1
|
Koutsis G, Kartanou C, Kontogeorgiou Z, Koniari C, Mitrousias A, Pellerin D, Dicaire MJ, Iruzubieta P, Danzi MC, Athanassopoulos K, Ragazos N, Stamelou M, Rentzos M, Anagnostou E, Zuchner S, Brais B, Houlden H, Panas M, Stefanis L, Karadima G. Screening for SCA27B, CANVAS and other repeat expansion disorders in Greek patients with late-onset cerebellar ataxia suggests a need to update current diagnostic algorithms. J Neurol Sci 2024; 467:123309. [PMID: 39571249 DOI: 10.1016/j.jns.2024.123309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE Late-onset cerebellar ataxia (LOCA) is a slowly progressive cerebellar disorder with symptom onset ≥30years of age. Intronic tandem repeat expansions (TREs) in RFC1 and FGF14 have recently emerged as common causes of LOCA. The relative contribution of classic vs. newly discovered TREs has not been systematically investigated in LOCA cohorts. METHODS Over 28 years, 206 consecutive Greek LOCA index patients were referred for genetic testing and, based on clinical data and inheritance pattern, screened for FRDA, SCA1,2,3,6,7, FXTAS, CANVAS and SCA27B. RESULTS A genetic diagnosis was reached in 62 of 206 cases (30.1 %). Mean age was 60.1 ± 11.2 (35-87) years and mean age at onset (AAO) 52.5 ± 11.4 (30-80) years. SCA27B accounted for 9.7 % of LOCA cases, CANVAS for 7.8 % and FRDA for 4.4 %. The overall frequency of SCA1, SCA2 and SCA7 was 6.8 %. No cases of SCA3 and SCA6 were identified. FXTAS contributed 1.5 % of cases. In sporadic cases, the diagnostic yield was 22.8 % (34 of 149; SCA27B: 8.7 %, CANVAS: 8.1 %, FRDA: 2.7 %, SCA2: 1.3 %, FXTAS: 1.3 % and SCA7: 0.7 %). In familial cases, the diagnostic yield was 49.1 % (28 of 57). Two cases with CANVAS had pseudodominant inheritance. Patients with SCA27B, CANVAS and FXTAS had mean AAO > 50 years, whereas patients with FRDA, SCA1, SCA2 and SCA7 had mean AAO < 50 years. CONCLUSION Recently-discovered TREs causing SCA27B and CANVAS represent the commonest known genetic causes of LOCA. Prioritizing testing for FGF14 and RFC1 expansions in the diagnostic algorithm of LOCA is recommended.
Collapse
Affiliation(s)
- Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece.
| | - Chrisoula Kartanou
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Zoi Kontogeorgiou
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Chrysoula Koniari
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Alexandros Mitrousias
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Québec, Canada; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Marie-Jose Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Québec, Canada
| | - Pablo Iruzubieta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK; Department of Neurology, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; CIBERNED Centro de Investigacion Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Konstantinos Athanassopoulos
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Nikolaos Ragazos
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Maria Stamelou
- Parkinson's disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece; School of Medicine, European University of Cyprus, Nicosia, Cyprus
| | - Michail Rentzos
- 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Evangelos Anagnostou
- 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Québec, Canada; Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece.
| |
Collapse
|
2
|
Peng Y, Tu Q, Han Y, Gao L, Fu J. Incidence of different pressure patterns of spinal cerebellar ataxia (SCA) and analysis of imaging and genetic diagnosis. Biomed Signal Process Control 2024; 93:106115. [DOI: 10.1016/j.bspc.2024.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Chen R, Zhou C, Peng Y, Huang P, Yu Y, Zhu M, Zhou M, Hong D, Tan D. Whole Exome Sequencing Indicating GGCCTG Hexanucleotide Repeat in Patients with Spinocerebellar Ataxia Type 36. NEURODEGENER DIS 2024; 24:71-79. [PMID: 38934198 DOI: 10.1159/000540006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Spinocerebellar ataxia type 36 (SCA36) is caused by large GGCCTG repeat expansion in the NOP56 gene. The genetic diagnosis based on Southern blot is expensive and time-consuming. This study aimed to evaluate the reliability and effectiveness of whole exome sequencing (WES) for routine genetic diagnosis of suspected SCA36 patients. METHODS Pathogenic repeat expansions for SCAs including SCA36 were first analyzed based on WES data using ExpansionHunter in five probands from SCA families, then the results were confirmed by triplet repeat primed polymerase chain reaction (TP-PCR) and Southern blot. RESULTS GGCCTG repeat expansion in NOP56 was indicated in all five probands by WES, then it was found in 11 SCA patients and three asymptomatic individuals by TP-PCR. The sizes of GGCCTG repeat expansions were confirmed to be 1,390-1,556 by Southern blot. The mean age at onset of the patients was 51.0 ± 9.3 (ranging from 41 to 71), and they presented slowly progressive cerebellar ataxia, atrophy and fasciculation in tongue or limb muscles. CONCLUSION The patients were clinically and genetically diagnosed as SCA36. This study proposed that WES could be a rapid, reliable, and cost-effective routine test for the preliminarily detection of SCA36 and other ataxia diseases.
Collapse
Affiliation(s)
- Ran Chen
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yun Peng
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanyan Yu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Meihong Zhou
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Peng Y, Tu Q, Han Y, Gao L, Wan C. Incidence of different pressure patterns of spinal cerebellar ataxia and analysis of imaging and genetic diagnosis. Open Life Sci 2023; 18:20220762. [PMID: 38152578 PMCID: PMC10751992 DOI: 10.1515/biol-2022-0762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/29/2023] Open
Abstract
Neurologists have a difficult time identifying sporadic cerebellar ataxia. Multiple system atrophy of the cerebellar type (MSA-C), spontaneous late cortical cerebellar atrophy, and prolonged alcohol use are a few possible causes. In a group of people with sporadic cerebellar ataxia that was not MSA-C, an autosomal-dominant spinocerebellar ataxia (SCA) mutation was recently discovered. Chinese single-hospital cohort will be used in this study to genetic screen for SCA-related genes. One hundred forty individuals with CA were monitored over 8 years. Thirty-one individuals had familial CA, 109 patients had sporadic CA, 73 had MSA-C, and 36 had non-MSA-C sporadic CA. In 28 of the 31 non-MSA-C sporadic patients who requested the test, we carried out gene analysis, including SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, SCA31, and dentatorubro-pallidoluysian atrophy (DRPLA). The control group consisted of family members of the patients. In 57% of the instances with spontaneous CA that were not MSA-C, gene abnormalities were discovered. The most frequent exception among individuals with sporadic CA was SCA6 (36%), followed by monsters in SCA1, 2, 3, 8, and DRPLA. In contrast, 75% of the patients with familial CA had gene abnormalities, the most frequent of which was SCA6 abnormality. The age of 69 vs 59 was higher, and the CAG repeat length was a minor age of 23 vs 25 in the former instances compared to the last one among individuals with SCA6 anomalies that were sporadic as opposed to familial cases. In sporadic CA, autosomal-dominant mutations in SCA genes, notably in SCA6, are common. Although the cause of the increased incidence of SCA6 mutations is unknown, it may be related to a greater age of onset and varied penetrance of SCA6 mutations.
Collapse
Affiliation(s)
- Yufen Peng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qi Tu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yao Han
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Liang Gao
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chenyi Wan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
5
|
Lam T, Rocca C, Ibanez K, Dalmia A, Tallman S, Hadjivassiliou M, Hensiek A, Nemeth A, Facchini S, Wood N, Cortese A, Houlden H, Tucci A. Repeat expansions in NOP56 are a cause of spinocerebellar ataxia Type 36 in the British population. Brain Commun 2023; 5:fcad244. [PMID: 37810464 PMCID: PMC10558097 DOI: 10.1093/braincomms/fcad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Spinocerebellar ataxias form a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive cerebellar ataxia. Their prevalence varies among populations and ethnicities. Spinocerebellar ataxia 36 is caused by a GGCCTG repeat expansion in the first intron of the NOP56 gene and is characterized by late-onset ataxia, sensorineural hearing loss and upper and lower motor neuron signs, including tongue fasciculations. Spinocerebellar ataxia 36 has been described mainly in East Asian and Western European patients and was thought to be absent in the British population. Leveraging novel bioinformatic tools to detect repeat expansions from whole-genome sequencing, we analyse the NOP56 repeat in 1257 British patients with hereditary ataxia and in 7506 unrelated controls. We identify pathogenic repeat expansions in five families (seven patients), representing the first cohort of White British descent patients with spinocerebellar ataxia 36. Employing in silico approaches using whole-genome sequencing data, we found an 87 kb shared haplotype in among the affected individuals from five families around the NOP56 repeat region, although this block was also shared between several controls, suggesting that the repeat arises on a permissive haplotype. Clinically, the patients presented with slowly progressive cerebellar ataxia with a low rate of hearing loss and variable rates of motor neuron impairment. Our findings show that the NOP56 expansion causes ataxia in the British population and that spinocerebellar ataxia 36 can be suspected in patients with a late-onset, slowly progressive ataxia, even without the findings of hearing loss and tongue fasciculation.
Collapse
Affiliation(s)
- Tanya Lam
- Department of Clinical Genetics, Great Ormond Street Hospital NHS Trust, London, WC1N 3JH, UK
| | - Clarissa Rocca
- Clinical Pharmacology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kristina Ibanez
- Clinical Pharmacology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Anupriya Dalmia
- Clinical Pharmacology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | | | - Marios Hadjivassiliou
- Academic Department of Neurosciences and Neuroradiology, Sheffield Teaching Hospitals NHS Trust, Sheffield, S10 2JF, UK
| | - Anke Hensiek
- Department of Clinical Neurosciences, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
| | - Andrea Nemeth
- Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, OX3 9DU, UK
| | - Stefano Facchini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Nicholas Wood
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, 27100, Italy
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Arianna Tucci
- Clinical Pharmacology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
6
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
7
|
Screening for the FMR1 premutation in Greek patients with late-onset movement disorders. Parkinsonism Relat Disord 2023; 107:105253. [PMID: 36549234 DOI: 10.1016/j.parkreldis.2022.105253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset, X-linked, neurodegenerative disorder that affects premutation carriers of the FMR1 gene. FXTAS is often misdiagnosed as spinocerebellar ataxia (SCA) or Parkinson's disease (PD). Herein, we sought to investigate the frequency, genotypic and phenotypic profile of FXTAS in two cohorts of Greek patients with late-onset movement disorders, one with cerebellar ataxia and the other with PD. In total, 90 index patients with late-onset cerebellar ataxia and 171 with PD were selected. None of the cases had male-to-male transmission. Genetic screening for the FMR1 premutation was performed using standard methodology. The FMR1 premutation was detected in two ataxia patients (2.2%) and two PD patients (1.2%). Additional clinical features in FXTAS patients from the ataxia cohort included neuropathy, mild parkinsonism, cognitive impairment and pyramidal signs. The FXTAS patients from the PD cohort had typical PD. We conclude that, in the Greek population, the FMR1 premutation is an important, albeit rare, cause of late-onset movement disorders. Routine premutation screening should be considered in SCA panel-negative late-onset ataxia cases. Directed premutation screening should be considered in all ataxia and PD cases with additional features suggestive of FXTAS. Our study highlights the importance of FMR1 genetic testing in the diagnosis of late-onset movement disorders.
Collapse
|
8
|
Lopez S, He F. Spinocerebellar Ataxia 36: From Mutations Toward Therapies. Front Genet 2022; 13:837690. [PMID: 35309140 PMCID: PMC8931325 DOI: 10.3389/fgene.2022.837690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia 36 (SCA36) is a type of repeat expansion-related neurodegenerative disorder identified a decade ago. Like other SCAs, the symptoms of SCA36 include the loss of coordination like gait ataxia and eye movement problems, but motor neuron-related symptoms like muscular atrophy are also present in those patients. The disease is caused by a GGCCTG hexanucleotide repeat expansion in the gene Nop56, and the demographic incidence map showed that this disease was more common among the ethnic groups of Japanese and Spanish descendants. Although the exact mechanisms are still under investigation, the present evidence supports that the expanded repeats may undergo repeat expansion-related non-AUG-initiated translation, and these dipeptide repeat products could be one of the important ways to lead to pathogenesis. Such studies may help develop potential treatments for this disease.
Collapse
|