging research has shed light on the role of gut microbiota in the pathogenesis and progression of PD. Nutraceuticals such as curcumin, berberine, phytoestrogens, polyphenols (e.g., resveratrol, EGCG, and fisetin), dietary fibers have been shown to influence gut microbiota composition and function, restoring microbial balance and enhancing the gut-brain axis. The mechanisms underlying these benefits involve microbial metabolite production, restoration of gut barrier integrity, and modulation of neuroinflammatory pathways. Additionally, probiotics and prebiotics have shown potential in promoting gut health, influencing the gut microbiome, and alleviating PD symptoms. They can enhance the gut's antioxidant capacity of the gut, reduce inflammation, and maintain immune homeostasis, contributing to a neuroprotective environment. This paper provides an overview of the current state of knowledge regarding the potential of nutraceuticals and gut microbiota modulation in the prevention and management of Parkinson's disease, emphasizing the need for further research and clinical trials to validate their effectiveness and safety. The findings suggest that a multifaceted approach involving nutraceuticals and gut microbiota may open new avenues for addressing the challenges of PD and improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Liyan Yao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaowei Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Rahmanian M, Fathi M, Eftekhari M, Vakili K, Deravi N, Yaghoobpoor S, Sharifi H, Zeinodini R, Babajani A, Niknejad H. Developing a novel hypothesis to enhance mental resilience via targeting Faecalibacterium prausnitzii in gut-brain axis. Med Hypotheses 2024; 192:111468. [DOI: 10.1016/j.mehy.2024.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
26
|
Dong Y, Qi Y, Chen J, Han S, Su W, Ma X, Yu Y, Wang Y. Neuroprotective Effects of Bifidobacterium animalis subsp. lactis NJ241 in a Mouse Model of Parkinson's Disease: Implications for Gut Microbiota and PGC-1α. Mol Neurobiol 2024; 61:7534-7548. [PMID: 38409641 DOI: 10.1007/s12035-024-04038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Intestinal dysbiosis plays a critical role in the pathogenesis of Parkinson's disease (PD), and probiotics have emerged as potential modulators of central nervous system function through the microbiota-gut-brain axis. This study aimed to elucidate the anti-inflammatory effects and underlying mechanisms of the probiotic strain Bifidobacterium animalis subsp. lactis NJ241 (NJ241) in a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The impact of NJ241 was comprehensively assessed in PD mice through behavioral tests, immunofluorescence, Western blotting, enzyme-linked immunosorbent assay (ELISA), 16S rRNA sequencing, and short-chain fatty acid (SCFA) detection. NJ241 exhibited notable efficacy in mitigating MPTP-induced weight loss, gastrointestinal dysfunction, and behavioral deficits in mice. Furthermore, it demonstrated protected against MPTP-induced dopaminergic neuron death and inhibited the activation of glial cells in the substantia nigra (SN). NJ241 demonstrated the ability to normalized dysbiosis in the intestinal microbiota and elevate SCFA levels in PD mice. Additionally, NJ241 reversed MPTP-induced reductions in colonic GLP-1 levels and the expression of GLP-1R and PGC-1α in the SN. Notably, GLP-1R antagonists partially reversed the inhibitory effects of NJ241 on the activation of glial cells in the SN. In summary, NJ241 exerts a neuroprotective effect against MPTP-induced neuroinflammation by enhancing intestinal GLP-1 levels and activating nigral PGC-1α signaling. These findings provide a rationale for the exploration and development of probiotic-based therapeutic strategies for PD.
Collapse
Affiliation(s)
- Yuxuan Dong
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yueyan Qi
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jinhu Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Siyuan Han
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenjing Su
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xin Ma
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yang Yu
- Thankcome Biotechnology (Su Zhou) Co., Suzhou, China
| | - Yanqin Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
27
|
Navalpur Shanmugam NK, Eimer WA, Vijaya Kumar DK, Tanzi RE. The brain pathobiome in Alzheimer's disease. Neurotherapeutics 2024; 21:e00475. [PMID: 39510900 PMCID: PMC11585897 DOI: 10.1016/j.neurot.2024.e00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Nanda Kumar Navalpur Shanmugam
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - William A Eimer
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Deepak K Vijaya Kumar
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Henry and Allison McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, 02129, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
28
|
Saadh MJ, Mustafa AN, Mustafa MA, S RJ, Dabis HK, Prasad GVS, Mohammad IJ, Adnan A, Idan AH. The role of gut-derived short-chain fatty acids in Parkinson's disease. Neurogenetics 2024; 25:307-336. [PMID: 39266892 DOI: 10.1007/s10048-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | | | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh-531162, India
| | - Imad Jassim Mohammad
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Ahmed Adnan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
29
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
30
|
Missiego-Beltrán J, Olalla-Álvarez EM, González-Brugera A, Beltrán-Velasco AI. Implications of Butyrate Signaling Pathways on the Motor Symptomatology of Parkinson's Disease and Neuroprotective Effects-Therapeutic Approaches: A Systematic Review. Int J Mol Sci 2024; 25:8998. [PMID: 39201684 PMCID: PMC11354563 DOI: 10.3390/ijms25168998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder characterized by motor and non-motor symptoms. Emerging evidence suggests that gut microbiota alterations, specifically involving short-chain fatty acids (SCFAs) like butyrate, may influence PD pathogenesis and symptomatology. This Systematic Review aims to synthesize current research on the role of butyrate in modulating motor symptoms and its neuroprotective effects in PD, providing insights into potential therapeutic approaches. A systematic literature search was conducted in April 2024 across databases, including ScienceDirect, Scopus, Wiley, and Web of Science, for studies published between 2000 and 2024. Keywords used were "neuroprotective effects AND butyrate AND (Parkinson disease OR motor symptoms)". Four authors independently screened titles, abstracts, and full texts, applying inclusion criteria focused on studies investigating butyrate regulation and PD motor symptoms. A total of 1377 articles were identified, with 40 selected for full-text review and 14 studies meeting the inclusion criteria. Data extraction was performed on the study population, PD models, methodology, intervention details, and outcomes. Quality assessment using the SYRCLE RoB tool highlighted variability in study quality, with some biases noted in allocation concealment and blinding. Findings indicate that butyrate regulation has a significant impact on improving motor symptoms and offers neuroprotective benefits in PD models. The therapeutic modulation of gut microbiota to enhance butyrate levels presents a promising strategy for PD symptom management.
Collapse
Affiliation(s)
| | | | | | - Ana Isabel Beltrán-Velasco
- NBC Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28015 Madrid, Spain; (J.M.-B.); (E.M.O.-Á.); (A.G.-B.)
| |
Collapse
|
31
|
Gorecka-Mazur A, Krygowska-Wajs A, Furgala A, Li J, Misselwitz B, Pietraszko W, Kwinta B, Yilmaz B. Associations between gut microbiota characteristics and non-motor symptoms following pharmacological and surgical treatments in Parkinson's disease patients. Neurogastroenterol Motil 2024; 36:e14846. [PMID: 38873926 DOI: 10.1111/nmo.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The gut microbiota has been implicated in Parkinson's disease (PD), with alterations observed in microbial composition and reduced microbial species richness, which may influence gastrointestinal symptoms in PD patients. It remains to be determined whether the severity of gastrointestinal symptoms correlates with microbiota variations in PD patients treated pharmacologically or with subthalamic nucleus deep brain stimulation (STN-DBS) therapy. This study aims to explore how these treatments affect gut microbiota and gastrointestinal symptoms in PD, identifying specific microbial differences associated with each treatment modality. METHODS A total of 42 individuals diagnosed with PD, along with 38 age-matched household control participants, contributed stool samples for microbiota characterization. Differences in the gut microbiota across various groups of PD patients and their households were identified through comprehensive sequencing of the 16S rRNA gene amplicon sequencing. KEY RESULTS Differences in microbial communities were observed between PD patients and controls, as well as between PD patients receiving pharmacological treatment and those with STN-DBS. Pharmacologically treated advanced PD patients have higher gastrointestinal dysfunctions. Gut microbiota profile linked to STN-DBS and reduced levodopa consumption, characterized by its anti-inflammatory properties, might play a role in diminishing gastrointestinal dysfunction relative to only pharmacological treatments. CONCLUSIONS & INFERENCES Advanced PD patients on medication exhibit more gastrointestinal issues, despite relatively stable microbial diversity, indicating a complex interaction between gut microbiota, PD progression, and treatment effects. An imbalanced gut-brain axis, particularly due to reduced butyrate production, may lead to constipation by affecting the enteric nervous system, which emphasizes the need to incorporate gut microbiome insights into treatment strategies.
Collapse
Affiliation(s)
| | - Anna Krygowska-Wajs
- Department of Neurology, Medical College, Jagiellonian University, Kraków, Poland
| | - Agata Furgala
- Department of Pathophysiology, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Jiaqi Li
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Wojciech Pietraszko
- Department of Neurosurgery and Neurotraumatology, Medical College, Jagiellonian University, Kraków, Poland
| | - Borys Kwinta
- Department of Neurosurgery and Neurotraumatology, Medical College, Jagiellonian University, Kraków, Poland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Juarez D, Handal-Silva A, Morán-Perales JL, Torres-Cifuentes DM, Flores G, Treviño S, Moreno-Rodriguez A, Guevara J, Diaz A. New insights into sodium phenylbutyrate as a pharmacotherapeutic option for neurological disorders. Synapse 2024; 78:e22301. [PMID: 38819491 DOI: 10.1002/syn.22301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Neurological disorders (NDs) are diseases of the central and peripheral nervous systems that affect more than one billion people worldwide. The risk of developing an ND increases with age due to the vulnerability of the different organs and systems to genetic, environmental, and social changes that consequently cause motor and cognitive deficits that disable the person from their daily activities and individual and social productivity. Intrinsic factors (genetic factors, age, gender) and extrinsic factors (addictions, infections, or lifestyle) favor the persistence of systemic inflammatory processes that contribute to the evolution of NDs. Neuroinflammation is recognized as a common etiopathogenic factor of ND. The study of new pharmacological options for the treatment of ND should focus on improving the characteristic symptoms and attacking specific molecular targets that allow the delay of damage processes such as neuroinflammation, oxidative stress, cellular metabolic dysfunction, and deregulation of transcriptional processes. In this review, we describe the possible role of sodium phenylbutyrate (NaPB) in the pathogenesis of Alzheimer's disease, hepatic encephalopathy, aging, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis; in addition, we describe the mechanism of action of NaPB and its beneficial effects that have been shown in various in vivo and in vitro studies to delay the evolution of any ND.
Collapse
Affiliation(s)
- Daniel Juarez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Anabella Handal-Silva
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jose Luis Morán-Perales
- Department of Reproductive Biology and Toxicology, Institute of Sciences. Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Diana M Torres-Cifuentes
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Samuel Treviño
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Albino Moreno-Rodriguez
- Faculty of Chemical Sciences, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| | - Jorge Guevara
- Faculty of Medicine, Department of Biochemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Institute of Physiology, Benemeritus Autonomous University of Puebla, Puebla, Puebla, Mexico
| |
Collapse
|
33
|
Sanluca C, Spagnolo P, Mancinelli R, De Bartolo MI, Fava M, Maccarrone M, Carotti S, Gaudio E, Leuti A, Vivacqua G. Interaction between α-Synuclein and Bioactive Lipids: Neurodegeneration, Disease Biomarkers and Emerging Therapies. Metabolites 2024; 14:352. [PMID: 39057675 PMCID: PMC11278689 DOI: 10.3390/metabo14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Chiara Sanluca
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Spagnolo
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | | | - Marina Fava
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simone Carotti
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| | - Eugenio Gaudio
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | - Alessandro Leuti
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Giorgio Vivacqua
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| |
Collapse
|
34
|
Klokkaris A, Migdalska-Richards A. An Overview of Epigenetic Changes in the Parkinson's Disease Brain. Int J Mol Sci 2024; 25:6168. [PMID: 38892355 PMCID: PMC11172855 DOI: 10.3390/ijms25116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson's have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson's disease. We will also discuss the limitations of current epigenetic research in Parkinson's disease, the advantages of simultaneously studying genetics and epigenetics, and putative novel epigenetic therapies.
Collapse
Affiliation(s)
| | - Anna Migdalska-Richards
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK;
| |
Collapse
|
35
|
Chakraborty P, Gamage HKAH, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int 2024; 176:105745. [PMID: 38641025 DOI: 10.1016/j.neuint.2024.105745] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prapti Chakraborty
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW, 2109, Australia
| | - Angela S Laird
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
36
|
Jaberi KR, Alamdari-palangi V, Savardashtaki A, Vatankhah P, Jamialahmadi T, Tajbakhsh A, Sahebkar A. Modulatory Effects of Phytochemicals on Gut-Brain Axis: Therapeutic Implication. Curr Dev Nutr 2024; 8:103785. [PMID: 38939650 PMCID: PMC11208951 DOI: 10.1016/j.cdnut.2024.103785] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
This article explores the potential therapeutic implications of phytochemicals on the gut-brain axis (GBA), which serves as a communication network between the central nervous system and the enteric nervous system. Phytochemicals, which are compounds derived from plants, have been shown to interact with the gut microbiota, immune system, and neurotransmitter systems, thereby influencing brain function. Phytochemicals such as polyphenols, carotenoids, flavonoids, and terpenoids have been identified as having potential therapeutic implications for various neurological disorders. The GBA plays a critical role in the development and progression of various neurological disorders, including Parkinson's disease, multiple sclerosis, depression, anxiety, and autism spectrum disorders. Dysbiosis, or an imbalance in gut microbiota composition, has been associated with a range of neurological disorders, suggesting that modulating the gut microbiota may have potential therapeutic implications for these conditions. Although these findings are promising, further research is needed to elucidate the optimal use of phytochemicals in neurological disorder treatment, as well as their potential interactions with other medications. The literature review search was conducted using predefined search terms such as phytochemicals, gut-brain axis, neurodegenerative, and Parkinson in PubMed, Embase, and the Cochrane library.
Collapse
Affiliation(s)
- Khojasteh Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahab Alamdari-palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Vatankhah
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Kalyanaraman B, Cheng G, Hardy M. Gut microbiome, short-chain fatty acids, alpha-synuclein, neuroinflammation, and ROS/RNS: Relevance to Parkinson's disease and therapeutic implications. Redox Biol 2024; 71:103092. [PMID: 38377788 PMCID: PMC10891329 DOI: 10.1016/j.redox.2024.103092] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
In this review, we explore how short-chain fatty acids (SCFAs) produced by the gut microbiome affect Parkinson's disease (PD) through their modulatory interactions with alpha-synuclein, neuroinflammation, and oxidative stress mediated by reactive oxygen and nitrogen species (ROS/RNS). In particular, SCFAs-such as acetate, propionate, and butyrate-are involved in gut-brain communication and can modulate alpha-synuclein aggregation, a hallmark of PD. The gut microbiome of patients with PD has lower levels of SCFAs than healthy individuals. Probiotics may be a potential strategy to restore SCFAs and alleviate PD symptoms, but the underlying mechanisms are not fully understood. Also in this review, we discuss how alpha-synuclein, present in the guts and brains of patients with PD, may induce neuroinflammation and oxidative stress via ROS/RNS. Alpha-synuclein is considered an early biomarker for PD and may link the gut-brain axis to the disease pathogenesis. Therefore, elucidating the role of SCFAs in the gut microbiome and their impact on alpha-synuclein-induced neuroinflammation in microglia and on ROS/RNS is crucial in PD pathogenesis and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
38
|
Liu J, Chen Q, Su R. Interplay of human gastrointestinal microbiota metabolites: Short-chain fatty acids and their correlation with Parkinson's disease. Medicine (Baltimore) 2024; 103:e37960. [PMID: 38669388 PMCID: PMC11049718 DOI: 10.1097/md.0000000000037960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are, the metabolic byproducts of intestinal microbiota that, are generated through anaerobic fermentation of undigested dietary fibers. SCFAs play a pivotal role in numerous physiological functions within the human body, including maintaining intestinal mucosal health, modulating immune functions, and regulating energy metabolism. In recent years, extensive research evidence has indicated that SCFAs are significantly involved in the onset and progression of Parkinson disease (PD). However, the precise mechanisms remain elusive. This review comprehensively summarizes the progress in understanding how SCFAs impact PD pathogenesis and the underlying mechanisms. Primarily, we delve into the synthesis, metabolism, and signal transduction of SCFAs within the human body. Subsequently, an analysis of SCFA levels in patients with PD is presented. Furthermore, we expound upon the mechanisms through which SCFAs induce inflammatory responses, oxidative stress, abnormal aggregation of alpha-synuclein, and the intricacies of the gut-brain axis. Finally, we provide a critical analysis and explore the potential therapeutic role of SCFAs as promising targets for treating PD.
Collapse
Affiliation(s)
- Jiaji Liu
- Inner Mongolia Medical University, Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Qi Chen
- The Third Clinical Medical College of Ningxia Medical University, Ningxia, China
| | - Ruijun Su
- Inner Mongolia Medical University, Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
39
|
Wang B, Geng L, Wang J, Wei Y, Yan C, Wu N, Yue Y, Zhang Q. Optimization of the Preparation Process of Glucuronomannan Oligosaccharides and Their Effects on the Gut Microbiota in MPTP-Induced PD Model Mice. Mar Drugs 2024; 22:193. [PMID: 38786584 PMCID: PMC11123026 DOI: 10.3390/md22050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and accumulating evidence suggests a link between dysbiosis of the gut microbiota and the onset and progression of PD. In our previous investigations, we discovered that intraperitoneal administration of glucuronomannan oligosaccharides (GMn) derived from Saccharina japonica exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. However, the complicated preparation process, difficulties in isolation, and remarkably low yield have constrained further exploration of GMn. In this study, we optimized the degradation conditions in the preparation process of GMn through orthogonal experiments. Subsequently, an MPTP-induced PD model was established, followed by oral administration of GMn. Through a stepwise optimization, we successfully increased the yield of GMn, separated from crude fucoidan, from 1~2/10,000 to 4~8/1000 and indicated the effects on the amelioration of MPTP-induced motor deficits, preservation of dopamine neurons, and elevation in striatal neurotransmitter levels. Importantly, GMn mitigated gut microbiota dysbiosis induced by MPTP in mice. In particular, GM2 significantly reduced the levels of Akkermansia, Verrucomicrobiota, and Lactobacillus, while promoting the abundance of Roseburia and Prevotella compared to the model group. These findings suggest that GM2 can potentially suppress PD by modulating the gut microbiota, providing a foundation for the development of a novel and effective anti-PD marine drug.
Collapse
Affiliation(s)
- Baoxiang Wang
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266003, China; (B.W.); (Y.W.)
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266003, China; (B.W.); (Y.W.)
| | - Changhui Yan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (J.W.); (C.Y.); (N.W.); (Y.Y.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
40
|
Siva Venkatesh IP, Majumdar A, Basu A. Prophylactic Administration of Gut Microbiome Metabolites Abrogated Microglial Activation and Subsequent Neuroinflammation in an Experimental Model of Japanese Encephalitis. ACS Chem Neurosci 2024; 15:1712-1727. [PMID: 38581382 DOI: 10.1021/acschemneuro.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are gut microbial metabolic derivatives produced during the fermentation of ingested complex carbohydrates. SCFAs have been widely regarded to have a potent anti-inflammatory and neuro-protective role and have implications in several disease conditions, such as, inflammatory bowel disease, type-2 diabetes, and neurodegenerative disorders. Japanese encephalitis virus (JEV), a neurotropic flavivirus, is associated with life threatening neuro-inflammation and neurological sequelae in infected hosts. In this study, we hypothesize that SCFAs have potential in mitigating JEV pathogenesis. Postnatal day 10 BALB/c mice were intraperitoneally injected with either a SCFA mixture (acetate, propionate, and butyrate) or PBS for a period of 7 days, followed by JEV infection. All mice were observed for onset and progression of symptoms. The brain tissue was collected upon reaching terminal illness for further analysis. SCFA-supplemented JEV-infected mice (SCFA + JEV) showed a delayed onset of symptoms, lower hindlimb clasping score, and decreased weight loss and increased survival by 3 days (p < 0.0001) upon infection as opposed to the PBS-treated JEV-infected animals (JEV). Significant downregulation of inflammatory cytokines TNF-α, MCP-1, IL-6, and IFN-Υ in the SCFA + JEV group relative to the JEV-infected control group was observed. Inflammatory mediators, phospho-NF-kB (P-NF-kB) and iba1, showed 2.08 ± 0.1 and 3.132 ± 0.43-fold upregulation in JEV versus 1.19 ± 0.11 and 1.31 ± 0.11-fold in the SCFA + JEV group, respectively. Tissue section analysis exhibited reduced glial activation (JEV group─42 ± 2.15 microglia/ROI; SCFA + JEV group─27.07 ± 1.8 microglia/ROI) in animals that received SCFA supplementation prior to infection as seen from the astrocytic and microglial morphometric analysis. Caspase-3 immunoblotting showed 4.08 ± 1.3-fold upregulation in JEV as compared to 1.03 ± 0.14-fold in the SCFA + JEV group and TUNEL assay showed a reduced cellular death post-JEV infection (JEV-6.4 ± 1.5 cells/ROI and SCFA + JEV-3.7 ± 0.73 cells/ROI). Our study critically contributes to the increasing evidence in support of SCFAs as an anti-inflammatory and neuro-protective agent, we further expand its scope as a potential supplementary intervention in JEV-mediated neuroinflammation.
Collapse
MESH Headings
- Gastrointestinal Microbiome/physiology
- Neuroinflammatory Diseases/drug therapy
- Neuroinflammatory Diseases/immunology
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/microbiology
- Microglia/drug effects
- Microglia/immunology
- Encephalitis, Japanese/drug therapy
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/microbiology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Fatty Acids, Volatile/pharmacology
- Fatty Acids, Volatile/therapeutic use
- Encephalitis Viruses, Japanese/drug effects
- Encephalitis Viruses, Japanese/immunology
- Encephalitis Viruses, Japanese/pathogenicity
- Survival Analysis
- Chemokines/immunology
- Chemokines/metabolism
- Inflammation Mediators/immunology
- Inflammation Mediators/metabolism
- Cytokine Release Syndrome/immunology
- Cytokine Release Syndrome/metabolism
- Cytokine Release Syndrome/prevention & control
- Humans
- Female
- Animals
- Mice
- Apoptosis/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/virology
- Viral Load/drug effects
- Time Factors
Collapse
Affiliation(s)
| | - Atreye Majumdar
- National Brain Research Centre, Manesar, Haryana 122052, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India
| |
Collapse
|
41
|
Elford JD, Becht N, Garssen J, Kraneveld AD, Perez-Pardo P. Buty and the beast: the complex role of butyrate in Parkinson's disease. Front Pharmacol 2024; 15:1388401. [PMID: 38694925 PMCID: PMC11061429 DOI: 10.3389/fphar.2024.1388401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease which is often associated with gastrointestinal (GI) dysfunction. The GI tract is home to a wide range of microorganisms, among which bacteria, that can influence the host through various mechanisms. Products produced by these bacteria can act in the gut but can also exert effects in the brain via what is now well established to be the microbiota-gut-brain axis. In those with PD the gut-bacteria composition is often found to be different to that of non-PD individuals. In addition to compositional changes, the metabolic activity of the gut-microbiota is also changed in PD. Specifically, it is often reported that key producers of short chain fatty acids (SCFAs) as well as the concentration of SCFAs themselves are altered in the stool and blood of those with PD. These SCFAs, among which butyrate, are essential nutrients for the host and are a major energy source for epithelial cells of the GI tract. Additionally, butyrate plays a key role in regulating various host responses particularly in relation to inflammation. Studies have demonstrated that a reduction in butyrate levels can have a critical role in the onset and progression of PD. Furthermore, it has been shown that restoring butyrate levels in those with PD through methods such as probiotics, prebiotics, sodium butyrate supplementation, and fecal transplantation can have a beneficial effect on both motor and non-motor outcomes of the disease. This review presents an overview of evidence for the altered gut-bacteria composition and corresponding metabolite production in those with PD, with a particular focus on the SCFA butyrate. In addition to presenting current studies regarding SCFA in clinical and preclinical reports, evidence for the possibility to target butyrate production using microbiome based approaches in a therapeutic context is discussed.
Collapse
Affiliation(s)
- Joshua D. Elford
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nanette Becht
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Neuroscience, Faculty of Science, Vrije Universiteit, Amsterdam, Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
42
|
Duan WX, Wang F, Liu JY, Liu CF. Relationship Between Short-chain Fatty Acids and Parkinson's Disease: A Review from Pathology to Clinic. Neurosci Bull 2024; 40:500-516. [PMID: 37755674 PMCID: PMC11003953 DOI: 10.1007/s12264-023-01123-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies and neurites, and massive loss of midbrain dopamine neurons. Increasing evidence suggests that gut microbiota and microbial metabolites are involved in the development of PD. Among these, short-chain fatty acids (SCFAs), the most abundant microbial metabolites, have been proven to play a key role in brain-gut communication. In this review, we analyze the role of SCFAs in the pathology of PD from multiple dimensions and summarize the alterations of SCFAs in PD patients as well as their correlation with motor and non-motor symptoms. Future research should focus on further elucidating the role of SCFAs in neuroinflammation, as well as developing novel strategies employing SCFAs and their derivatives to treat PD.
Collapse
Affiliation(s)
- Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital affiliated to Soochow University, Suzhou, 215125, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
43
|
Chen R, Li K, Wang Y, Song L, Wang R, Fan W, Zhao N, Zou W, Yang Z, Yan J. Valeric acid reduction by chitosan oligosaccharide induces autophagy in a Parkinson's disease mouse model. J Drug Target 2024; 32:423-432. [PMID: 38315456 DOI: 10.1080/1061186x.2024.2315468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Parkinson's disease (PD) is a central nervous system disease with the highest disability and mortality rate worldwide, and it is caused by a variety of factors. The most common medications for PD have side effects with limited therapeutic outcomes. Many studies have reported that chitosan oligosaccharide (COS) crossed blood-brain barrier to achieve a neuroprotective effect in PD. However, the role of COS in PD remains unclear. The present study demonstrated that COS increased dopaminergic neurons in the substantia nigra (SN) and ameliorated dyskinesia in a PD mouse model. Moreover, COS reduced gut microbial diversity and faecal short-chain fatty acids. Valeric acid supplementation enhanced the inflammatory response in the colon and SN, and it reversed COS - suppressed dopamine neurons damage. Autophagy was involved in COS modulating inflammation through valeric acid. These results suggest that COS reduces bacterial metabolites - valeric acid, which diminishes inflammation via activating autophagy, ultimately alleviating PD.
Collapse
Affiliation(s)
- Rongsha Chen
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| | - Ke Li
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| | - Yinying Wang
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Liyun Song
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ruohua Wang
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| | - Wenhui Fan
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| | - Ninghui Zhao
- Neurosurgery department of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Zou
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jinyuan Yan
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
44
|
Wang C, Yang M, Liu D, Zheng C. Metabolic rescue of α-synuclein-induced neurodegeneration through propionate supplementation and intestine-neuron signaling in C. elegans. Cell Rep 2024; 43:113865. [PMID: 38412096 DOI: 10.1016/j.celrep.2024.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Microbial metabolites that can modulate neurodegeneration are promising therapeutic targets. Here, we found that the short-chain fatty acid propionate protects against α-synuclein-induced neuronal death and locomotion defects in a Caenorhabditis elegans model of Parkinson's disease (PD) through bidirectional regulation between the intestine and neurons. Both depletion of dietary vitamin B12, which induces propionate breakdown, and propionate supplementation suppress neurodegeneration and reverse PD-associated transcriptomic aberrations. Neuronal α-synuclein aggregation induces intestinal mitochondrial unfolded protein response (mitoUPR), which leads to reduced propionate levels that trigger transcriptional reprogramming in the intestine and cause defects in energy production. Weakened intestinal metabolism exacerbates neurodegeneration through interorgan signaling. Genetically enhancing propionate production or overexpressing metabolic regulators downstream of propionate in the intestine rescues neurodegeneration, which then relieves mitoUPR. Importantly, propionate supplementation suppresses neurodegeneration without reducing α-synuclein aggregation, demonstrating metabolic rescue of neuronal proteotoxicity downstream of protein aggregates. Our study highlights the involvement of small metabolites in the gut-brain interaction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Chenyin Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Meigui Yang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dongyao Liu
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
45
|
de Lope EG, Loo RTJ, Rauschenberger A, Ali M, Pavelka L, Marques TM, Gomes CPC, Krüger R, Glaab E. Comprehensive blood metabolomics profiling of Parkinson's disease reveals coordinated alterations in xanthine metabolism. NPJ Parkinsons Dis 2024; 10:68. [PMID: 38503737 PMCID: PMC10951366 DOI: 10.1038/s41531-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous disorder influenced by several environmental and genetic factors. Effective disease-modifying therapies and robust early-stage biomarkers are still lacking, and an improved understanding of the molecular changes in PD could help to reveal new diagnostic markers and pharmaceutical targets. Here, we report results from a cohort-wide blood plasma metabolic profiling of PD patients and controls in the Luxembourg Parkinson's Study to detect disease-associated alterations at the level of systemic cellular process and network alterations. We identified statistically significant changes in both individual metabolite levels and global pathway activities in PD vs. controls and significant correlations with motor impairment scores. As a primary observation when investigating shared molecular sub-network alterations, we detect pronounced and coordinated increased metabolite abundances in xanthine metabolism in de novo patients, which are consistent with previous PD case/control transcriptomics data from an independent cohort in terms of known enzyme-metabolite network relationships. From the integrated metabolomics and transcriptomics network analysis, the enzyme hypoxanthine phosphoribosyltransferase 1 (HPRT1) is determined as a potential key regulator controlling the shared changes in xanthine metabolism and linking them to a mechanism that may contribute to pathological loss of cellular adenosine triphosphate (ATP) in PD. Overall, the investigations revealed significant PD-associated metabolome alterations, including pronounced changes in xanthine metabolism that are mechanistically congruent with alterations observed in independent transcriptomics data. The enzyme HPRT1 may merit further investigation as a main regulator of these network alterations and as a potential therapeutic target to address downstream molecular pathology in PD.
Collapse
Affiliation(s)
- Elisa Gómez de Lope
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rebecca Ting Jiin Loo
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Armin Rauschenberger
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Muhammad Ali
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lukas Pavelka
- Parkinson's Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Tainá M Marques
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Clarissa P C Gomes
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Parkinson's Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
46
|
Basavarajappa BS, Subbanna S. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024; 16:331-358. [PMID: 38321930 PMCID: PMC10910622 DOI: 10.2217/epi-2023-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus. Histone acetyltransferases and histone deacetylases have emerged as promising targets for neurodegenerative disorder treatment. This review delves into histone acetylation regulation, potential therapies and future perspectives for disorders like Alzheimer's, Parkinson's and Huntington's. Exploring genetic-environmental interplay through models and studies reveals molecular changes, behavioral insights and early intervention possibilities targeting the epigenome in at-risk individuals.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
47
|
Xu Y, Wen L, Tang Y, Zhao Z, Xu M, Wang T, Chen Z. Sodium butyrate activates the K ATP channels to regulate the mechanism of Parkinson's disease microglia model inflammation. Immun Inflamm Dis 2024; 12:e1194. [PMID: 38501544 PMCID: PMC10949401 DOI: 10.1002/iid3.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder. Microglia-mediated neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. Activation of adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels can protect dopaminergic neurons from damage. Sodium butyrate (NaB) shows anti-inflammatory and neuroprotective effects in some animal models of brain injury and regulates the KATP channels in islet β cells. In this study, we aimed to verify the anti-inflammatory effect of NaB on PD and further explored potential molecular mechanisms. METHODS We established an in vitro PD model in BV2 cells using 1-methyl-4-phenylpyridinium (MPP+ ). The effects of MPP+ and NaB on BV2 cell viability were detected by cell counting kit-8 assays. The morphology of BV2 cells with or without MPP+ treatment was imaged via an optical microscope. The expression of Iba-1 was examined by the immunofluorescence staining. The intracellular ATP content was estimated through the colorimetric method, and Griess assay was conducted to measure the nitric oxide production. The expression levels of pro-inflammatory cytokines and KATP channel subunits were evaluated by reverse transcription-quantitative polymerase chain reaction and western blot analysis. RESULTS NaB (5 mM) activated the KATP channels through elevating Kir6.1 and Kir6.1 expression in MPP+ -challenged BV2 cells. Both NaB and pinacidil (a KATP opener) suppressed the MPP+ -induced activation of BV2 cells and reduced the production of nitrite and pro-inflammatory cytokines in MPP+ -challenged BV2 cells. CONCLUSION NaB treatment alleviates the MPP+ -induced inflammatory responses in microglia via activation of KATP channels.
Collapse
Affiliation(s)
- Ye Xu
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Laofu Wen
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Yunyi Tang
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zhenqiang Zhao
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Miaojing Xu
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tan Wang
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zhibin Chen
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| |
Collapse
|
48
|
Lan Z, Tang X, Lu M, Hu Z, Tang Z. The role of short-chain fatty acids in central nervous system diseases: A bibliometric and visualized analysis with future directions. Heliyon 2024; 10:e26377. [PMID: 38434086 PMCID: PMC10906301 DOI: 10.1016/j.heliyon.2024.e26377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Background Short-chain fatty acids (SCFAs) are thought to play a key role in the microbe-gut-brain axis and involve in the pathogenesis of a variety of neurological diseases. This study aimed to identify research hotspots and evolution trends in SCFAs in central nervous diseases (CNS) and examine current research trends. Methods The bibliometric analysis was performed using CiteSpace, and the results were visualized via network maps. Results From 2002 to 2022, 480 publications in the database met the criteria. On the country level, China produced the highest number of publications, while the United States had the highest centrality. On the institutional level, University College Cork contributed to the most publications, and John F. Cryan from this university was the key researcher with considerable academic influence. The article, the role of short-chain fatty acids in microbiota-gut-brain, written by Boushra Dalile et al., in 2019 was the most cited article. Furthermore, the journal Nutrients had the maximum number of publications, while Plos One was the most cited journal. "Gut microbiome", "SCFAs", and "central nervous system" were the three most frequent keywords. Among them, SCFAs had the highest centrality. "Animal model" was the keyword with the highest burst strength, with the latest burst keywords being "social behavior", "pathogenesis", and "insulin sensitive". In addition, the research topics on SCFAs in CNS diseases from 2002 to 2022 mainly focused on following aspects: SCFAs plays a key role in microbe-gut-brain crosstalk; The classification and definition of SCFAs in the field of CNS; Several CNS diseases that are closely related to SCFAs research; Mechanism and translational studies of SCFAs in the CNS diseases. And the hotspots over the past 5 years have gradually increased the attention to the therapeutic potential of SCFAs in the CNS diseases. Conclusion The research of SCFAs in CNS diseases is attracting growing attention. However, there is a lack of cooperation between countries and institutions, and additional measures are required to promote cooperation. The current evidence for an association between SCFAs and CNS diseases is preliminary and more work is needed to pinpoint the precise mechanism. Moreover, large-scale clinical trials are needed in the future to define the therapeutic potential of SCFAs in CNS diseases.
Collapse
Affiliation(s)
- Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhenchu Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
49
|
Carvalho FV, Landis HE, Getachew B, Silva VDA, Ribeiro PR, Aschner M, Tizabi Y. Iron toxicity, ferroptosis and microbiota in Parkinson's disease: Implications for novel targets. ADVANCES IN NEUROTOXICOLOGY 2024; 11:105-132. [PMID: 38770370 PMCID: PMC11105119 DOI: 10.1016/bs.ant.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disease characterized by loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). Iron (Fe)-dependent programmed cell death known as ferroptosis, plays a crucial role in the etiology and progression of PD. Since SNpc is particularly vulnerable to Fe toxicity, a central role for ferroptosis in the etiology and progression of PD is envisioned. Ferroptosis, characterized by reactive oxygen species (ROS)-dependent accumulation of lipid peroxides, is tightly regulated by a variety of intracellular metabolic processes. Moreover, the recently characterized bi-directional interactions between ferroptosis and the gut microbiota, not only provides another window into the mechanistic underpinnings of PD but could also suggest novel interventions in this devastating disease. Here, following a brief discussion of PD, we focus on how our expanding knowledge of Fe-induced ferroptosis and its interaction with the gut microbiota may contribute to the pathophysiology of PD and how this knowledge may be exploited to provide novel interventions in PD.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona, Tucson, AZ, United States
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | | | - Paulo R. Ribeiro
- Metabolomics Research Group, Institute of Chemistry, Federal University of Bahia, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
50
|
Nohesara S, Abdolmaleky HM, Thiagalingam S, Zhou JR. Gut microbiota defined epigenomes of Alzheimer's and Parkinson's diseases reveal novel targets for therapy. Epigenomics 2024; 16:57-77. [PMID: 38088063 PMCID: PMC10804213 DOI: 10.2217/epi-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The origins of Alzheimer's disease (AD) and Parkinson's disease (PD) involve genetic mutations, epigenetic changes, neurotoxin exposure and gut microbiota dysregulation. The gut microbiota's dynamic composition and its metabolites influence intestinal and blood-brain barrier integrity, contributing to AD and PD development. This review explores protein misfolding, aggregation and epigenetic links in AD and PD pathogenesis. It also highlights the role of a leaky gut and the microbiota-gut-brain axis in promoting these diseases through inflammation-induced epigenetic alterations. In addition, we investigate the potential of diet, probiotics and microbiota transplantation for preventing and treating AD and PD via epigenetic modifications, along with a discussion related to current challenges and future considerations. These approaches offer promise for translating research findings into practical clinical applications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| |
Collapse
|