1
|
Liu S, Li H, Xi S, Zhang Y, Sun T. Advancing CNS Therapeutics: Enhancing Neurological Disorders with Nanoparticle-Based Gene and Enzyme Replacement Therapies. Int J Nanomedicine 2025; 20:1443-1490. [PMID: 39925682 PMCID: PMC11806685 DOI: 10.2147/ijn.s457393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/12/2024] [Indexed: 02/11/2025] Open
Abstract
Given the complexity of the central nervous system (CNS) and the diversity of neurological conditions, the increasing prevalence of neurological disorders poses a significant challenge to modern medicine. These disorders, ranging from neurodegenerative diseases to psychiatric conditions, not only impact individuals but also place a substantial burden on healthcare systems and society. A major obstacle in treating these conditions is the blood-brain barrier (BBB), which restricts the passage of therapeutic agents to the brain. Nanotechnology, particularly the use of nanoparticles (NPs), offers a promising solution to this challenge. NPs possess unique properties such as small size, large surface area, and modifiable surface characteristics, enabling them to cross the BBB and deliver drugs directly to the affected brain regions. This review focuses on the application of NPs in gene therapy and enzyme replacement therapy (ERT) for neurological disorders. Gene therapy involves altering or manipulating gene expression and can be enhanced by NPs designed to carry various genetic materials. Similarly, NPs can improve the efficacy of ERT for lysosomal storage disorders (LSDs) by facilitating enzyme delivery to the brain, overcoming issues like immunogenicity and instability. Taken together, this review explores the potential of NPs in revolutionizing treatment options for neurological disorders, highlighting their advantages and the future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Haisong Li
- Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shiwen Xi
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, People’s Republic of China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, People’s Republic of China
- International Center of Future Science, Jilin University, Changchun, People’s Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Imsamer A, Sitthinamsuwan B, Tansirisithikul C, Nunta-Aree S. Risk factors of posthemorrhagic seizure in spontaneous intracerebral hemorrhage. Neurosurg Rev 2025; 48:76. [PMID: 39847089 PMCID: PMC11757938 DOI: 10.1007/s10143-025-03229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Seizure is a relatively common neurological consequence after spontaneous intracerebral hemorrhage (SICH). This study aimed to investigate risk factors of early, late, and overall seizures in patients with SICH. Retrospective analysis was performed on all patients with SICH who completed two years of follow-up. The variables collected were obtained from demographic, clinical, radiographic and treatment data, in-hospital complications, and follow-up results. Univariate and multivariate analyzes were used to identify risk factors for post-hemorrhagic stroke seizure. Of 400 SICH patients recruited, 30 (7.5%) and 40 (10%) developed early and late seizures during the 2-year follow-up period, respectively. In the final result of the multivariate analysis, factors associated with the occurrence of the early seizure included lobar location of hematoma (p = 0.018), and GCS ≤ 12 on initial clinical presentation (p = 0.007). Factors associated with the occurrence of the late seizure included lobar location of hematoma (p = 0.001), volume of hematoma greater than 10 ml (p = 0.009), and midline shift on initial cranial CT (p = 0.036). Risk factors of the overall seizure after SICH included lobar location of hematoma (p < 0.001), volume of hematoma greater than 10 ml (p < 0.001), and craniotomy with evacuation of hematoma (p = 0.007). Furthermore, seizure was also associated with a poor functional outcome 2 years after the onset of SICH. Several factors associated with the appearance of post-ICH seizures were revealed. In patients with increased risk of post-SICH seizures, appropriate surveillance and management of seizures should be carried out.
Collapse
Affiliation(s)
- Apisut Imsamer
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, Bangkok, 10700, Thailand
- Department of Surgery, Vachira Phuket Hospital, Phuket, Thailand
| | - Bunpot Sitthinamsuwan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, Bangkok, 10700, Thailand.
| | - Chottiwat Tansirisithikul
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Sarun Nunta-Aree
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, Bangkok, 10700, Thailand
| |
Collapse
|
3
|
Ju JJ, Hang LH. Neuroinflammation and iron metabolism after intracerebral hemorrhage: a glial cell perspective. Front Neurol 2025; 15:1510039. [PMID: 39882361 PMCID: PMC11774705 DOI: 10.3389/fneur.2024.1510039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke causing significant morbidity and mortality. Previously clinical treatments for ICH have largely been based on a single pathophysiological perspective, and there remains a lack of curative interventions. Following the rupture of cerebral blood vessels, blood metabolites activate resident immune cells such as microglia and astrocytes, and infiltrate peripheral immune cells, leading to the release of a series of inflammatory mediators. Degradation of hemoglobin produces large amounts of iron ions, leading to an imbalance of iron homeostasis and the production of large quantities of harmful hydroxyl radicals. Neuroinflammation and dysregulation of brain iron metabolism are both important pathophysiological changes in ICH, and both can exacerbate secondary brain injury. There is an inseparable relationship between brain iron metabolism disorder and activated glial cells after ICH. Glial cells participate in brain iron metabolism through various mechanisms; meanwhile, iron accumulation exacerbates neuroinflammation by activating inflammatory signaling pathways modulating the functions of inflammatory cells, and so on. This review aims to explore neuroinflammation from the perspective of iron metabolism, linking the complex pathophysiological changes, delving into the exploration of treatment approaches for ICH, and offering insights that could enhance clinical management strategies.
Collapse
Affiliation(s)
- Jia-Jun Ju
- Gusu School, Nanjing Medical University, The First People’s Hospital of Kunshan, Kunshan, China
| | - Li-Hua Hang
- Gusu School, Nanjing Medical University, The First People’s Hospital of Kunshan, Kunshan, China
- Kunshan Cancer Pain Prevention and Treatment Key Laboratory, Kunshan, China
| |
Collapse
|
4
|
Li J, Sun Y, Qiu W, Zhou Y, Zhou D, Zhao Y, Liu A, Yuan Y, Guo W. Liangxue Tongyu prescription attenuates neuroinflammation by increasing cholecystokinin octapeptide in acute intracerebral hemorrhage rats. Neuropeptides 2024; 107:102452. [PMID: 38941823 DOI: 10.1016/j.npep.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Inflammatory reactions after acute intracerebral hemorrhage (AICH) contribute significantly to a poor prognosis. Liangxue Tongyu Prescription (LTP) has been proven to be clinically effective in treating AICH. Numerous studies have shown that LTP suppresses brain inflammatory damage in AICH, while the internal mechanisms underlying its action remain unclear. The aim of this study was to verify the anti-inflammatory effects of LTP on an AICH rat model and investigate the potential mechanisms. The AICH rat models were created by injecting autologous blood into the right caudate nucleus. LTP markedly decreased cerebral hematoma and brain water content and recovered from neurological deficits. Meanwhile, LTP prevented microglial activation and reduced the inflammatory reaction caused by pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Notably, the expression of cholecystokinin octapeptide (CCK-8) in the brain and intestine was increased by LTP or CCK-8 treatment. LTP further suppressed nuclear factor kappa B (NF-κB) in the brains of rats with AICH. Moreover, LTP increased the protein and mRNA expression of Occludin and Claudin-1 in the intestine and decreased the levels of lipopolysaccharide (LPS) and diamine oxidase (DAO) in serum. Furthermore, the results showed that LTP increased the protein and mRNA expression of Claudin-5 and zonula occludens-1 (ZO-1) in the brain. CCK-8 receptor antagonists increased the expression of NF-κB and the concentration of pro-inflammatory cytokines. These findings suggested that LTP attenuated neuroinflammation by increasing CCK-8 in the brain and intestine, and its mechanism might be related to alterations in the gut-brain axis (GBA).
Collapse
Affiliation(s)
- Jianxiang Li
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Yingying Sun
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhe Qiu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yu Zhou
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Dandan Zhou
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yang Zhao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Anlan Liu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuan Yuan
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Weifeng Guo
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
5
|
Tsai YC, Chang CH, Chong YB, Wu CH, Tsai HP, Cheng TL, Lin CL. MicroRNA-195-5p Inhibits Intracerebral Hemorrhage-Induced Inflammatory Response and Neuron Cell Apoptosis. Int J Mol Sci 2024; 25:10321. [PMID: 39408651 PMCID: PMC11476780 DOI: 10.3390/ijms251910321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition characterized by bleeding within brain tissue. Primary brain injury in ICH results from a mechanical insult caused by blood accumulation, whereas secondary injury involves inflammation, oxidative stress, and disruption of brain physiology. miR-195-5p may participate in ICH pathology by regulating cell proliferation, oxidative stress, and inflammation. Therefore, we assessed the performance of miR-195-5p in alleviating ICH-induced secondary brain injury. ICH was established in male Sprague-Dawley rats (7 weeks old, 200-250 g) via the stereotaxic intrastriatal injection of type IV bacterial collagenase, after which miR-195-5p was administered intravenously. Neurological function was assessed using corner turn and forelimb grip strength tests. Protein expression was assessed by western blotting and ELISA. The miR-195-5p treatment significantly improved neurological function; modulated macrophage polarization by promoting anti-inflammatory marker (CD206 and Arg1) production and inhibiting pro-inflammatory marker (CD68 and iNOS) production; enhanced Akt signalling, reduced oxidative stress by increasing Sirt1 and Nrf2 levels, and attenuated inflammation by decreasing NF-κB activation; inhibited apoptosis via increased Bcl-2 and decreased cleaved caspase-3 levels; and regulated synaptic plasticity by modulating NMDAR2A, NMDAR2B, BDNF, and TrkB expression and ERK and CREB phosphorylation. In conclusion, miR-195-5p exerts neuroprotective effects in ICH by reducing inflammation and oxidative stress, inhibiting apoptosis, and restoring synaptic plasticity, ultimately restoring behavioral recovery, and represents a promising therapeutic agent that warrants clinical studies.
Collapse
Affiliation(s)
- Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
| | - Chih-Hui Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Yoon Bin Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.); (T.-L.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Liu YT, Lei CY, Zhong LM. Research Advancements on the Correlation Between Spontaneous Intracerebral Hemorrhage of Different Etiologies and Imaging Markers of Cerebral Small Vessel Disease. Neuropsychiatr Dis Treat 2024; 20:307-316. [PMID: 38405425 PMCID: PMC10893791 DOI: 10.2147/ndt.s442334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Objective The purpose of this review is to identify the correlation between ICH and CSVD imaging markers under SMASH-U classification by searching and analyzing a large number of literatures in recent years, laying a theoretical foundation for future clinical research. At the same time, by collecting clinical data to evaluate patient prognosis, analyzing whether there are differences or supplements between clinical trial conclusions and previous theories, and ultimately guiding clinical diagnosis and treatment through the analysis of imaging biomarkers. Methods In this review, by searching CNKI, Web of Science, PubMed, FMRS and other databases, the use of "spontaneous intracerebral hemorrhage", "hypertensive hemorrhagic cerebral small vessel disease", "cerebral small vessel disease imaging", "Based cerebral small vessel diseases", "SMASH the -u classification" and their Chinese equivalents for the main search term. We focused on reading and analyzing hundreds of relevant literatures in the last decade from August 2011 to April 2020, and also included some earlier literatures with conceptual data sources. After screening and ranking the degree of relevance to this study, sixty of them were cited for analysis and elaboration. Results In patients with ICH, the number of cerebral microbleeds in lobes, basal ganglia, and the deep brain is positively correlated with ICH volume and independently correlated with neurological functional outcomes; white matter hyperintensity severity is positively correlated with ICH recurrence risk; multiple lacunar infarction independently predict the risk of ICH; severe brain atrophy is an independent risk factor for a poor prognosis in the long term in patients diagnosed with ICH; and the number of enlarged perivascular spaces is correlated with ICH recurrence. However, small subcortical infarct and ICH are the subject of few studies. Higher CSVD scores are independently associated with functional outcomes at 90 days in patients diagnosed with ICH.
Collapse
Affiliation(s)
- Yu-Tong Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
| | - Chun-Yan Lei
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People’s Republic of China
| | - Lian-Mei Zhong
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Guo P, Zou W. Neutrophil-to-lymphocyte ratio, white blood cell, and C-reactive protein predicts poor outcome and increased mortality in intracerebral hemorrhage patients: a meta-analysis. Front Neurol 2024; 14:1288377. [PMID: 38288330 PMCID: PMC10824245 DOI: 10.3389/fneur.2023.1288377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Objective Inflammation participates in the pathology and progression of secondary brain injury after intracerebral hemorrhage (ICH). This meta-analysis intended to explore the prognostic role of inflammatory indexes, including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), white blood cell (WBC), and C-reactive protein (CRP) in ICH patients. Methods Embase, PubMed, Web of Science, and Cochrane Library were searched until June 2023. Two outcomes, including poor outcome and mortality were extracted and measured. Odds ratio (OR) and 95% confidence interval (CI) were presented for outcome assessment. Results Forty-six studies with 25,928 patients were included in this meta-analysis. The high level of NLR [OR (95% CI): 1.20 (1.13-1.27), p < 0.001], WBC [OR (95% CI): 1.11 (1.02-1.21), p = 0.013], and CRP [OR (95% CI): 1.29 (1.08-1.54), p = 0.005] were related to poor outcome in ICH patients. Additionally, the high level of NLR [OR (95% CI): 1.06 (1.02-1.10), p = 0.001], WBC [OR (95% CI): 1.39 (1.16-1.66), p < 0.001], and CRP [OR (95% CI): 1.02 (1.01-1.04), p = 0.009] were correlated with increased mortality in ICH patients. Nevertheless, PLR was not associated with poor outcome [OR (95% CI): 1.00 (0.99-1.01), p = 0.749] or mortality [OR (95% CI): 1.00 (0.99-1.01), p = 0.750] in ICH patients. The total score of risk of bias assessed by Newcastle-Ottawa Scale criteria ranged from 7-9, which indicated the low risk of bias in the included studies. Publication bias was low, and stability assessed by sensitivity analysis was good. Conclusion This meta-analysis summarizes that the high level of NLR, WBC, and CRP estimates poor outcome and higher mortality in ICH patients.
Collapse
Affiliation(s)
- Peixin Guo
- Integrated Traditional Chinese and Western Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Wei Zou
- Third Ward of Acupuncture Department, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Almarghalani DA, Bahader GA, Ali M, Tillekeratne LMV, Shah ZA. Cofilin Inhibitor Improves Neurological and Cognitive Functions after Intracerebral Hemorrhage by Suppressing Endoplasmic Reticulum Stress Related-Neuroinflammation. Pharmaceuticals (Basel) 2024; 17:114. [PMID: 38256947 PMCID: PMC10818666 DOI: 10.3390/ph17010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Neuroinflammation after intracerebral hemorrhage (ICH) is a crucial factor that determines the extent of the injury. Cofilin is a cytoskeleton-associated protein that drives neuroinflammation and microglia activation. A novel cofilin inhibitor (CI) synthesized and developed in our lab has turned out to be a potential therapeutic agent for targeting cofilin-mediated neuroinflammation in an in vitro model of ICH and traumatic brain injury. The current study aims to examine the therapeutic potential of CI in a mouse collagenase model of ICH and examine the neurobehavioral outcomes and its mechanism of action. Male mice were subjected to intrastriatal collagenase injection to induce ICH, and sham mice received needle insertion. Various concentrations (25, 50, and 100 mg/kg) of CI were administered to different cohorts of the animals as a single intravenous injection 3 h following ICH and intraperitoneally every 12 h for 3 days. The animals were tested for neurobehavioral parameters for up to 7 days and sacrificed to collect brains for hematoma volume measurement, Western blotting, and immunohistochemistry. Blood was collected for cofilin, TNF-α, and IL-1β assessments. The results indicated that 50 mg/kg CI improved neurological outcomes, reversed post-stroke cognitive impairment, accelerated hematoma resolution, mitigated cofilin rods/aggregates, and reduced microglial and astrocyte activation in mice with ICH. Microglia morphological analysis demonstrated that CI restored the homeostasis ramification pattern of microglia in mice treated with CI. CI suppressed endoplasmic reticulum stress-related neuroinflammation by inhibiting inflammasomes and cell death signaling pathways. We also showed that CI prevented synaptic loss by reviving the pre- and post-synaptic markers. Our results unveil a novel therapeutic approach to treating ICH and open a window for using CI in clinical practice.
Collapse
Affiliation(s)
- Daniyah A. Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Ghaith A. Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - L. M. Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A. Shah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
9
|
Liu T, Liu Y, Peng M, Liu Q, Si G. Slain2 attenuates brain injury following subarachnoid hemorrhage by controlling axonal microtubule structure in mice. Neurosci Lett 2023; 816:137495. [PMID: 37741612 DOI: 10.1016/j.neulet.2023.137495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Neuronal injury is accountable for the poor outcome of SAH patients. In this study, oxyhemoglobin (oxyHb) was used to treat cultured primary neurons to simulate SAH, while the SAH model was established by vascular puncture in mice. First, proteomics analysis and western blot assays showed Slain2 as an increased factor in neurons exposed to oxyHb treatment, which has been reported to play an important role in axonal development by regulating microtubule stability. Upregulation of neuronal Slain2 was also detected in the murine SAH model compared with sham surgery. In addition, there was no sex difference in the protein level of Slain2 in either the sham-operated or SAH groups. Furthermore, Slain2 overexpression rescued SAH-induced sensorimotor impairments in mice, while Slain2 knockdown had the opposite effect. Finally, Slain2 overexpression rescued SAH-induced axonal injury both in vivo and in vitro, which was exacerbated by Slain2 knockdown. Thus, we demonstrate here that Slain2 acts as an endogenous protective factor of neuronal axonal microtubule structure, which plays a key role in the protection against SAH-induced neuronal axonal injury. Facilitated axonal microtubule structure by Slain2 overexpression may reduce SAH-induced axonal injury and neurobehavioral dysfunction.
Collapse
Affiliation(s)
- Ting Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China; Shandong University of Traditional Chinese Medicine, China
| | - Yuan Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Min Peng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Qianqian Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Guomin Si
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China.
| |
Collapse
|
10
|
Hu X, Fang M, Tao C, Ma L, Song L, You C, Yang Y. New era for intracerebral haemorrhage management: Lessons from INTERACT3. Clin Transl Med 2023; 13:e1419. [PMID: 37792674 PMCID: PMC10550027 DOI: 10.1002/ctm2.1419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023] Open
Affiliation(s)
- Xin Hu
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduChina
| | - Mei Fang
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduChina
| | - Chuanyuan Tao
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduChina
| | - Lu Ma
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduChina
| | - Lili Song
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduChina
- The George Institute for Global Health ChinaBeijingChina
- The George Institute for Global Health, Faculty of Medicine, The University of New South Wales (UNSW)SydneyNew South WalesAustralia
| | - Chao You
- Department of NeurosurgeryWest China HospitalSichuan UniversityChengduChina
| | - Yongbo Yang
- Department of NeurosurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
11
|
Zhang M, Che R, Zhao W, Sun H, Ren C, Ma J, Hu W, Jia M, Wu C, Liu X, Ji X. Neuroimaging biomarkers of small vessel disease in cerebral amyloid angiopathy-related intracerebral hemorrhage. CNS Neurosci Ther 2023; 29:1222-1228. [PMID: 36740246 PMCID: PMC10068469 DOI: 10.1111/cns.14098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/07/2023] Open
Abstract
AIMS The significance of the correlation of computed tomography (CT)-based cerebral small vessel disease (SVD) markers with the clinical outcomes in patients with cerebral amyloid angiopathy (CAA)-related intracerebral hemorrhage (ICH) remains uncertain. Thus, this study aimed to explore the relationship between SVD markers and short-term outcomes of CAA-ICH. METHODS A total of 183 patients with CAA-ICH admitted to the Xuanwu Hospital, and Beijing Fengtai You'anmen Hospital, from 2014 to 2021 were included. The multivariate logistic regression analysis was performed to identify the correlation between SVD markers based on CT and clinical outcomes at 7-day and 90-day. RESULTS Of the 183 included patients, 66 (36%) were identified with severe SVD burden. The multivariate analysis showed that the total SVD burden, white matter lesion (WML) grade, and brain atrophy indicator were independent risk factors for unfavorable outcomes at 90-day. The brain atrophy indicator was independently associated with mortality at 90-day. Severe cortical atrophy was significantly associated with early neurological deterioration. CONCLUSIONS The neuroimaging profiles of SVD based on CT in patients with CAA-ICH might predict the short-term outcome more effectively. Further studies are required to validate these findings and identify modifiable factors for preventing CAA-ICH development.
Collapse
Affiliation(s)
- Mengke Zhang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Ruiwen Che
- Department of Neurology, Beijing Shijitan hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Hailiang Sun
- Department of Neurosurgery, Beijing Fengtai You'anmen Hospital, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jin Ma
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Hu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Milan Jia
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Xin Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Yu Z, Hu E, Cai Y, Zhu W, Chen Q, Li T, Li Z, Wang Y, Tang T. mRNA and lncRNA co-expression network in mice of acute intracerebral hemorrhage. Front Mol Neurosci 2023; 16:1166875. [PMID: 37187956 PMCID: PMC10175784 DOI: 10.3389/fnmol.2023.1166875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a severe subtype of stroke lacking effective pharmacological targets. Long noncoding RNA (lncRNA) has been confirmed to participate in the pathophysiological progress of various neurological disorders. However, how lncRNA affects ICH outcomes in the acute phase is not completely clear. In this study, we aimed to reveal the relationship of lncRNA-miRNA-mRNA following ICH. Method We conducted the autologous blood injection ICH model and extracted total RNAs on day 7. Microarray scanning was used to obtain mRNA and lncRNA profiles, which were validated by RT-qPCR. GO/KEGG analysis of differentially expressed mRNAs was performed using the Metascape platform. We calculated the Pearson correlation coefficients (PCCs) of lncRNA-mRNA for co-expression network construction. A competitive endogenous (Ce-RNA) network was established based on DIANALncBase and miRDB database. Finally, the Ce-RNA network was visualized and analyzed by Cytoscape. Results In total, 570 differentially expressed mRNAs and 313 differentially expressed lncRNAs were identified (FC ≥ 2 and value of p <0.05). The function of differentially expressed mRNAs was mainly enriched in immune response, inflammation, apoptosis, ferroptosis, and other typical pathways. The lncRNA-mRNA co-expression network contained 57 nodes (21 lncRNAs and 36 mRNAs) and 38 lncRNA-mRNA pairs. The ce-RNA network was generated with 303 nodes (29 lncRNAs, 163 mRNAs, and 111 miRNAs) and 906 edges. Three hub clusters were selected to indicate the most significant lncRNA-miRNA-mRNA interactions. Conclusion Our study suggests that the top differentially expressed RNA molecules may be the biomarker of acute ICH. Furthermore, the hub lncRNA-mRNA pairs and lncRNA-miRNA-mRNA correlations may provide new clues for ICH treatment.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiqing Cai
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenxin Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Chen
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhilin Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Tao Tang,
| |
Collapse
|
13
|
Guo X, Xu JK, Qi X, Wei Y, Wang CW, Li H, Ma L, You C, Tian M. Early brainstem injury progression: multi-sequence magnetic resonance imaging and histopathology. Neural Regen Res 2023; 18:170-175. [PMID: 35799538 PMCID: PMC9241409 DOI: 10.4103/1673-5374.344838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Liangxue Tongyu Prescription Alleviates Brain Damage in Acute Intracerebral Hemorrhage Rats by Regulating Intestinal Mucosal Barrier Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2197763. [PMID: 36573082 PMCID: PMC9789913 DOI: 10.1155/2022/2197763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Background Liangxue Tongyu prescription (LTP) is a commonly used formula for acute intracerebral hemorrhage (AICH) in clinical practice that has significant ameliorative effects on neurological deficits and gastrointestinal dysfunction, yet the mechanism remains elusive. The aim of this study was to investigate the pathway by which LTP alleviates brain damage in AICH rats. Methods The AICH rat models were established by autologous caudal arterial blood injection. The neurological function scores were evaluated before and after treatment. The water content and the volume of Evans blue staining in the brain were measured to reflect the degree of brain damage. RT-PCR was used to detect the inflammatory factors of the brain. Western blotting was used to detect the expression of the tight junction proteins zonula occludens 1 (ZO-1), occludin (OCLN), and claudin (CLDN) in the brain and colon, followed by mucin 2 (MUC2), secretory immunoglobulin A (SIgA), and G protein-coupled receptor 43 (GPR43) in the colon. Flow cytometry was used to detect the ratios of helper T cells 17 (Th17) and regulatory T cells (Treg) in peripheral blood, and the vagus nerve (VN) discharge signals were collected. Results LTP reduced the brain damage of the AICH rats. Compared with the model group, LTP significantly improved the permeability of the colonic mucosa, promoted the secretion of MUC2, SigA, and GPR43 in the colon, and regulated the immune balance of peripheral T cells. The AICH rats had significantly faster VN discharge rates and lower amplitudes than normal rats, and these abnormalities were corrected in the LTP and probiotics groups. Conclusion LTP can effectively reduce the degree of brain damage in AICH rats, and the mechanism may be that it can play a neuroprotective role by regulating the function of the intestinal mucosal barrier.
Collapse
|
15
|
Prediction of Hemorrhagic Complication after Thrombolytic Therapy Based on Multimodal Data from Multiple Centers: An Approach to Machine Learning and System Implementation. J Pers Med 2022; 12:jpm12122052. [PMID: 36556272 PMCID: PMC9782609 DOI: 10.3390/jpm12122052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hemorrhagic complication (HC) is the most severe complication of intravenous thrombolysis (IVT) in patients with acute ischemic stroke (AIS). This study aimed to build a machine learning (ML) prediction model and an application system for a personalized analysis of the risk of HC in patients undergoing IVT therapy. We included patients from Chongqing, Hainan and other centers, including Computed Tomography (CT) images, demographics, and other data, before the occurrence of HC. After feature engineering, a better feature subset was obtained, which was used to build a machine learning (ML) prediction model (Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGB)), and then evaluated with relevant indicators. Finally, a prediction model with better performance was obtained. Based on this, an application system was built using the Flask framework. A total of 517 patients were included, of which 332 were in the training cohort, 83 were in the internal validation cohort, and 102 were in the external validation cohort. After evaluation, the performance of the XGB model is better, with an AUC of 0.9454 and ACC of 0.8554 on the internal validation cohort, and 0.9142 and ACC of 0.8431 on the external validation cohort. A total of 18 features were used to construct the model, including hemoglobin and fasting blood sugar. Furthermore, the validity of the model is demonstrated through decision curves. Subsequently, a system prototype is developed to verify the test prediction effect. The clinical decision support system (CDSS) embedded with the XGB model based on clinical data and image features can better carry out personalized analysis of the risk of HC in intravenous injection patients.
Collapse
|
16
|
3D slicer-based calculation of hematoma irregularity index for predicting hematoma expansion in intracerebral hemorrhage. BMC Neurol 2022; 22:452. [PMID: 36471307 PMCID: PMC9720921 DOI: 10.1186/s12883-022-02983-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/18/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND Irregular hematoma is considered as a risk sign of hematoma expansion. The aim of this study was to quantify hematoma irregularity with computed tomography based on 3D Slicer. METHODS Patients with spontaneous intracerebral hemorrhage who underwent an initial and subsequent non-contrast computed tomography (CT) at a single medical center between January 2019 to January 2020 were retrospectively identified. The Digital Imaging and Communication in Medicine (DICOM) standard images were loaded into the 3D Slicer, and the surface area (S) and volume (V) of hematoma were calculated. The hematoma irregularity index (HII) was defined as [Formula: see text]. Logistic regression analyses and receiver operating characteristic (ROC) curve analysis were performed to assess predictive performance of HII. RESULTS The enrolled patients were divided into those with hematoma enlargement (n = 36) and those without the enlargement (n = 57). HII in hematoma expansion group was 130.4 (125.1-140.0), and the index in non-enlarged hematoma group was 118.6 (113.5-122.3). There was significant difference in HII between the two groups (P < 0.01). Multivariate logistic regression analysis revealed that the HII was significantly associated with hematoma expansion before (odds ratio = 1.203, 95% confidence interval [CI], 1.115-1.298; P < 0.001) and after adjustment for age, hematoma volume, Glasgow Coma Scale score (odds ratio = 1.196, 95% CI, 1.102-1.298, P < 0.001). The area under the ROC curve was 0.86 (CI, 0.78-0.93, P < 0.01), and the best cutoff of HII for predicting hematoma growth was 123.8. CONCLUSION As a quantitative indicator of irregular hematoma, HII can be calculated using the 3D Slicer. And the HII was independently correlated with hematoma expansion.
Collapse
|
17
|
Nijiati M, Tuersun A, Zhang Y, Yuan Q, Gong P, Abulizi A, Tuoheti A, Abulaiti A, Zou X. A symmetric prior knowledge based deep learning model for intracerebral hemorrhage lesion segmentation. Front Physiol 2022; 13:977427. [PMID: 36505076 PMCID: PMC9727183 DOI: 10.3389/fphys.2022.977427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Accurate localization and classification of intracerebral hemorrhage (ICH) lesions are of great significance for the treatment and prognosis of patients with ICH. The purpose of this study is to develop a symmetric prior knowledge based deep learning model to segment ICH lesions in computed tomography (CT). Methods: A novel symmetric Transformer network (Sym-TransNet) is designed to segment ICH lesions in CT images. A cohort of 1,157 patients diagnosed with ICH is established to train (n = 857), validate (n = 100), and test (n = 200) the Sym-TransNet. A healthy cohort of 200 subjects is added, establishing a test set with balanced positive and negative cases (n = 400), to further evaluate the accuracy, sensitivity, and specificity of the diagnosis of ICH. The segmentation results are obtained after data pre-processing and Sym-TransNet. The DICE coefficient is used to evaluate the similarity between the segmentation results and the segmentation gold standard. Furthermore, some recent deep learning methods are reproduced to compare with Sym-TransNet, and statistical analysis is performed to prove the statistical significance of the proposed method. Ablation experiments are conducted to prove that each component in Sym-TransNet could effectively improve the DICE coefficient of ICH lesions. Results: For the segmentation of ICH lesions, the DICE coefficient of Sym-TransNet is 0.716 ± 0.031 in the test set which contains 200 CT images of ICH. The DICE coefficients of five subtypes of ICH, including intraparenchymal hemorrhage (IPH), intraventricular hemorrhage (IVH), extradural hemorrhage (EDH), subdural hemorrhage (SDH), and subarachnoid hemorrhage (SAH), are 0.784 ± 0.039, 0.680 ± 0.049, 0.359 ± 0.186, 0.534 ± 0.455, and 0.337 ± 0.044, respectively. Statistical results show that the proposed Sym-TransNet can significantly improve the DICE coefficient of ICH lesions in most cases. In addition, the accuracy, sensitivity, and specificity of Sym-TransNet in the diagnosis of ICH in 400 CT images are 91.25%, 98.50%, and 84.00%, respectively. Conclusion: Compared with recent mainstream deep learning methods, the proposed Sym-TransNet can segment and identify different types of lesions from CT images of ICH patients more effectively. Moreover, the Sym-TransNet can diagnose ICH more stably and efficiently, which has clinical application prospects.
Collapse
Affiliation(s)
- Mayidili Nijiati
- Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Abudouresuli Tuersun
- Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | | | - Qing Yuan
- Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | | | | | - Awanisa Tuoheti
- Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Adili Abulaiti
- Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashi, China,*Correspondence: Adili Abulaiti, ; Xiaoguang Zou,
| | - Xiaoguang Zou
- Clinical Medical Research Center, The First People’s Hospital of Kashi Prefecture, Kashi, China,*Correspondence: Adili Abulaiti, ; Xiaoguang Zou,
| |
Collapse
|
18
|
Che R, Zhang M, Sun H, Ma J, Hu W, Liu X, Ji X. Long-term outcome of cerebral amyloid angiopathy-related hemorrhage. CNS Neurosci Ther 2022; 28:1829-1837. [PMID: 35975394 PMCID: PMC9532921 DOI: 10.1111/cns.13922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECT The long-term functional outcome of cerebral amyloid angiopathy-related hemorrhage (CAAH) patients is unclear. We sought to assess the long-term functional outcome of CAAH and determine the prognostic factors associated with unfavorable outcomes. METHODS We enrolled consecutive CAAH patients from 2014 to 2020 in this observational study. Baseline characteristics and clinical outcomes were presented. Multivariable logistic regression analysis was performed to identify the prognostic factors associated with long-term outcome. RESULTS Among the 141 CAAH patients, 76 (53.9%) achieved favorable outcomes and 28 (19.9%) of them died at 1-year follow-up. For the longer-term follow-up with a median observation time of 19.0 (interquartile range, 12.0-26.5) months, 71 (50.4%) patients obtained favorable outcomes while 33 (23.4%) died. GCS on admission (OR, 0.109; 95% CI, 0.021-0.556; p = 0.008), recurrence of ICH (OR, 2923.687; 95% CI, 6.282-1360730.14; p = 0.011), WML grade 3-4 (OR, 31.007; 95% CI, 1.041-923.573; p = 0.047), severe central atrophy (OR, 4220.303; 95% CI, 9.135-1949674.84; p = 0.008) assessed by CT was identified as independent predictors for long-term outcome. INTERPRETATION Nearly 50% of CAAH patients achieved favorable outcomes at long-term follow-up. GCS, recurrence of ICH, WML grade and cerebral atrophy were identified as independent prognostic factors of long-term outcome.
Collapse
Affiliation(s)
- Ruiwen Che
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Mengke Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hailiang Sun
- Department of Neurosurgery, Beijing Fengtai You'anmen Hospital, Beijing, China
| | - Jin Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Hu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
- Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Jin P, Qi D, Cui Y, Lenahan C, Zhang JH, Tao X, Deng S, Tang J. Aprepitant attenuates NLRC4-dependent neuronal pyroptosis via NK1R/PKCδ pathway in a mouse model of intracerebral hemorrhage. J Neuroinflammation 2022; 19:198. [PMID: 35922848 PMCID: PMC9351153 DOI: 10.1186/s12974-022-02558-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pyroptosis is a programmed cell death mediated by inflammasomes. Previous studies have reported that inhibition of neurokinin receptor 1 (NK1R) exerted neuroprotection in several neurological diseases. Herein, we have investigated the role of NK1R receptor inhibition using Aprepitant to attenuate NLRC4-dependent neuronal pyroptosis after intracerebral hemorrhage (ICH), as well as the underlying mechanism. METHODS A total of 182 CD-1 mice were used. ICH was induced by injection of autologous blood into the right basal ganglia. Aprepitant, a selective antagonist of NK1R, was injected intraperitoneally at 1 h after ICH. To explore the underlying mechanism, NK1R agonist, GR73632, and protein kinase C delta (PKCδ) agonist, phorbol 12-myristate 13-acetate (PMA), were injected intracerebroventricularly at 1 h after ICH induction, and small interfering ribonucleic acid (siRNA) for NLRC4 was administered via intracerebroventricular injection at 48 h before ICH induction, respectively. Neurobehavioral tests, western blot, and immunofluorescence staining were performed. RESULTS The expression of endogenous NK1R and NLRC 4 were gradually increased after ICH. NK1R was expressed on neurons. Aprepitant significantly improved the short- and long-term neurobehavioral deficits after ICH, which was accompanied with decreased neuronal pyroptosis, as well as decreased expression of NLRC4, Cleaved-caspase-1, GSDMD (gasdermin D), IL-1β, and IL-18. Activation of NK1R or PKCδ abolished these neuroprotective effects of Aprepitant after ICH. Similarly, knocking down NLRC4 using siRNA produced similar neuroprotective effects. CONCLUSION Aprepitant suppressed NLRC4-dependent neuronal pyroptosis and improved neurological function, possibly mediated by inhibition of NK1R/PKCδ signaling pathways after ICH. The NK1R may be a promising therapeutic target for the treatment of ICH.
Collapse
Affiliation(s)
- Peng Jin
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Dongqing Qi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yuhui Cui
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200040, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, 88001, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Xiaogen Tao
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Shuixiang Deng
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA. .,Department of Intensive Care Unit, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai, 200040, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
20
|
Zhang Y, Khan S, Liu Y, Wu G, Yong VW, Xue M. Oxidative Stress Following Intracerebral Hemorrhage: From Molecular Mechanisms to Therapeutic Targets. Front Immunol 2022; 13:847246. [PMID: 35355999 PMCID: PMC8959663 DOI: 10.3389/fimmu.2022.847246] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly fatal disease with mortality rate of approximately 50%. Oxidative stress (OS) is a prominent cause of brain injury in ICH. Important sources of reactive oxygen species after hemorrhage are mitochondria dysfunction, degradated products of erythrocytes, excitotoxic glutamate, activated microglia and infiltrated neutrophils. OS harms the central nervous system after ICH mainly through impacting inflammation, killing brain cells and exacerbating damage of the blood brain barrier. This review discusses the sources and the possible molecular mechanisms of OS in producing brain injury in ICH, and anti-OS strategies to ameliorate the devastation of ICH.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Weng ZA, Huang XX, Deng D, Yang ZG, Li SY, Zang JK, Li YF, Liu YF, Wu YS, Zhang TY, Su XL, Lu D, Xu AD. A New Nomogram for Predicting the Risk of Intracranial Hemorrhage in Acute Ischemic Stroke Patients After Intravenous Thrombolysis. Front Neurol 2022; 13:774654. [PMID: 35359655 PMCID: PMC8960116 DOI: 10.3389/fneur.2022.774654] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background We aimed to develop and validate a new nomogram for predicting the risk of intracranial hemorrhage (ICH) in patients with acute ischemic stroke (AIS) after intravenous thrombolysis (IVT). Methods A retrospective study enrolled 553 patients with AIS treated with IVT. The patients were randomly divided into two cohorts: the training set (70%, n = 387) and the testing set (30%, n = 166). The factors in the predictive nomogram were filtered using multivariable logistic regression analysis. The performance of the nomogram was assessed based on the area under the receiver operating characteristic curve (AUC-ROC), calibration plots, and decision curve analysis (DCA). Results After multivariable logistic regression analysis, certain factors, such as smoking, National Institutes of Health of Stroke Scale (NIHSS) score, blood urea nitrogen-to-creatinine ratio (BUN/Cr), and neutrophil-to-lymphocyte ratio (NLR), were found to be independent predictors of ICH and were used to construct a nomogram. The AUC-ROC values of the nomogram were 0.887 (95% CI: 0.842–0.933) and 0.776 (95% CI: 0.681–0.872) in the training and testing sets, respectively. The AUC-ROC of the nomogram was higher than that of the Multicenter Stroke Survey (MSS), Glucose, Race, Age, Sex, Systolic blood Pressure, and Severity of stroke (GRASPS), and stroke prognostication using age and NIH Stroke Scale-100 positive index (SPAN-100) scores for predicting ICH in both the training and testing sets (p < 0.05). The calibration plot demonstrated good agreement in both the training and testing sets. DCA indicated that the nomogram was clinically useful. Conclusions The new nomogram, which included smoking, NIHSS, BUN/Cr, and NLR as variables, had the potential for predicting the risk of ICH in patients with AIS after IVT.
Collapse
Affiliation(s)
- Ze-An Weng
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiao-Xiong Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Neurology and Stroke Center, The Central Hospital of Shaoyang, Shaoyang, China
| | - Die Deng
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhen-Guo Yang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shu-Yuan Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jian-Kun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yu-Feng Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yan-Fang Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - You-Sheng Wu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Tian-Yuan Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xuan-Lin Su
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Dan Lu
| | - An-Ding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- *Correspondence: An-Ding Xu
| |
Collapse
|
22
|
Futokoro R, Hijioka M, Arata M, Kitamura Y. Lipoxin A4 Receptor Stimulation Attenuates Neuroinflammation in a Mouse Model of Intracerebral Hemorrhage. Brain Sci 2022; 12:brainsci12020162. [PMID: 35203926 PMCID: PMC8869920 DOI: 10.3390/brainsci12020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is caused by the rupture of blood vessels in the brain. The excessive activation of glial cells and the infiltration of numerous inflammatory cells are observed during bleeding. Thrombin is a key molecule that triggers neuroinflammation in the ICH brain. In this study, we focused on lipoxin A4 (LXA4), an arachidonic acid metabolite that has been reported to suppress inflammation and cell migration. LXA4 and BML-111, an agonist of the LXA4 receptor/formyl peptide receptor 2 (ALX/FPR2), suppressed microglial activation; LXA4 strongly inhibited the migration of neutrophil-like cells in vitro. ALX/FPR2 was expressed on neutrophils in the ICH mouse brain and the daily administration of BML-111 attenuated the motor coordination dysfunction and suppressed the production of proinflammatory cytokines in the ICH mouse brain. On the other hand, BML-111 did not show a significant reduction in the number of microglia and neutrophils. These results suggest that systemic administration of ALX/FPR2 agonists may suppress the neuroinflammatory response of microglia and neutrophils without a change in cell numbers. Additionally, their combination with molecules that reduce cell numbers, such as modulators of leukotriene B4 signaling, may be required in future studies.
Collapse
Affiliation(s)
- Risa Futokoro
- Laboratory of Pharmacology and Neurobiology, Collage of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; (R.F.); (M.A.); (Y.K.)
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Masanori Hijioka
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
- Correspondence: ; Tel.: +81-52-853-8196
| | - Moe Arata
- Laboratory of Pharmacology and Neurobiology, Collage of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; (R.F.); (M.A.); (Y.K.)
| | - Yoshihisa Kitamura
- Laboratory of Pharmacology and Neurobiology, Collage of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan; (R.F.); (M.A.); (Y.K.)
| |
Collapse
|
23
|
Chen W, Li X, Ma L, Li D. Enhancing Robustness of Machine Learning Integration With Routine Laboratory Blood Tests to Predict Inpatient Mortality After Intracerebral Hemorrhage. Front Neurol 2022; 12:790682. [PMID: 35046885 PMCID: PMC8761736 DOI: 10.3389/fneur.2021.790682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: The accurate evaluation of outcomes at a personalized level in patients with intracerebral hemorrhage (ICH) is critical clinical implications. This study aims to evaluate how machine learning integrates with routine laboratory tests and electronic health records (EHRs) data to predict inpatient mortality after ICH. Methods: In this machine learning-based prognostic study, we included 1,835 consecutive patients with acute ICH between October 2010 and December 2018. The model building process incorporated five pre-implant ICH score variables (clinical features) and 13 out of 59 available routine laboratory parameters. We assessed model performance according to a range of learning metrics, such as the mean area under the receiver operating characteristic curve [AUROC]. We also used the Shapley additive explanation algorithm to explain the prediction model. Results: Machine learning models using laboratory data achieved AUROCs of 0.71–0.82 in a split-by-year development/testing scheme. The non-linear eXtreme Gradient Boosting model yielded the highest prediction accuracy. In the held-out validation set of development cohort, the predictive model using comprehensive clinical and laboratory parameters outperformed those using clinical alone in predicting in-hospital mortality (AUROC [95% bootstrap confidence interval], 0.899 [0.897–0.901] vs. 0.875 [0.872–0.877]; P <0.001), with over 81% accuracy, sensitivity, and specificity. We observed similar performance in the testing set. Conclusions: Machine learning integrated with routine laboratory tests and EHRs could significantly promote the accuracy of inpatient ICH mortality prediction. This multidimensional composite prediction strategy might become an intelligent assistive prediction for ICH risk reclassification and offer an example for precision medicine.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China.,West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, China.,Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Xiangkui Li
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, China.,Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Dong Li
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu, China.,Med-X Center for Informatics, Sichuan University, Chengdu, China.,Division of Hospital Medicine, Emory School of Medicine, Atlanta, GA, United States
| |
Collapse
|
24
|
Almarghalani DA, Boddu SHS, Ali M, Kondaka A, Ta D, Shah RA, Shah ZA. Small interfering RNAs based therapies for intracerebral hemorrhage: challenges and progress in drug delivery systems. Neural Regen Res 2022; 17:1717-1725. [PMID: 35017419 PMCID: PMC8820693 DOI: 10.4103/1673-5374.332129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke associated with higher rates of mortality. Currently, no effective drug treatment is available for ICH. The molecular pathways following ICH are complicated and diverse. Nucleic acid therapeutics such as gene knockdown by small interfering RNAs (siRNAs) have been developed in recent years to modulate ICH’s destructive pathways and mitigate its outcomes. However, siRNAs delivery to the central nervous system is challenging and faces many roadblocks. Existing barriers to systemic delivery of siRNA limit the use of naked siRNA; therefore, siRNA-vectors developed to protect and deliver these therapies into the specific-target areas of the brain, or cell types seem quite promising. Efficient delivery of siRNA via nanoparticles emerged as a viable and effective alternative therapeutic tool for central nervous system-related diseases. This review discusses the obstacles to siRNA delivery, including the advantages and disadvantages of viral and nonviral vectors. Additionally, we provide a comprehensive overview of recent progress in nanotherapeutics areas, primarily focusing on the delivery system of siRNA for ICH treatment.
Collapse
Affiliation(s)
- Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Akhila Kondaka
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Devin Ta
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Rayyan A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
25
|
Huang Y, Zhao M, Chen X, Zhang R, Le A, Hong M, Zhang Y, Jia L, Zang W, Jiang C, Wang J, Fan X, Wang J. Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging Dis 2022; 14:858-878. [PMID: 37191427 DOI: 10.14336/ad.2022.0916] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
The metabolism of L-tryptophan (TRP) regulates homeostasis, immunity, and neuronal function. Altered TRP metabolism has been implicated in the pathophysiology of various diseases of the central nervous system. TRP is metabolized through two main pathways, the kynurenine pathway and the methoxyindole pathway. First, TRP is metabolized to kynurenine, then kynurenic acid, quinolinic acid, anthranilic acid, 3-hydroxykynurenine, and finally 3-hydroxyanthranilic acid along the kynurenine pathway. Second, TRP is metabolized to serotonin and melatonin along the methoxyindole pathway. In this review, we summarize the biological properties of key metabolites and their pathogenic functions in 12 disorders of the central nervous system: schizophrenia, bipolar disorder, major depressive disorder, spinal cord injury, traumatic brain injury, ischemic stroke, intracerebral hemorrhage, multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Furthermore, we summarize preclinical and clinical studies, mainly since 2015, that investigated the metabolic pathway of TRP, focusing on changes in biomarkers of these neurologic disorders, their pathogenic implications, and potential therapeutic strategies targeting this metabolic pathway. This critical, comprehensive, and up-to-date review helps identify promising directions for future preclinical, clinical, and translational research on neuropsychiatric disorders.
Collapse
|
26
|
Ren X, Huang Q, Qu Q, Cai X, Fu H, Mo X, Wang Y, Zheng Y, Jiang E, Ye Y, Luo Y, Chen S, Yang T, Zhang Y, Han W, Tang F, Mo W, Wang S, Li F, Liu D, Zhang X, Zhang Y, Feng S, Gao F, Yuan H, Wang D, Wan D, Chen H, Chen Y, Wang J, Chen Y, Wang Y, Xu K, Lang T, Wang X, Meng H, Li L, Wang Z, Fan Y, Chang Y, Xu L, Huang X, Zhang X. Predicting mortality from intracranial hemorrhage in patients who undergo allogeneic hematopoietic stem cell transplantation. Blood Adv 2021; 5:4910-4921. [PMID: 34448835 PMCID: PMC9153001 DOI: 10.1182/bloodadvances.2021004349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Intracranial hemorrhage (ICH) is a rare but fatal central nervous system complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, factors that are predictive of early mortality in patients who develop ICH after undergoing allo-HSCT have not been systemically investigated. From January 2008 to June 2020, a total of 70 allo-HSCT patients with an ICH diagnosis formed the derivation cohort. Forty-one allo-HSCT patients with an ICH diagnosis were collected from 12 other medical centers during the same period, and they comprised the external validation cohort. These 2 cohorts were used to develop and validate a grading scale that enables the prediction of 30-day mortality from ICH in all-HSCT patients. Four predictors (lactate dehydrogenase level, albumin level, white blood cell count, and disease status) were retained in the multivariable logistic regression model, and a simplified grading scale (termed the LAWS score) was developed. The LAWS score was adequately calibrated (Hosmer-Lemeshow test, P > .05) in both cohorts. It had good discrimination power in both the derivation cohort (C-statistic, 0.859; 95% confidence interval, 0.776-0.945) and the external validation cohort (C-statistic, 0.795; 95% confidence interval, 0.645-0.945). The LAWS score is the first scoring system capable of predicting 30-day mortality from ICH in allo-HSCT patients. It showed good performance in identifying allo-HSCT patients at increased risk of early mortality after ICH diagnosis. We anticipate that it would help risk stratify allo-HSCT patients with ICH and facilitate future studies on developing individualized and novel interventions for patients within different LAWS risk groups.
Collapse
Affiliation(s)
- Xiying Ren
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qiusha Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Qingyuan Qu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xuan Cai
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Haixia Fu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaodong Mo
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yawei Zheng
- Center of Hematopoietic Stem Cell Transplantation, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- Center of Hematopoietic Stem Cell Transplantation, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaozhen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanyuan Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wei Han
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Feifei Tang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Fei Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Daihong Liu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoying Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuqing Feng
- Department of Hematology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Feng Gao
- Department of Hematology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Hailong Yuan
- Hematology Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | | | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yao Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jingzhi Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yuhong Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ying Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tao Lang
- Department of Hematology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaomin Wang
- Department of Hematology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hongbin Meng
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China; and
| | - Limin Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China; and
| | - Zhiguo Wang
- Bone Marrow Transplantation Department, Harbin Institute of Hematology and Oncology, Harbin, China
| | - Yanling Fan
- Bone Marrow Transplantation Department, Harbin Institute of Hematology and Oncology, Harbin, China
| | - Yingjun Chang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Lanping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaojun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaohui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
| |
Collapse
|
27
|
Yu N, Yu H, Li H, Ma N, Hu C, Wang J. A Robust Deep Learning Segmentation Method for Hematoma Volumetric Detection in Intracerebral Hemorrhage. Stroke 2021; 53:167-176. [PMID: 34601899 DOI: 10.1161/strokeaha.120.032243] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Hematoma volume (HV) is a significant diagnosis for determining the clinical stage and therapeutic approach for intracerebral hemorrhage (ICH). The aim of this study is to develop a robust deep learning segmentation method for the fast and accurate HV analysis using computed tomography. METHODS A novel dimension reduction UNet (DR-UNet) model was developed for computed tomography image segmentation and HV measurement. Two data sets, 512 ICH patients with 12 568 computed tomography slices in the retrospective data set and 50 ICH patients with 1257 slices in the prospective data set, were used for network training, validation, and internal and external testing. Moreover, 13 irregular hematoma cases, 11 subdural and epidural hematoma cases, and 50 different HV cases into 3 groups (<30, 30-60, and >60 mL) were selected to further evaluate the robustness of DR-UNet. The image segmentation performance of DR-UNet was compared with those of UNet, the fuzzy clustering method, and the active contour method. The HV measurement performance was compared using DR-UNet, UNet, and the Coniglobus formula method. RESULTS Using DR-UNet, the segmentation model achieved a performance similar to that of expert clinicians in 2 independent test data sets containing internal testing data (Dice of 0.861±0.139) and external testing data (Dice of 0.874±0.130). The HV measurement derived from DR-UNet was strongly correlated with that from manual segmentation (R2=0.9979; P<0.0001). In the irregularly shaped hematoma group and the subdural and epidural hematoma group, DR-UNet was more robust than UNet in both hematoma segmentation and HV measurement. There is no statistical significance in segmentation accuracy among 3 different HV groups. CONCLUSIONS DR-UNet can segment hematomas from the computed tomography scans of ICH patients and quantify the HV with better accuracy and greater efficiency than the main existing methods and with similar performance to expert clinicians. Due to robust performance and stable segmentation on different ICHs, DR-UNet could facilitate the development of deep learning systems for a variety of clinical applications.
Collapse
Affiliation(s)
- Nannan Yu
- Department of Artificial Intelligence, School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou, China (N.Y., H.Y.)
| | - He Yu
- Department of Artificial Intelligence, School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou, China (N.Y., H.Y.)
| | - Haonan Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, China (H.L., J.W.)
| | - Nannan Ma
- Radiology Department, Xuzhou Central Hospital, China (N.M., C.H.)
| | - Chunai Hu
- Radiology Department, Xuzhou Central Hospital, China (N.M., C.H.)
| | - Jia Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, China (H.L., J.W.)
| |
Collapse
|
28
|
Zhao W, Jiang F, Li S, Liu G, Wu C, Wang Y, Ren C, Zhang J, Gu F, Zhang Q, Gao X, Gao Z, Song H, Ma Q, Ding Y, Ji X. Safety and efficacy of remote ischemic conditioning for the treatment of intracerebral hemorrhage: A proof-of-concept randomized controlled trial. Int J Stroke 2021; 17:425-433. [PMID: 33739197 DOI: 10.1177/17474930211006580] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Remote ischemic conditioning can promote hematoma resolution, attenuate brain edema, and improve neurological recovery in animal models of intracerebral hemorrhage. AIMS This study aimed to evaluate the safety and preliminary efficacy of remote ischemic conditioning in patients with intracerebral hemorrhage. METHODS In this multicenter, randomized, controlled trial, 40 subjects with supratentorial intracerebral hemorrhage presenting within 24-48 h of onset were randomly assigned to receive medical therapy plus remote ischemic conditioning for consecutive seven days or medical therapy alone. The primary safety outcome was neurological deterioration within seven days of enrollment, and the primary efficacy outcome was the changes of hematoma volume on CT images. Other outcomes included hematoma resolution rate at 7 days ([hematoma volume at 7 days - hematoma volume at baseline]/hematoma volume at baseline), perihematomal edema (PHE), and functional outcome at 90 days. RESULTS The mean age was 59.3 ± 11.7 years and hematoma volume was 13.9 ± 4.5 mL. No subjects experienced neurological deterioration within seven days of enrollment, and no subject died or experienced remote ischemic conditioning-associated adverse events during the study period. At baseline, the hematoma volumes were 14.19 ± 5.07 mL in the control group and 13.55 ± 3.99 mL in the remote ischemic conditioning group, and they were 8.54 ± 3.99 mL and 6.95 ± 2.71 mL at seven days after enrollment, respectively, which is not a significant difference (p > 0.05 each). The hematoma resolution rate in the remote ischemic conditioning group (49.25 ± 9.17%) was significantly higher than in the control group (41.92 ± 9.14%; MD, 7.3%; 95% CI, 1.51-13.16%; p = 0.015). The absolute PHE volume was 17.27 ± 8.34 mL in the control group and 12.92 ± 7.30 mL in the remote ischemic conditioning group at seven days after enrollment, which is not a significant between-group difference (p = 0.087), but the relative PHE in the remote ischemic conditioning group (1.77 ± 0.39) was significantly lower than in the control group (2.02 ± 0.27; MD, 0.25; 95% CI, 0.39-0.47; p = 0.023). At 90-day follow-up, 13 subjects (65%) in the remote ischemic conditioning group and 12 subjects (60%) in the control group achieved favorable functional outcomes (modified Rankin Scale score ≤ 3), which is not a significant between-group difference (p = 0.744). CONCLUSIONS Repeated daily remote ischemic conditioning for consecutive seven days was safe and well tolerated in patients with intracerebral hemorrhage, and it may be able to improve hematoma resolution rate and reduce relative PHE. However, the effects of remote ischemic conditioning on the absolute hematoma and PHE volume and functional outcomes in this patient population need further investigations.Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT03930940.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fang Jiang
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuang Wang
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Gu
- Department of Neurology, Ningjin County Hospital, Xingtai, China
| | - Quanzhong Zhang
- Department of Neurosurgery, 523110Heze Municipal Hospital, Heze, China
| | - Xinjing Gao
- Department of Neurosurgery, The Sixth Hospital of Hengshui, Hengshui, China
| | - Zongen Gao
- Department of Neurology, 499782Shengli Oilfield Central Hospital, Dongying, China
| | - Haiqing Song
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Department of Neurology, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, 12267Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurosurgery, 71044Xuanwu Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
29
|
Charbonnier G, Bonnet L, Biondi A, Moulin T. Intracranial Bleeding After Reperfusion Therapy in Acute Ischemic Stroke. Front Neurol 2021; 11:629920. [PMID: 33633661 PMCID: PMC7900408 DOI: 10.3389/fneur.2020.629920] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Intracranial hemorrhage is one of the most feared complications following brain infarct. Ischemic tissues have a natural tendency to bleed. Moreover, the first recanalization trials using intravenous thrombolysis have shown an increase in mild to severe intracranial hemorrhage. Symptomatic intracerebral hemorrhage is strongly associated with poor outcomes and is an important factor in recanalization decisions. Stroke physicians have to weigh the potential benefit of recanalization therapies, first, with different risks of intracranial hemorrhage described in randomized controlled trials, and second with numerous risk markers that have been found to be associated with intracranial hemorrhage in retrospective series. These decisions have become quite complex with different intravenous thrombolytics and mechanical thrombectomy. This review aims to outline some elements of the pathophysiological mechanisms and classifications, describe most of the risk factors identified for each reperfusion therapy, and finally suggest future research directions that could help physicians dealing with these complications.
Collapse
Affiliation(s)
- Guillaume Charbonnier
- Neurology Department, Besançon University Hospital, Besançon, France.,Interventional Neuroradiology Department, Besançon University Hospital, Besançon, France.,EA 481 Neurosciences laboratory, Franche-Comté University, Besançon, France
| | - Louise Bonnet
- Neurology Department, Besançon University Hospital, Besançon, France
| | - Alessandra Biondi
- Interventional Neuroradiology Department, Besançon University Hospital, Besançon, France.,CIC-1431 Inserm, Besançon, France
| | - Thierry Moulin
- Neurology Department, Besançon University Hospital, Besançon, France.,EA 481 Neurosciences laboratory, Franche-Comté University, Besançon, France.,CIC-1431 Inserm, Besançon, France
| |
Collapse
|