1
|
Lee JY, Kim ES, Kim SY, Cho YJ, Jo KH, Han JH, Moon SD. The nature and pathological impact of the c.1748A > G variant of the neurofibromin 1 gene. Gene 2025; 952:149381. [PMID: 40037421 DOI: 10.1016/j.gene.2025.149381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder, and mutations in the NF1 gene lead to RAS overactivation, which stimulates abnormal cell proliferation and can cause various tumors. The c.1748A > G mutation in the NF1 gene was initially classified as a missense mutation, but has also been suggested to be a splice mutation. It is thought that the substitution of A for G generates a cryptic splice site, resulting in a 27 bp deletion in the mRNA transcript, but this conclusion has not been documented in currently available databases. The present study was conducted to establish whether the NF1 c.1748A > G mutation induces a splicing error, and to determine whether it is pathogenic i.e. activates RAS and increases the expression of NF1-related downstream signaling molecules. We have confirmed by RT-PCR analysis of NF1 transcripts produced in the patient's peripheral blood lymphocytes as well as in a minigene construct and in iPSCs harboring the c.1748A > G mutation that this mutation creates a cryptic splice site which has the effect of deleting the first 27 bases of exon 16, and leading to transcriptional haploinsufficiency. Additionally, NPCs expressing the splicing mutant exhibited increased phosphorylation of NF1-related AKT/mTOR and Raf/MEK/Erk, as well as more effective wound healing and chemotaxis. We conclude that the NF1 c.1748A > G mutation acts as a splice mutation forming a novel cryptic site, causing a 27 bp deletion in the mRNA. This leads to increased expression of NF1-related downstream signaling molecules through RAS activation, inducing cell proliferation and potential tumor formation.
Collapse
Affiliation(s)
- Ji-Young Lee
- Division of Endocrinology and Metabolism, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, South Korea
| | - Eun Sook Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon 21431, South Korea
| | - Su Yeon Kim
- Division of Endocrinology and Metabolism, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, South Korea
| | - Yun-Jung Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon 21431, South Korea
| | - Kwan Hoon Jo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon 21431, South Korea
| | - Je Ho Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon 21431, South Korea
| | - Sung-Dae Moon
- Division of Endocrinology and Metabolism, Institute of Biomedical Industry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, South Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon 21431, South Korea.
| |
Collapse
|
2
|
Savad S, Modarressi MH, Younesi S, Seifi-Alan M, Samadaian N, Masoomy M, Dianatpour M, Norouzi S, Amidi S, Boroumand A, Ashrafi MR, Ronagh A, Eslami M, Hashemnejad M, Nourian S, Mohammadi S, Taheri Amin MM, Heidari M, Seifi-Alan M, Shojaaldini Ardakani H, Aghamahdi F, Khalilian S, Ghafouri-Fard S. A Comprehensive Overview of NF1 Mutations in Iranian Patients. Neuromolecular Med 2024; 26:28. [PMID: 38954284 DOI: 10.1007/s12017-024-08790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/30/2024] [Indexed: 07/04/2024]
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder caused by mutations in the NF1 gene. This disorder shows nearly complete penetrance and high phenotypic variability. We used the whole-exome sequencing technique to identify mutations in 32 NF1 cases from 22 Iranian families. A total of 31 variants, including 30 point mutations and one large deletion, were detected. In eight cases, variants were inherited, while they were sporadic in the remaining. Seven novel variants, including c.5576 T > G, c.6658_6659insC, c.2322dupT, c.92_93insAA, c.4360C > T, c.3814C > T, and c.4565_4566delinsC, were identified. The current study is the largest in terms of the sample size of Iranian NF1 cases with identified mutations. The results can broaden the spectrum of NF1 mutations and facilitate the process of genetic counseling in the affected families.
Collapse
Affiliation(s)
| | | | - Sarang Younesi
- Prenatal Screening Department, Nilou Laboratory, Tehran, Iran
| | - Mahnaz Seifi-Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mona Masoomy
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Dianatpour
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Human Genetic, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | - Mahmoud Reza Ashrafi
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ronagh
- Department of Pediatrics Neurologists, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Eslami
- Applied Biotechnology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Hashemnejad
- Department of Obstetrics and Gynecology, School of Medicine, Kamali Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Shahab Nourian
- Department of Pediatrics Endocrinology and Metabolisms, Emam Ali Hospital, Alborz University of Medical Sciences and Health Services, Karaj, Iran
| | - Sanaz Mohammadi
- Comprehensive Medical Genetics Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Morteza Heidari
- Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahin Seifi-Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Fatemeh Aghamahdi
- Department of Pediatrics, Alborz University of Medical Sciences, Karaj, Iran
| | - Sheyda Khalilian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chen Y, Yu J, Ge S, Jia R, Song X, Wang Y, Fan X. An Overview of Optic Pathway Glioma With Neurofibromatosis Type 1: Pathogenesis, Risk Factors, and Therapeutic Strategies. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38837168 PMCID: PMC11160950 DOI: 10.1167/iovs.65.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Optic pathway gliomas (OPGs) are most predominant pilocytic astrocytomas, which are typically diagnosed within the first decade of life. The majority of affected children with OPGs also present with neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome. OPGs in individuals with NF1 primarily affect the optic pathway and lead to visual disturbance. However, it is challenging to assess risk in asymptomatic patients without valid biomarkers. On the other hand, for symptomatic patients, there is still no effective treatment to prevent or recover vision loss. Therefore, this review summarizes current knowledge regarding the pathogenesis of NF1-associated OPGs (NF1-OPGs) from preclinical studies to seek potential prognostic markers and therapeutic targets. First, the loss of the NF1 gene activates 3 distinct Ras effector pathways, including the PI3K/AKT/mTOR pathway, the MEK/ERK pathway, and the cAMP pathway, which mediate glioma tumorigenesis. Meanwhile, non-neoplastic cells from the tumor microenvironment (microglia, T cells, neurons, etc.) also contribute to gliomagenesis via various soluble factors. Subsequently, we investigated potential genetic risk factors, molecularly targeted therapies, and neuroprotective strategies for tumor prevention and vision recovery. Last, potential directions and promising preclinical models of NF1-OPGs are presented for further research. On the whole, NF1-OPGs develop as a result of the interaction between glioma cells and the tumor microenvironment. Developing effective treatments require a better understanding of tumor molecular characteristics, as well as multistage interventions targeting both neoplastic cells and non-neoplastic cells.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xin Song
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yefei Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
4
|
Ortonne N. How to score the impact of treatment on cutaneous neurofibromas in clinical trials. Br J Dermatol 2024; 190:147-148. [PMID: 38084905 DOI: 10.1093/bjd/ljad492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024]
Abstract
Most patients with neurofibromatosis 1 (NF1) develop a variable number of cutaneous neurofibromas (cNFs) which have a major impact on patients’ quality of life0. A major problem is how to score the response to therapy in clinical practice and trials. A measurement instrument recognized by all experts in the field is required to be able to judge the efficacy of treatments and the benefits perceived by the patients. Fertitta and colleagues propose a system for assessing cNFs severity and impact with a list of items validated by a consensus of experts and patients.This qualitative approach has the advantage of integrating multiple parameters of interest, based in part on a “patient-centric” approach.
Collapse
Affiliation(s)
- Nicolas Ortonne
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital
- Université Paris Est Créteil
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, Créteil, France
| |
Collapse
|
5
|
Jovanović A, Tošić N, Marjanović I, Komazec J, Zukić B, Nikitović M, Ilić R, Grujičić D, Janić D, Pavlović S. Germline Variants in Cancer Predisposition Genes in Pediatric Patients with Central Nervous System Tumors. Int J Mol Sci 2023; 24:17387. [PMID: 38139220 PMCID: PMC10744041 DOI: 10.3390/ijms242417387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Central nervous system (CNS) tumors comprise around 20% of childhood malignancies. Germline variants in cancer predisposition genes (CPGs) are found in approximately 10% of pediatric patients with CNS tumors. This study aimed to characterize variants in CPGs in pediatric patients with CNS tumors and correlate these findings with clinically relevant data. Genomic DNA was isolated from the peripheral blood of 51 pediatric patients and further analyzed by the next-generation sequencing approach. Bioinformatic analysis was done using an "in-house" gene list panel, which included 144 genes related to pediatric brain tumors, and the gene list panel Neoplasm (HP:0002664). Our study found that 27% of pediatric patients with CNS tumors have a germline variant in some of the known CPGs, like ALK, APC, CHEK2, ELP1, MLH1, MSH2, NF1, NF2 and TP53. This study represents the first comprehensive evaluation of germline variants in pediatric patients with CNS tumors in the Western Balkans region. Our results indicate the necessity of genomic research to reveal the genetic basis of pediatric CNS tumors, as well as to define targets for the application and development of innovative therapeutics that form the basis of the upcoming era of personalized medicine.
Collapse
Affiliation(s)
- Aleksa Jovanović
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Nataša Tošić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Irena Marjanović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Jovana Komazec
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Branka Zukić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Marina Nikitović
- Pediatric Radiation Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
| | - Rosanda Ilić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Danica Grujičić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dragana Janić
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| |
Collapse
|
6
|
Bildirici Y, Kocaaga A, Karademir-Arslan CN, Yimenicioglu S. Evaluation of Molecular and Clinical Findings in Children With Neurofibromatosis Type 1: Identification of 15 Novel Variants. Pediatr Neurol 2023; 149:69-74. [PMID: 37806041 DOI: 10.1016/j.pediatrneurol.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is the most common neurocutaneous disease and is caused by mutations in the NF1 gene. The most common clinical features of NF1 are pigmentary abnormalities such as café-au-lait spots and inguinal or axillary freckling, cutaneous and plexiform neurofibromas, hamartomas of the iris, optic gliomas, and bone lesions. The aim of this retrospective study was to define the clinical and molecular characteristics of a pediatric sample of NF1, as well as the mutational spectrum and genotype-phenotype correlation. METHODS The study included 40 children with clinically suspected NF1. The patients were screened for NF1 mutations by DNA-based sequencing. In addition, all the patients were studied by multiplex ligation-dependent probe amplification (MLPA) to identify any duplications or deletions in NF1. The demographic, clinical, and genetic features of the children were characterized. RESULTS A total of 40 children with NF1 were included. Of those, 28 were female and 12 were male. The mean age was 8.91 years. An NF1 variant was discovered in 28 of 40 patients (70%). Among these mutations, intronic mutations were the most frequently detected mutations; 15 of these variants had not been previously reported. Only one patient had a whole NF1 gene deletion. CONCLUSIONS This study expands the spectrum of mutations in the NF1 gene. This study also showed that genetic screening using both next-generation sequencing and MLPA had a positive effect on diagnosis and genetic counseling in patients with suspected NF1.
Collapse
Affiliation(s)
- Yasar Bildirici
- Department of Pediatrics, Eskişehir City Hospital, Eskişehir, Turkey
| | - Ayca Kocaaga
- Department of Medical Genetics, Eskişehir City Hospital, Eskişehir, Turkey.
| | | | - Sevgi Yimenicioglu
- Department of Pediatric Neurology, Eskişehir City Hospital, Eskişehir, Turkey
| |
Collapse
|
7
|
Bewley AF, Akinwe TM, Turner TN, Gutmann DH. Neurofibromatosis-1 Gene Mutational Profiles Differ Between Syndromic Disease and Sporadic Cancers. Neurol Genet 2022; 8:e200003. [PMID: 37435433 PMCID: PMC10331586 DOI: 10.1212/nxg.0000000000200003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/18/2022] [Indexed: 07/13/2023]
Abstract
Objectives Variants in the neurofibromatosis type 1 (NF1) gene are not only responsible for the NF1 cancer predisposition syndrome, but also frequently identified in cancers arising in the general population. While germline variants are pathogenic, it is not known whether those that arise in cancer (somatic variants) are passenger or driver variants. To address this question, we sought to define the landscape of NF1 variants in sporadic cancers. Methods NF1 variants in sporadic cancers were compiled using data curated on the c-Bio database and compared with published germline variants and Genome Aggregation Database data. Pathogenicity was determined using Polyphen and Sorting Intolerant From Tolerant prediction tools. Results The spectrum of NF1 variants in sporadic tumors differ from those most commonly seen in individuals with NF1. In addition, the type and location of the variants in sporadic cancer differ from germline variants, where a high proportion of missense variants were found. Finally, many of the sporadic cancer NF1 variants were not predicted to be pathogenic. Discussion Taken together, these findings suggest that a significant proportion of NF1 variants in sporadic cancer may be passenger variants or hypomorphic alleles. Further mechanistic studies are warranted to define their unique roles in nonsyndromic cancer pathobiology.
Collapse
|
8
|
Genotype-Phenotype Correlations in Neurofibromatosis Type 1: Identification of Novel and Recurrent NF1 Gene Variants and Correlations with Neurocognitive Phenotype. Genes (Basel) 2022; 13:genes13071130. [PMID: 35885913 PMCID: PMC9316015 DOI: 10.3390/genes13071130] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common genetic tumor predisposition syndrome, caused by mutations in the NF1. To date, few genotype-phenotype correlations have been discerned in NF1, due to a highly variable clinical presentation. We aimed to study the molecular spectrum of NF1 and genotype-phenotype correlations in a monocentric study cohort of 85 NF1 patients (20 relatives, 65 sporadic cases). Clinical data were collected at the time of the mutation analysis and reviewed for accuracy in this investigation. An internal phenotypic categorization was applied. The 94% of the patients enrolled showed a severe phenotype with at least one systemic complication and a wide range of associated malignancies. Spine deformities were the most common complications in this cohort. We also reported 66 different NF1 mutations, of which 7 are novel mutations. Correlation analysis identified a slight significant inverse correlation between age at diagnosis and delayed acquisition of psychomotor skills with residual multi-domain cognitive impairment. Odds ratio with 95% confidence interval showed a higher prevalence of learning disabilities in patients carrying frameshift mutations. Overall, our results aim to offer an interesting contribution to studies on the genotype–phenotype of NF1 and in genetic management and counselling.
Collapse
|
9
|
Leite Rocha D, Ashton-Prolla P, Rosset C. Reviewing the occurrence of large genomic rearrangements in patients with inherited cancer predisposing syndromes: importance of a comprehensive molecular diagnosis. Expert Rev Mol Diagn 2022; 22:319-346. [PMID: 35234551 DOI: 10.1080/14737159.2022.2049247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hereditary cancer predisposition syndromes are caused by germline pathogenic or likely pathogenic variants in cancer predisposition genes (CPG). The majority of pathogenic variants in CPGs are point mutations, but large gene rearrangements (LGRs) are present in several CPGs. LGRs can be much more difficult to characterize and perhaps they may have been neglected in molecular diagnoses. AREAS COVERED We aimed to evaluate the frequencies of germline LGRs in studies conducted in different populations worldwide through a qualitative systematic review based on an online literature research in PubMed. Two reviewers independently extracted data from published studies between 2009 and 2020. In total, 126 studies from 37 countries and 5 continents were included in the analysis. The number of studies in different continents ranged from 3 to 48 and for several countries there was an absolute lack of information. Asia and Europe represented most of the studies, and LGR frequencies varied from 3.04 to 15.06% in different continents. MLPA was one of the methods of choice in most studies (93%). EXPERT OPINION The LGR frequencies found in this review reinforce the need for comprehensive molecular testing regardless of the population of origin and should be considered by genetic counseling providers.
Collapse
Affiliation(s)
- Débora Leite Rocha
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Ashton-Prolla
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil. Av. Bento Gonçalves, 9500 - Prédio 43312 M, CEP: 91501-970, Caixa Postal 1505, Porto Alegre, Rio Grande do Sul, Brazil.,Serviço de Genética Médica, HCPA, Rio Grande do Sul, Brazil. Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clévia Rosset
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Oz O. Genotype–Phenotype Correlation of Novel NF1 Gene Variants Detected by NGS in Patients with Neurofibromatosis Type 1. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Habulieti X, Sun L, Liu J, Guo K, Yang X, Wang R, Ma D, Zhang X. Phenotypic and genetic characterization of novel variant in the NF1 gene underlying neurofibromatosis type 1 in five Chinese families. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2206-2209. [PMID: 33999308 DOI: 10.1007/s11427-020-1922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Xiaerbati Habulieti
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- The First Affiliated Hospital of XinJiang Medical University, Wulumuqi, 830001, China
| | - Liwei Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiawei Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100072, China
| | - Kexin Guo
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xueting Yang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Donglai Ma
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100072, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
12
|
Riobello C, Casanueva Muruais R, Suárez-Fernández L, García-Marín R, Cabal VN, Blanco-Lorenzo V, Franchi A, Laco J, López F, Llorente JL, Hermsen MA. Intragenic NF1 deletions in sinonasal mucosal malignant melanoma. Pigment Cell Melanoma Res 2021; 35:88-96. [PMID: 34547192 DOI: 10.1111/pcmr.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/27/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022]
Abstract
Mucosal malignant melanoma (MMM) is a rare and aggressive tumor. Despite effective local therapies, tumor recurrence and metastasis remain frequent. The genetics of MMM remain incompletely understood. This study is aimed to identify actionable genetic alterations by next-generation sequencing. Fifteen MMM samples were analyzed by next-generation and Sanger sequencing. Gene copy number alterations were analyzed by MLPA. Mutation status was correlated with pERK, pAKT, and Ki-67 expression and follow-up data. Inactivating mutations and intragenic deletions in neurofibromatosis type-1 (NF1) were identified in 3 and 2 cases, respectively, (in total 5/15, 33%) and activating mutations in NRAS and KRAS (3/15, 20%) cases. Other mutated genes included CDKN2A, APC, ATM, MITF, FGFR1, and FGFR2. BRAF and KIT mutations were not observed. Cases with NF1 alterations tended to have worse overall survival. The mutational status was not associated with pERK, pAKT, or Ki-67 immunostaining. MMM carries frequent gene mutations activating the MAPK pathway, similar to cutaneous melanoma. In contrast, NF1 is the most frequently affected gene. Intragenic NF1 deletions have not been described before and may go undetected by sequencing studies. This finding is clinically relevant as NF1-mutated melanomas have worse survival and could benefit from therapy with immune checkpoint and MEK inhibitors.
Collapse
Affiliation(s)
- Cristina Riobello
- Department Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Centro de Investigación Biomédica en Red (CIBER-ONC), Oviedo, Spain
| | | | - Laura Suárez-Fernández
- Department Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Centro de Investigación Biomédica en Red (CIBER-ONC), Oviedo, Spain
| | - Rocío García-Marín
- Department Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Centro de Investigación Biomédica en Red (CIBER-ONC), Oviedo, Spain
| | - Virginia N Cabal
- Department Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Centro de Investigación Biomédica en Red (CIBER-ONC), Oviedo, Spain
| | | | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Jan Laco
- The Fingerland Dept Pathology, Charles University Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Fernando López
- Department Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - José Luis Llorente
- Department Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Mario A Hermsen
- Department Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Centro de Investigación Biomédica en Red (CIBER-ONC), Oviedo, Spain
| |
Collapse
|
13
|
Ece Solmaz A, Isik E, Atik T, Ozkinay F, Onay H. Mutation spectrum of the NF1 gene and genotype-phenotype correlations in Turkish patients: Seventeen novel pathogenic variants. Clin Neurol Neurosurg 2021; 208:106884. [PMID: 34418705 DOI: 10.1016/j.clineuro.2021.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Neurofibromatosis type 1 is one of the most common autosomal dominant diseases caused by heterozygous mutation in the NF1 gene. Wide spectrum of NF1-related clinical manifestations and mutation distribution makes genetic counselling difficult. METHODS The study enrolled 58 unrelated Turkish patients with clinically suspected NF1 referred to the Department of Medical Genetics. Individuals were eligible if they 1) met at least two of the main National Institutes of Health criteria or 2) had multiple café-au-lait macules as a child. RESULTS Fourty-one different disease-causing variants were identified in 42 (72.4%) individuals, including 17 novel variants. Twenty-four (58.2%) of the NF1 patients had de novo variants. Café-au-lait macules were observed in all patients (100%). Intracranial hamartoma was the second most common phenotype, found in 52.3% (22/42) of the patients. Other common manifestations were neurofibromas (35.7%), axillary or inguinal freckling (28.5%), and Lisch nodules (28.5%). Additionally, one patient had intra-abdominal malignant peripheral nerve sheath tumours and another patient underwent surgery for serous papillary ovarian cancer. CONCLUSION In conclusion, this study is one of the largest studies from Turkey to investigate the NF1 mutation spectrum and genotype-phenotype correlations.
Collapse
Affiliation(s)
- Asli Ece Solmaz
- Ege University Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey.
| | - Esra Isik
- University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Izmir, Turkey
| | - Tahir Atik
- University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Izmir, Turkey
| | - Ferda Ozkinay
- University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Izmir, Turkey
| | - Huseyin Onay
- Ege University Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| |
Collapse
|
14
|
Deletion of the whole NF1 gene in a three-generation family with neurofibromatosis type 1. Neurol Sci 2021; 43:1295-1301. [PMID: 34089417 DOI: 10.1007/s10072-021-05353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is an autosomal dominant neurocutaneous disorder characterized by café-au-lait macules (CALMs), skinfold freckling, Lisch nodules, and neurofibromas. It is associated with heterozygous mutations in the neurofibromatosis type 1 (NF1) gene. Whole NF1 deletion has been described in some cases, but most cases are sporadic, and familial forms are extremely rare. To date, only two-generation familial forms have been described. OBJECTIVE To describe a whole NF1 gene deletion in a three-generation family with neurofibromatosis type 1. METHODS Physical examinations, laboratory tests, structural neuroimaging studies, whole-exome sequencing, and multiplex ligation-dependent probe amplification analysis were carried out. RESULTS All the affected individuals within this three-generation family, including the 14-year-old female proband, her 40-year-old father, and 63-year-old grandmother, exhibited such typical manifestations of NF1 as CALMs and cutaneous neurofibromas, CALMs increased in size with age. The affected subjects had more localized hyperpigmentation and CALMs within the lesion areas, mainly in the chest, abdomen, waist, and back. In addition, learning disorder was observed in the proband, and brain MRI revealed abnormal high signal lesions in the brainstem. All the affected subjects had normal birth history and had no significant past medical history. Whole-exome sequencing and subsequent multiplex ligation-dependent probe amplification analysis identified deletion of the whole NF1 gene, co-segregating with the NF1 phenotype in an autosomal dominant pattern. CONCLUSIONS Our findings are the first to identify whole NF1 deletion in a three-generation family with autosomal dominant NF1 and broaden the understanding of the genetic spectrum of NF1-associated NF1.
Collapse
|
15
|
Belakhoua SM, Rodriguez FJ. Diagnostic Pathology of Tumors of Peripheral Nerve. Neurosurgery 2021; 88:443-456. [PMID: 33588442 DOI: 10.1093/neuros/nyab021] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Neoplasms of the peripheral nervous system represent a heterogenous group with a wide spectrum of morphological features and biological potential. They range from benign and curable by complete excision (schwannoma and soft tissue perineurioma) to benign but potentially aggressive at the local level (plexiform neurofibroma) to the highly malignant (malignant peripheral nerve sheath tumors [MPNST]). In this review, we discuss the diagnostic and pathologic features of common peripheral nerve sheath tumors, particularly those that may be encountered in the intracranial compartment or in the spine and paraspinal region. The discussion will cover schwannoma, neurofibroma, atypical neurofibromatous neoplasms of uncertain biological potential, intraneural and soft tissue perineurioma, hybrid nerve sheath tumors, MPNST, and the recently renamed enigmatic tumor, malignant melanotic nerve sheath tumor, formerly referred to as melanotic schwannoma. We also discuss the diagnostic relevance of these neoplasms to specific genetic and familial syndromes of nerve, including neurofibromatosis 1, neurofibromatosis 2, and schwannomatosis. In addition, we discuss updates in our understanding of the molecular alterations that represent key drivers of these neoplasms, including neurofibromatosis type 1 and type 2, SMARCB1, LZTR1, and PRKAR1A loss, as well as the acquisition of CDKN2A/B mutations and alterations in the polycomb repressor complex members (SUZ12 and EED) in the malignant progression to MPNST. In summary, this review covers practical aspects of pathologic diagnosis with updates relevant to neurosurgical practice.
Collapse
Affiliation(s)
- Sarra M Belakhoua
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- School of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sydney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Güneş N, Yeşil G, Geyik F, Kasap B, Celkan T, Kebudi R, Tüysüz B. Neurofibromatosis type 1: Expanded variant spectrum with multiplex ligation-dependent probe amplification and genotype-phenotype correlation in 138 Turkish patients. Ann Hum Genet 2021; 85:155-165. [PMID: 33877690 DOI: 10.1111/ahg.12422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the variant spectrum and genotype-phenotype correlations in a Turkish cohort with Neurofibromatosis Type-1 (NF1). MATERIALS AND METHODS We retrospectively investigated the clinical and molecular data of 138 NF1 patients from 129 families who had been followed-up for a median of 3.9 (1.25-18.5) years. RESULTS NF1 sequencing revealed 73 different intragenic variants, 19 of which were novel. Seven large deletions were detected by multiplex ligation-dependent probe amplification (MLPA) analyses. The total detection rate of pathogenic NF1 variants was found to be 87.1%. Comparing age groups, cutaneous neurofibromas, freckling, and Lisch nodules were more prevalent in patients older than 12 years (p > .05). Optic glioma detected in 17.3% of the patients and was significantly more common before the age of 6 (p > .001). Other solid tumors developed in 5% of the patients. There was no genotype-phenotype correlation between patients with truncating and nontruncating variants. However, six out of seven patients with large deletions had significant developmental delay, one patient with the c.2970_2972delAAT (p.Met992del) variant had only typical pigmentary features, and another patient with the c.4267A > G (p.Lys1423Glu) variant had CALMs, freckling, neurofibromas, and Noonan-like phenotype. CONCLUSIONS We described 19 novel variants and seven large deletions in NF1. Applying MLPA assay in NF1 is useful in expanding the molecular diagnosis. Although very limited genotype-phenotype correlation has been reported in NF1, the fact that specific phenotypic findings were observed in our patients with large deletions and two intragenic variants supports the studies published recently.
Collapse
Affiliation(s)
- Nilay Güneş
- Cerrahpaşa Medical Faculty, Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Gözde Yeşil
- Faculty of Medicine, Department of Medical Genetics, Bezmialem Vakif University, Istanbul, Turkey
| | - Filiz Geyik
- Cerrahpaşa Medical Faculty, Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Büşra Kasap
- Cerrahpaşa Medical Faculty, Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Tiraje Celkan
- Cerrahpaşa Medical Faculty, Department of Pediatric Oncology, Istanbul University-Cerrahpaşa, Istanbul
| | - Rejin Kebudi
- Department of Pediatric Oncology, Istanbul University, Oncology Institute, Istanbul, Turkey
| | - Beyhan Tüysüz
- Cerrahpaşa Medical Faculty, Department of Pediatric Genetics, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
17
|
Evaluation of clinical findings and neurofibromatosis type 1 bright objects on brain magnetic resonance images of 60 Turkish patients with NF1 gene variants. Neurol Sci 2021; 42:2045-2057. [PMID: 33443663 DOI: 10.1007/s10072-020-04988-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Neurofibromatosis type 1 (NF1) is caused by mutations in the NF1 gene. This retrospective study aims to evaluate the clinical manifestations and brain magnetic resonance images (MRI) analysis in 60 genetically confirmed NF1 patients. The results of next-generation sequencing (NGS), Sanger sequencing, and MLPA of NF1 gene were evaluated. A total of 54 different variants were identified. Fourteen out of them were novel variants (25.9%). Patients who complied with NIH criteria had most frequently frameshift variants (11/32 patients), and those with only CALMs had missense variants (9/28 patients). Neurofibromatosis type 1 bright objects (NBOs) on T2-weighted MRI were detected in 42 patients (42/56; 75%). These brain lesions were detected mostly in basal ganglia and in cerebellar vermis. NBOs were detected more in the patients who complied with NIH criteria (80.6%) compared to those who were only CALMs (68%). While frameshift variants (33.3%) were the most common type variants in the patients who had NBOs, the most common variants were splicing (35.7%) and missense (35.7%) variants in the patients whose MRIs were normal. Frameshift variants (11/28 patients; 39.3%) were the most common in the patients with more than one brain locus involvement. Therefore, we consider that frameshift variants may be associated with increased incidence of NBOs and involvement of more than one brain locus. In addition, NBOs may occur less frequently in the patients with splicing variants. To our knowledge, this is the first study evaluated the relationship between NF1 gene variants and NBOs. Future studies may help us understand the etiology of NBOs.
Collapse
|
18
|
Lou H, Zhai C, Gong L, Pan H, Pan H, Zhang Y, Yang M, Hu Z. NF1 germline mutation in a Chinese family with colon cancer. J Int Med Res 2020; 48:300060519896435. [PMID: 32814491 PMCID: PMC7444156 DOI: 10.1177/0300060519896435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Recent advances in genomic medicine have identified novel gene mutations that contribute to an increased risk of CRC. Here, we describe a diagnosis of colon cancer in a 63-year-old woman and also in her brother. Next-generation sequencing showed that both patients harbored a germline mutation in NF1. The female patient also carried co-mutations in KRAS and NRAS. Furthermore, the NF1 germline mutation was identified in a healthy offspring of the brother. The female patient received three cycles of bevacizumab plus capecitabine/oxaliplatin therapy and achieved stable disease of the primary lesion in the colon and partial response of metastasis in the right abdominal cavity. This study highlights the association of NF1 germline mutations with colon cancer.
Collapse
Affiliation(s)
- Haizhou Lou
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chongya Zhai
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liu Gong
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Pan
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology 1, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | - Zimin Hu
- Department of Respiratory Disease, Cixi Sixth Hospital, Ningbo, China
- Zimin Hu, Department of Respiratory Disease, Cixi Sixth Hospital, 100 Youth Palace South Road, Ningbo 315300, China.
| |
Collapse
|
19
|
Bianchessi D, Ibba MC, Saletti V, Blasa S, Langella T, Paterra R, Cagnoli GA, Melloni G, Scuvera G, Natacci F, Cesaretti C, Finocchiaro G, Eoli M. Simultaneous Detection of NF1, SPRED1, LZTR1, and NF2 Gene Mutations by Targeted NGS in an Italian Cohort of Suspected NF1 Patients. Genes (Basel) 2020; 11:671. [PMID: 32575496 PMCID: PMC7349720 DOI: 10.3390/genes11060671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) displays overlapping phenotypes with other neurocutaneous diseases such as Legius Syndrome. Here, we present results obtained using a next generation sequencing (NGS) panel including NF1, NF2, SPRED1, SMARCB1, and LZTR1 genes on Ion Torrent. Together with NGS, the Multiplex Ligation-Dependent Probe Amplification Analysis (MLPA) method was performed to rule out large deletions/duplications in NF1 gene; we validated the MLPA/NGS approach using Sanger sequencing on DNA or RNA of both positive and negative samples. In our cohort, a pathogenic variant was found in 175 patients; the pathogenic variant was observed in NF1 gene in 168 cases. A SPRED1 pathogenic variant was also found in one child and in a one year old boy, both NF2 and LZTR1 pathogenic variants were observed; in addition, we identified five LZTR1 pathogenic variants in three children and two adults. Six NF1 pathogenic variants, that the NGS analysis failed to identify, were detected on RNA by Sanger. NGS allows the identification of novel mutations in five genes in the same sequencing run, permitting unambiguous recognition of disorders with overlapping phenotypes with NF1 and facilitating genetic counseling and a personalized follow-up.
Collapse
Affiliation(s)
- Donatella Bianchessi
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
| | - Maria Cristina Ibba
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (V.S.); (G.M.)
| | - Stefania Blasa
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Tiziana Langella
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian, 20133 Milan, Italy
| | - Rosina Paterra
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
| | - Giulia Anna Cagnoli
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (G.A.C.); (F.N.); (C.C.)
| | - Giulia Melloni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (V.S.); (G.M.)
| | - Giulietta Scuvera
- Pediatric Highly Intensive Care Unit, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy;
| | - Federica Natacci
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (G.A.C.); (F.N.); (C.C.)
| | - Claudia Cesaretti
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (G.A.C.); (F.N.); (C.C.)
| | - Gaetano Finocchiaro
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy; (D.B.); (M.C.I.); (S.B.); (T.L.); (R.P.); (G.F.)
| |
Collapse
|
20
|
Nix JS, Blakeley J, Rodriguez FJ. An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol 2020; 139:625-641. [PMID: 30963251 DOI: 10.1007/s00401-019-02002-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis 1 (NF1) is an autosomal dominant genetic disorder that presents with variable phenotypes as a result of mutations in the neurofibromatosis type 1 (NF1) gene and subsequently, abnormal function of the protein product, neurofibromin. Patients with NF1 are at increased risk for central nervous system (CNS) manifestations including structural, functional, and neoplastic disease. The mechanisms underlying the varied manifestations of NF1 are incompletely understood, but the loss of functional neurofibromin, resulting in sustained activation of the oncoprotein RAS, is responsible for tumorigenesis throughout the body, including the CNS. Much of our understanding of NF1-related CNS manifestations is from a combination of data from animal models and natural history studies of people with NF1 and CNS disease. Data from animal models suggest the importance of both Nf1 mutations and somatic genetic alterations, such as Tp53 loss, for development of neoplasms, as well as the role of the timing of the acquisition of such alterations on the variability of CNS manifestations. A variety of non-neoplastic structural (macrocephaly, hydrocephalus, aqueductal stenosis, and vasculopathy) and functional (epilepsy, impaired cognition, attention deficits, and autism spectrum disorder) abnormalities occur with variable frequency in individuals with NF1. In addition, there is increasing evidence that similar appearing CNS neoplasms in people with and without the NF1 syndrome are due to distinct oncogenic pathways. Gliomas in people with NF1 show alterations in the RAS/MAPK pathway, generally in the absence of BRAF alterations (common to sporadic pilocytic astrocytomas) or IDH or histone H3 mutations (common to diffuse gliomas subsets). A subset of low-grade astrocytomas in these patients remain difficult to classify using standard criteria, and occasionally demonstrate morphologic features resembling subependymal giant cell astrocytomas that afflict patients with tuberous sclerosis complex ("SEGA-like astrocytomas"). There is also emerging evidence that NF1-associated high-grade astrocytomas have frequent co-existing alterations such as ATRX mutations and an alternative lengthening of telomeres (ALT) phenotype responsible for unique biologic properties. Ongoing efforts are seeking to improve diagnostic accuracy for CNS neoplasms in the setting of NF1 versus sporadic tumors. In addition, MEK inhibitors, which act on the RAS/MAPK pathway, continue to be studied as rational targets for the treatment of NF1-associated tumors, including CNS tumors.
Collapse
|
21
|
Sourty B, Rousseau A. [Hereditary predisposition to tumors of the central and peripheral nervous systems]. Ann Pathol 2020; 40:168-179. [PMID: 32192808 DOI: 10.1016/j.annpat.2020.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/27/2022]
Abstract
Some tumors of the central and peripheral nervous system may be associated with a cancer predisposition syndrome, either hereditary or occurring de novo. Such a syndrome is usually associated with multiple tumors occurring early in life. Patients with neurofibromatosis type 1 present with multiple neurofibromas, especially of the plexiform type (which may transform into malignant peripheral nerve sheath tumor), and pilocytic astrocytomas of the optic pathways. Neurofibromatosis type 2 patients present with multiple schwannomas (typically bilateral vestibular schwannomas), meningiomas, and ependymomas. Li-Fraumeni syndrome (germline TP53 mutation) is associated with choroid plexus tumors (carcinomas), medulloblastomas, and diffuse astrocytomas. Multiple hemangioblastomas are characteristic of von Hippel-Lindau syndrome while subependymal giant cell astrocytomas are pathognomonic of tuberous sclerosis complex. Dysplastic cerebellar gangliocytomas of adult patients occur in Cowden syndrome. Turcot syndrome overlaps with constitutional mismatch repair deficiency syndrome (CMMRD), which is associated with giant cell glioblastomas. Rhabdoid tumor predisposition syndrome (germline mutation of SMARCB1/INI1) is associated with atypical teratoid/rhabdoid tumors. Tumors arising in the setting of a cancer predisposition syndrome develop along specific genetic pathways. Some histopathological and immunohistochemical characteristics of these tumors may point toward such a syndrome. The diagnosis of a cancer predisposition syndrome is of tremendous importance to the patients and their families who require genetic counseling and long-term follow-up.
Collapse
Affiliation(s)
- Baptiste Sourty
- Département de pathologie cellulaire et tissulaire, CHU d'Angers, 4, rue Larrey, 49100 Angers, France
| | - Audrey Rousseau
- Département de pathologie cellulaire et tissulaire, CHU d'Angers, 4, rue Larrey, 49100 Angers, France; CRCINA, université de Nantes, université d'Angers, 49100 Angers, France.
| |
Collapse
|
22
|
Melloni G, Eoli M, Cesaretti C, Bianchessi D, Ibba MC, Esposito S, Scuvera G, Morcaldi G, Micheli R, Piozzi E, Avignone S, Chiapparini L, Pantaleoni C, Natacci F, Finocchiaro G, Saletti V. Risk of Optic Pathway Glioma in Neurofibromatosis Type 1: No Evidence of Genotype-Phenotype Correlations in A Large Independent Cohort. Cancers (Basel) 2019; 11:1838. [PMID: 31766501 PMCID: PMC6966666 DOI: 10.3390/cancers11121838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
The occurrence of optic pathway gliomas (OPGs) in children with neurofibromatosis type 1 (NF1) still raises many questions regarding screening and surveillance because of the lack of robust prognostic factors. Recent studies of an overall cohort of 381 patients have suggested that the genotype may be the main determinant of the development of OPG, with the risk being higher in patients harbouring NF1 mutations in the 5' tertile and the cysteine/serine-rich domain. In an attempt to confirm this hypothesis, we used strict criteria to select a large independent cohort of 309 NF1 patients with defined constitutional NF1 mutations and appropriate brain images (255 directly enrolled and 54 as a result of a literature search). One hundred and thirty-two patients had OPG and 177 did not. The association of the position (tertiles and functional domains) and type of NF1 mutation with the development of OPG was analysed using the χ2 test and Fisher's exact probability test; odds ratios (ORs) with 95% confidence intervals were calculated, and Bonferroni's correction for multiple comparisons was applied; multiple logistic regression was also used to study genotype-phenotype associations further. Our findings show no significant correlation between the site/type of NF1 mutation and the risk of OPG, and thus do not support the hypothesis that certain constitutional mutations provide prognostic information in this regard. In addition, we combined our cohort with a previously described cohort of 381 patients for a total of 690 patients and statistically re-analysed the results. The re-analysis confirmed that there were no correlations between the site (tertile and domain) and the risk of OPG, thus further strengthening our conclusions.
Collapse
Affiliation(s)
- Giulia Melloni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Claudia Cesaretti
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (C.C.); (F.N.)
| | - Donatella Bianchessi
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Maria Cristina Ibba
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Silvia Esposito
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
| | - Giulietta Scuvera
- Department of Pathophysiology and Transplantation, Pediatric Highly Intensive Care Unit, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy;
| | - Guido Morcaldi
- Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy;
| | - Roberto Micheli
- Pediatric Neuropsychiatry, Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25125 Brescia, Italy;
| | - Elena Piozzi
- Pediatric Department, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milan, Italy;
| | - Sabrina Avignone
- Neuroradiology Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 28, 20122 Milan, Italy;
| | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy;
| | - Chiara Pantaleoni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
| | - Federica Natacci
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (C.C.); (F.N.)
| | - Gaetano Finocchiaro
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
| |
Collapse
|
23
|
DeDios-Stern S, Ventura LM. A pediatric case of NF1 and moyamoya syndrome: Neuropsychological evaluation pre- and post-EDAS. APPLIED NEUROPSYCHOLOGY-CHILD 2019; 10:283-296. [PMID: 31523973 DOI: 10.1080/21622965.2019.1665292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Studies have shown that a subset of patients with neurofibromatosis type 1 (NF1) experience associated vascular conditions, with moyamoya syndrome one of the most common comorbidities. While NF1 and moyamoya syndrome are each associated with neurocognitive deficits, no neuropsychological data has been presented for an individual with comorbid NF1 and moyamoya syndrome, particularly pre- and post-re-vascularization surgery. The present case describes the neuropsychological profile of a bilingual Latina girl with NF1 and moyamoya syndrome, who was assessed pre- (age 5 years, 9 months) and post-EDAS (age 6 years, 1 month). Each evaluation included a clinical interview and comprehensive battery of neuropsychological tests. Results of pre-EDAS evaluation documented significant deficits in sustained attention, daily executive functioning, and academic abilities, and she met criteria for ADHD-combined type. Results of post-EDAS evaluation revealed generally stable abilities with relative improvements in social, emotional, and behavioral functioning, but relative decline in visuospatial skills, visual spatial learning/memory, and aspects of executive functioning. Math abilities also remained consistently poor and she was diagnosed with a specific learning disability (mathematics). This case study adds to the current literature by being among the first to present pre- and post-surgical neuropsychological data for a child with NF1 and moyamoya syndrome. Findings are discussed in the context of previous literature, the importance of individual socio-cultural considerations in the case (i.e., language, education, culture), and recommendations for future research.
Collapse
Affiliation(s)
- Samantha DeDios-Stern
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA
| | - Lea M Ventura
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA.,Department of Pediatrics, University of Illinois College of Medicine, Chicago, IL, USA
| |
Collapse
|
24
|
Kokkinou E, Roka K, Alexopoulos A, Tsina E, Nikas I, Krallis P, Thanopoulou I, Nasi L, Makrygianni E, Tsoutsou E, Kosma K, Tsipi M, Tzetis M, Frysira H, Kattamis A, Pons R. Development of a multidisciplinary clinic of neurofibromatosis type 1 and other neurocutaneous disorders in Greece. A 3-year experience. Postgrad Med 2019; 131:445-452. [PMID: 31443616 DOI: 10.1080/00325481.2019.1659708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Given the complexity of neurocutaneous syndromes, a multidisciplinary approach has been advocated in order to provide optimum care. Subjects and Methods: Retrospective analysis of a cohort of 157 patients during a 3-year period, seen at a newly developed neurocutaneous clinic in a pediatric tertiary care hospital in Athens (Greece); and systematic chart review of the patients diagnosed with neurofibromatosis type 1 during this time period. Results: The most frequent neurocutaneous syndromes were neurofibromatosis type 1 (NF1) in 89 patients and tuberous sclerosis complex in 17. In 20.38% of patients a neurocutaneous syndrome was not confirmed. Approximately 2/3 of the NF1 patients underwent genetic analysis, and for 76.67% of them, a pathogenic mutation on the NF1 gene was revealed. Eighty-one patients manifested with generalized NF1 and eight with mosaic NF1. Dermatological manifestations included café-au-lait macules in all patients, followed by axillary and/or inguinal freckling (n = 57), external plexiform neurofibromas (n = 17), and cutaneous and subcutaneous neurofibromas (n = 11). Approximately half of patients had learning disabilities and attention deficit hyperactivity disorder, followed by mental retardation (n = 9), autistic spectrum disorders (n = 4), headaches (n = 3) and seizures (n = 2). Neuroimaging showed characteristic areas of hyperintensity on T2-weighted images in 74.07% of patients and optic pathway glioma in 19.75%. Two patients developed malignant peripheral sheath nerve tumor. Conclusions: Neurocutaneous syndromes are clinically heterogeneous and the surveillance of potential clinical complications is challenging. The availability of genetic diagnosis and novel imaging methods in this group of disorders is likely to further expand their clinical spectrum. Guidelines for assessment and management will need to be modified based on new available data.
Collapse
Affiliation(s)
- Eleftheria Kokkinou
- Special Unit of Pediatric Neurology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Alexis Alexopoulos
- Special Unit of Dermatology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Efthymia Tsina
- Department of Ophthalmology, Agia Sofia Children's Hospital , Athens , Greece
| | - Ioannis Nikas
- Department of Radiology, Agia Sofia Children's Hospital , Athens , Greece
| | - Panagiotis Krallis
- Department of Orthopaedics, Agia Sofia Children's Hospital , Athens , Greece
| | - Ioanna Thanopoulou
- Special Unit of Dermatology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Lambrini Nasi
- Special Unit of Dermatology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Evanthia Makrygianni
- Special Unit of Pediatric Neurology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Eirini Tsoutsou
- Department of Medical Genetics, Choremio Research Laboratory, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Konstantina Kosma
- Department of Medical Genetics, Choremio Research Laboratory, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Maria Tsipi
- Department of Medical Genetics, Choremio Research Laboratory, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Maria Tzetis
- Department of Medical Genetics, Choremio Research Laboratory, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Helen Frysira
- Department of Medical Genetics, Choremio Research Laboratory, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| | - Roser Pons
- Special Unit of Pediatric Neurology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Agia Sofia Children's Hospital , Athens , Greece
| |
Collapse
|
25
|
Giugliano T, Santoro C, Torella A, Del Vecchio Blanco F, Grandone A, Onore ME, Melone MAB, Straccia G, Melis D, Piccolo V, Limongelli G, Buono S, Perrotta S, Nigro V, Piluso G. Clinical and Genetic Findings in Children with Neurofibromatosis Type 1, Legius Syndrome, and Other Related Neurocutaneous Disorders. Genes (Basel) 2019; 10:genes10080580. [PMID: 31370276 PMCID: PMC6722641 DOI: 10.3390/genes10080580] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Pigmentary manifestations can represent an early clinical sign in children affected by Neurofibromatosis type 1 (NF1), Legius syndrome, and other neurocutaneous disorders. The differential molecular diagnosis of these pathologies is a challenge that can now be met by combining next generation sequencing of target genes with concurrent second-level tests, such as multiplex ligation-dependent probe amplification and RNA analysis. We clinically and genetically investigated 281 patients, almost all pediatric cases, presenting with either NF1 (n = 150), only pigmentary features (café au lait macules with or without freckling; (n = 95), or clinical suspicion of other RASopathies or neurocutaneous disorders (n = 36). The causative variant was identified in 239 out of the 281 patients analyzed (85.1%), while 42 patients remained undiagnosed (14.9%). The NF1 and SPRED1 genes were mutated in 73.3% and 2.8% of cases, respectively. The remaining 8.9% carried mutations in different genes associated with other disorders. We achieved a molecular diagnosis in 69.5% of cases with only pigmentary manifestations, allowing a more appropriate clinical management of these patients. Our findings, together with the increasing availability and sharing of clinical and genetic data, will help to identify further novel genotype–phenotype associations that may have a positive impact on patient follow-up.
Collapse
Affiliation(s)
- Teresa Giugliano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Claudia Santoro
- Departement of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138 Napoli, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Francesca Del Vecchio Blanco
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Anna Grandone
- Departement of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138 Napoli, Italy
| | - Maria Elena Onore
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Medical Sciences and Advanced Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138 Napoli, Italy
| | - Giulia Straccia
- Department of Medical Sciences and Advanced Surgery, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138 Napoli, Italy
| | - Daniela Melis
- Department of Pediatrics, University of Naples "Federico II", Via Pansini 5, 80131 Napoli, Italy
| | - Vincenzo Piccolo
- Dermatology Unit, University of Campania "Luigi Vanvitelli", Via Pansini 5, 80131 Napoli, Italy
| | - Giuseppe Limongelli
- Department of Translational Medicine, University of Campania "Luigi Vanvitelli", Via L. Bianchi c/o Ospedale Monaldi, 80131 Napoli, Italy
| | - Salvatore Buono
- Department of Neurosciences, "Santobono-Pausilipon" Pediatric Hospital, Via Fiore 6, 80129 Napoli, Italy
| | - Silverio Perrotta
- Departement of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138 Napoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Napoli, Italy.
| |
Collapse
|
26
|
LIU B, YANG Y, YAN K, CHEN M, WANG L, HUANG Y, QIAN Y, DONG M. [Genetic analysis and prenatal diagnosis of a sporadic family with neurofibromatosis type 1]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:367-372. [PMID: 31901038 PMCID: PMC8800689 DOI: 10.3785/j.issn.1008-9292.2019.08.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
OBJECTIVE To identify pathogenic mutation for a family with neurofibromatosis type 1(NF1) and provide prenatal diagnosis for them. METHODS Mutation analysis of the sporadic family with NF1 was performed with target captured next generation sequencing and Sanger sequencing. RNA samples were extracted from the lymphocytes of NF1 patient and her parents. RT-PCR and Sanger sequencing were performed to analyze the relative mRNA expression in the samples. Prenatal diagnosis of the pathogenic mutation was offered to the fetus. RESULTS A novel splicing mutation c.1260+4A>T in the NF1 gene was found in the proband of the family, but was not found in her parents.cDNA sequencing showed that 13 bases inserted into the 3' end of exon 11 in the NF1 gene lead to a frameshift mutation. Prenatal diagnosis suggested that the fetus did not carried the mutant. CONCLUSIONS The NF1: c.1260+4A>T mutation found in the NF1 patient is considered to be pathogenic, which provides information for family genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Minyue DONG
- 董旻岳(1964—), 男, 博士, 主任医师, 博士生导师, 主要从事生殖遗传学研究; E-mail:
;
https://orcid.org/0000-0002-4344-7924
| |
Collapse
|