1
|
Wei S, Guo X, He S, Zhang C, Chen Z, Chen J, Huang Y, Zhang F, Liu Q. Application of Machine Learning for Patients With Cardiac Arrest: Systematic Review and Meta-Analysis. J Med Internet Res 2025; 27:e67871. [PMID: 40063076 PMCID: PMC11933771 DOI: 10.2196/67871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Currently, there is a lack of effective early assessment tools for predicting the onset and development of cardiac arrest (CA). With the increasing attention of clinical researchers on machine learning (ML), some researchers have developed ML models for predicting the occurrence and prognosis of CA, with certain models appearing to outperform traditional scoring tools. However, these models still lack systematic evidence to substantiate their efficacy. OBJECTIVE This systematic review and meta-analysis was conducted to evaluate the prediction value of ML in CA for occurrence, good neurological prognosis, mortality, and the return of spontaneous circulation (ROSC), thereby providing evidence-based support for the development and refinement of applicable clinical tools. METHODS PubMed, Embase, the Cochrane Library, and Web of Science were systematically searched from their establishment until May 17, 2024. The risk of bias in all prediction models was assessed using the Prediction Model Risk of Bias Assessment Tool. RESULTS In total, 93 studies were selected, encompassing 5,729,721 in-hospital and out-of-hospital patients. The meta-analysis revealed that, for predicting CA, the pooled C-index, sensitivity, and specificity derived from the imbalanced validation dataset were 0.90 (95% CI 0.87-0.93), 0.83 (95% CI 0.79-0.87), and 0.93 (95% CI 0.88-0.96), respectively. On the basis of the balanced validation dataset, the pooled C-index, sensitivity, and specificity were 0.88 (95% CI 0.86-0.90), 0.72 (95% CI 0.49-0.95), and 0.79 (95% CI 0.68-0.91), respectively. For predicting the good cerebral performance category score 1 to 2, the pooled C-index, sensitivity, and specificity based on the validation dataset were 0.86 (95% CI 0.85-0.87), 0.72 (95% CI 0.61-0.81), and 0.79 (95% CI 0.66-0.88), respectively. For predicting CA mortality, the pooled C-index, sensitivity, and specificity based on the validation dataset were 0.85 (95% CI 0.82-0.87), 0.83 (95% CI 0.79-0.87), and 0.79 (95% CI 0.74-0.83), respectively. For predicting ROSC, the pooled C-index, sensitivity, and specificity based on the validation dataset were 0.77 (95% CI 0.74-0.80), 0.53 (95% CI 0.31-0.74), and 0.88 (95% CI 0.71-0.96), respectively. In predicting CA, the most significant modeling variables were respiratory rate, blood pressure, age, and temperature. In predicting a good cerebral performance category score 1 to 2, the most significant modeling variables in the in-hospital CA group were rhythm (shockable or nonshockable), age, medication use, and gender; the most significant modeling variables in the out-of-hospital CA group were age, rhythm (shockable or nonshockable), medication use, and ROSC. CONCLUSIONS ML represents a currently promising approach for predicting the occurrence and outcomes of CA. Therefore, in future research on CA, we may attempt to systematically update traditional scoring tools based on the superior performance of ML in specific outcomes, achieving artificial intelligence-driven enhancements. TRIAL REGISTRATION PROSPERO International Prospective Register of Systematic Reviews CRD42024518949; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=518949.
Collapse
Affiliation(s)
- Shengfeng Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangjian Guo
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shilin He
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhizhuan Chen
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianmei Chen
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanmei Huang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fan Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiangqiang Liu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Hong CT, Bamodu OA, Chiu HW, Chiu WT, Chan L, Chung CC. Personalized Predictions of Therapeutic Hypothermia Outcomes in Cardiac Arrest Patients with Shockable Rhythms Using Explainable Machine Learning. Diagnostics (Basel) 2025; 15:267. [PMID: 39941197 PMCID: PMC11817524 DOI: 10.3390/diagnostics15030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Therapeutic hypothermia (TH) represents a critical therapeutic intervention for patients with cardiac arrest, although treatment efficacy and prognostic factors may vary between individuals. Precise, personalized outcome predictions can empower better clinical decisions. Methods: In this multi-center retrospective cohort study involving nine medical centers in Taiwan, we developed machine learning algorithms to predict neurological outcomes in patients who experienced cardiac arrest with shockable rhythms and underwent TH. The study cohort comprised 209 patients treated between January 2014 and September 2019. The models were trained on patients' pre-treatment characteristics collected during this study period. The optimal artificial neural network (ANN) model was interpretable using the SHapley Additive exPlanations (SHAP) method. Results: Among the 209 enrolled patients, 79 (37.80%) demonstrated favorable neurological outcomes at discharge. The ANN model achieved an area under the curve value of 0.9089 (accuracy = 0.8330, precision = 0.7984, recall = 0.7492, specificity = 0.8846) for outcome prediction. SHAP analysis identified vital predictive features, including the dose of epinephrine during resuscitation, diabetes status, body temperature at return of spontaneous circulation (ROSC), whether the cardiac arrest was witnessed, and diastolic blood pressure at ROSC. Using real-life case examples, we demonstrated how the ANN model provides personalized prognostic predictions tailored to individuals' distinct profiles. Conclusion: Our machine learning approach delivers personalized forecasts of TH outcomes in cardiac arrest patients with shockable rhythms. By accounting for each patient's unique health history and cardiac arrest event details, the ANN model empowers more precise risk stratification, tailoring clinical decision-making regarding TH prognostication and optimizing personalized treatment planning.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-T.H.); (W.-T.C.); (L.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Prevention and Community Health, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA;
- Directorate of Postgraduate Studies, School of Clinical Medicine, Muhimbili University of Health and Allied Sciences, Ilala District, Dar es Salaam P.O. Box 65001, Tanzania
- Ocean Road Cancer Institute, Ilala District, Dar es Salaam P.O. Box 3592, Tanzania
| | - Hung-Wen Chiu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei City 110, Taiwan
| | - Wei-Ting Chiu
- Department of Neurology, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-T.H.); (W.-T.C.); (L.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Lung Chan
- Department of Neurology, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-T.H.); (W.-T.C.); (L.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chen-Chih Chung
- Department of Neurology, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan; (C.-T.H.); (W.-T.C.); (L.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Shuang Ho Hospital, New Taipei City 235, Taiwan
| |
Collapse
|
3
|
Basaran AE, Güresir A, Knoch H, Vychopen M, Güresir E, Wach J. Beyond traditional prognostics: integrating RAG-enhanced AtlasGPT and ChatGPT 4.0 into aneurysmal subarachnoid hemorrhage outcome prediction. Neurosurg Rev 2025; 48:40. [PMID: 39794551 PMCID: PMC11723888 DOI: 10.1007/s10143-025-03194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
To assess the predictive accuracy of advanced AI language models and established clinical scales in prognosticating outcomes for patients with aneurysmal subarachnoid hemorrhage (aSAH). This retrospective cohort study included 82 patients suffering from aSAH. We evaluated the predictive efficacy of AtlasGPT and ChatGPT 4.0 by examining the area under the curve (AUC), sensitivity, specificity, and Youden's Index, in comparison to established clinical grading scales such as the World Federation of Neurological Surgeons (WFNS) scale, Simplified Endovascular Brain Edema Score (SEBES), and Fisher scale. This assessment focused on four endpoints: in-hospital mortality, need for decompressive hemicraniectomy, and functional outcomes at discharge and after 6-month follow-up. In-hospital mortality occurred in 22% of the cohort, and 34.1% required decompressive hemicraniectomy during treatment. At hospital discharge, 28% of patients exhibited a favorable outcome (mRS ≤ 2), which improved to 46.9% at the 6-month follow-up. Prognostication utilizing the WFNS grading scale for 30-day in-hospital survival revealed an AUC of 0.72 with 59.4% sensitivity and 83.3% specificity. AtlasGPT provided the highest diagnostic accuracy (AUC 0.80, 95% CI: 0.70-0.91) for predicting the need for decompressive hemicraniectomy, with 82.1% sensitivity and 77.8% specificity. Similarly, for discharge outcomes, the WFNS score and AtlasGPT demonstrated high prognostic values with AUCs of 0.74 and 0.75, respectively. Long-term functional outcome predictions were best indicated by the WFNS scale, with an AUC of 0.76. The study demonstrates the potential of integrating AI models such as AtlasGPT with clinical scales to enhance outcome prediction in aSAH patients. While established scales like WFNS remain reliable, AI language models show promise, particularly in predicting the necessity for surgical intervention and short-term functional outcomes. The study explored the use of advanced AI language models, AtlasGPT and ChatGPT 4.0, to predict outcomes for patients with aneurysmal subarachnoid hemorrhage (aSAH). It found that AtlasGPT provided the highest diagnostic accuracy for predicting the need for decompressive hemicraniectomy, outperforming traditional clinical scales, while both AI models showed promise in enhancing outcome predictions when integrated with established clinical assessment tools.
Collapse
Affiliation(s)
- Alim Emre Basaran
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany.
| | - Agi Güresir
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany
| | - Hanna Knoch
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany
| | - Martin Vychopen
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany
| | - Johannes Wach
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany
| |
Collapse
|
4
|
Zobeiri A, Rezaee A, Hajati F, Argha A, Alinejad-Rokny H. Post-Cardiac arrest outcome prediction using machine learning: A systematic review and meta-analysis. Int J Med Inform 2025; 193:105659. [PMID: 39481177 DOI: 10.1016/j.ijmedinf.2024.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Early and reliable prognostication in post-cardiac arrest patients remains challenging, with various factors linked to return of spontaneous circulation (ROSC), survival, and neurological results. Machine learning and deep learning models show promise in improving these predictions. This systematic review and meta-analysis evaluates how effective these approaches are in predicting clinical outcomes at different time points using structured data. METHODS This study followed PRISMA guidelines, involving a comprehensive search across PubMed, Scopus, and Web of Science databases until March 2024. Studies aimed at predicting ROSC, survival (or mortality), and neurological outcomes after cardiac arrest through the application of machine learning or deep learning techniques with structured data were included. Data extraction followed the guidelines of the CHARMS checklist, and the bias risk was evaluated using PROBAST tool. Models reporting the AUC metric with 95 % confidence intervals were incorporated into the quantitative synthesis and meta-analysis. RESULTS After extracting 2,753 initial records, 41 studies met the inclusion criteria, yielding 97 machine learning and 16 deep learning models. The pooled AUC for predicting favorable neurological outcomes (CPC 1 or 2) at hospital discharge was 0.871 (95 % CI: 0.813 - 0.928) for machine learning models and 0.877 (95 % CI: 0.831-0.924) across deep learning algorithms. For survival prediction, this value was found to be 0.837 (95 % CI: 0.757-0.916). Considerable heterogeneity and high risk of bias were observed, mainly attributable to inadequate management of missing data and the absence of calibration plots. Most studies focused on pre-hospital factors, with age, sex, and initial arrest rhythm being the most frequent features. CONCLUSION Predictive models utilizing AI-based approaches, including machine and deep learning models exhibit enhanced effectiveness compared to previous regression algorithms, but significant heterogeneity and high risk of bias limit their dependability. Evaluating state-of-the-art deep learning models tailored for tabular data and their clinical generalizability can enhance outcome prediction after cardiac arrest.
Collapse
Affiliation(s)
- Amirhosein Zobeiri
- Department of Mechatronics, School of Intelligent Systems, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Alireza Rezaee
- Department of Mechatronics, School of Intelligent Systems, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Farshid Hajati
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2350, Australia.
| | - Ahmadreza Argha
- School of Biomedical Engineering, UNSW Sydney, Randwick, NSW 2052, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, School of Biomedical Engineering, UNSW Sydney, Randwick, NSW 2052, Australia
| |
Collapse
|
5
|
Khawar MM, Abdus Saboor H, Eric R, Arain NR, Bano S, Mohamed Abaker MB, Siddiqui BI, Figueroa RR, Koppula SR, Fatima H, Begum A, Anwar S, Khalid MU, Jamil U, Iqbal J. Role of artificial intelligence in predicting neurological outcomes in postcardiac resuscitation. Ann Med Surg (Lond) 2024; 86:7202-7211. [PMID: 39649879 PMCID: PMC11623902 DOI: 10.1097/ms9.0000000000002673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024] Open
Abstract
Being an extremely high mortality rate condition, cardiac arrest cases have rightfully been evaluated via various studies and scoring factors for effective resuscitative practices and neurological outcomes postresuscitation. This narrative review aims to explore the role of artificial intelligence (AI) in predicting neurological outcomes postcardiac resuscitation. The methodology involved a detailed review of all relevant recent studies of AI, different machine learning algorithms, prediction tools, and assessing their benefit in predicting neurological outcomes in postcardiac resuscitation cases as compared to more traditional prognostic scoring systems and tools. Previously, outcome determining clinical, blood, and radiological factors were prone to other influencing factors like limited accuracy and time constraints. Studies conducted also emphasized that to predict poor neurological outcomes, a more multimodal approach helped adjust for confounding factors, interpret diverse datasets, and provide a reliable prognosis, which only demonstrates the need for AI to help overcome challenges faced. Advanced machine learning algorithms like artificial neural networks (ANN) using supervised learning by AI have improved the accuracy of prognostic models outperforming conventional models. Several real-world cases of effective AI-powered algorithm models have been cited here. Studies comparing machine learning tools like XGBoost, AI Watson, hyperspectral imaging, ChatGPT-4, and AI-based gradient boosting have noted their beneficial uses. AI could help reduce workload, healthcare costs, and help personalize care, process vast genetic and lifestyle data and help reduce side effects from treatments. Limitations of AI have been covered extensively in this article, including data quality, bias, privacy issues, and transparency. Our objectives should be to use more diverse data sources, use interpretable data output giving process explanation, validation method, and implement policies to safeguard patient data. Despite the limitations, the advancements already made by AI and its potential in predicting neurological outcomes in postcardiac resuscitation cases has been quite promising and boosts a continually improving system, albeit requiring close human supervision with training and improving models, with plans to educate clinicians, the public and sharing collected data.
Collapse
Affiliation(s)
| | | | - Rahul Eric
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Saira Bano
- Evergreen Hospital Kirkland, Washington, USA
| | | | | | | | | | - Hira Fatima
- United Medical and Dental College, New Westminster, British Columbia, Canada
| | - Afreen Begum
- ESIC Medical College and Hospital, Telangana, Hyderabad
| | - Sana Anwar
- Lugansk State Medical University, Texas, Ukraine
| | | | | | - Javed Iqbal
- King Edward Medical University Lahore, Mayo Hospital, Lahore
| |
Collapse
|
6
|
Amacher SA, Arpagaus A, Sahmer C, Becker C, Gross S, Urben T, Tisljar K, Sutter R, Marsch S, Hunziker S. Prediction of outcomes after cardiac arrest by a generative artificial intelligence model. Resusc Plus 2024; 18:100587. [PMID: 38433764 PMCID: PMC10906512 DOI: 10.1016/j.resplu.2024.100587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Aims To investigate the prognostic accuracy of a non-medical generative artificial intelligence model (Chat Generative Pre-Trained Transformer 4 - ChatGPT-4) as a novel aspect in predicting death and poor neurological outcome at hospital discharge based on real-life data from cardiac arrest patients. Methods This prospective cohort study investigates the prognostic performance of ChatGPT-4 to predict outcomes at hospital discharge of adult cardiac arrest patients admitted to intensive care at a large Swiss tertiary academic medical center (COMMUNICATE/PROPHETIC cohort study). We prompted ChatGPT-4 with sixteen prognostic parameters derived from established post-cardiac arrest scores for each patient. We compared the prognostic performance of ChatGPT-4 regarding the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values, and likelihood ratios of three cardiac arrest scores (Out-of-Hospital Cardiac Arrest [OHCA], Cardiac Arrest Hospital Prognosis [CAHP], and PROgnostication using LOGistic regression model for Unselected adult cardiac arrest patients in the Early stages [PROLOGUE score]) for in-hospital mortality and poor neurological outcome. Results Mortality at hospital discharge was 43% (n = 309/713), 54% of patients (n = 387/713) had a poor neurological outcome. ChatGPT-4 showed good discrimination regarding in-hospital mortality with an AUC of 0.85, similar to the OHCA, CAHP, and PROLOGUE (AUCs of 0.82, 0.83, and 0.84, respectively) scores. For poor neurological outcome, ChatGPT-4 showed a similar prediction to the post-cardiac arrest scores (AUC 0.83). Conclusions ChatGPT-4 showed a similar performance in predicting mortality and poor neurological outcome compared to validated post-cardiac arrest scores. However, more research is needed regarding illogical answers for potential incorporation of an LLM in the multimodal outcome prognostication after cardiac arrest.
Collapse
Affiliation(s)
- Simon A. Amacher
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
- Emergency Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
| | - Armon Arpagaus
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Christian Sahmer
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Christoph Becker
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
- Emergency Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
| | - Sebastian Gross
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Tabita Urben
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
| | - Kai Tisljar
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
| | - Raoul Sutter
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
- Division of Neurophysiology, Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Stephan Marsch
- Intensive Care Medicine, Department of Acute Medical Care, University Hospital Basel, Basel, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
| | - Sabina Hunziker
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Basel, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
- Post-Intensive Care Clinic, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
7
|
Vitt JR, Mainali S. Artificial Intelligence and Machine Learning Applications in Critically Ill Brain Injured Patients. Semin Neurol 2024; 44:342-356. [PMID: 38569520 DOI: 10.1055/s-0044-1785504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The utilization of Artificial Intelligence (AI) and Machine Learning (ML) is paving the way for significant strides in patient diagnosis, treatment, and prognostication in neurocritical care. These technologies offer the potential to unravel complex patterns within vast datasets ranging from vast clinical data and EEG (electroencephalogram) readings to advanced cerebral imaging facilitating a more nuanced understanding of patient conditions. Despite their promise, the implementation of AI and ML faces substantial hurdles. Historical biases within training data, the challenge of interpreting multifaceted data streams, and the "black box" nature of ML algorithms present barriers to widespread clinical adoption. Moreover, ethical considerations around data privacy and the need for transparent, explainable models remain paramount to ensure trust and efficacy in clinical decision-making.This article reflects on the emergence of AI and ML as integral tools in neurocritical care, discussing their roles from the perspective of both their scientific promise and the associated challenges. We underscore the importance of extensive validation in diverse clinical settings to ensure the generalizability of ML models, particularly considering their potential to inform critical medical decisions such as withdrawal of life-sustaining therapies. Advancement in computational capabilities is essential for implementing ML in clinical settings, allowing for real-time analysis and decision support at the point of care. As AI and ML are poised to become commonplace in clinical practice, it is incumbent upon health care professionals to understand and oversee these technologies, ensuring they adhere to the highest safety standards and contribute to the realization of personalized medicine. This engagement will be pivotal in integrating AI and ML into patient care, optimizing outcomes in neurocritical care through informed and data-driven decision-making.
Collapse
Affiliation(s)
- Jeffrey R Vitt
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, California
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
8
|
Dünser MW, Hirschl D, Weh B, Meier J, Tschoellitsch T. The value of a machine learning algorithm to predict adverse short-term outcome during resuscitation of patients with in-hospital cardiac arrest: a retrospective study. Eur J Emerg Med 2023; 30:252-259. [PMID: 37115946 DOI: 10.1097/mej.0000000000001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Background and importance Guidelines recommend that hospital emergency teams locally validate criteria for termination of cardiopulmonary resuscitation in patients with in-hospital cardiac arrest (IHCA). Objective To determine the value of a machine learning algorithm to predict failure to achieve return of spontaneous circulation (ROSC) and unfavourable functional outcome from IHCA using only data readily available at emergency team arrival. Design Retrospective cohort study. Setting and participants Adults who experienced an IHCA were attended to by the emergency team. Outcome measures and analysis Demographic and clinical data typically available at the arrival of the emergency team were extracted from the institutional IHCA database. In addition, outcome data including the Cerebral Performance Category (CPC) score count at hospital discharge were collected. A model selection procedure for random forests with a hyperparameter search was employed to develop two classification algorithms to predict failure to achieve ROSC and unfavourable (CPC 3-5) functional outcomes. Main results Six hundred thirty patients were included, of which 390 failed to achieve ROSC (61.9%). The final classification model to predict failure to achieve ROSC had an area under the receiver operating characteristic curve of 0.9 [95% confidence interval (CI), 0.89-0.9], a balanced accuracy of 0.77 (95% CI, 0.75-0.79), an F1-score of 0.78 (95% CI, 0.76-0.79), a positive predictive value of 0.88 (0.86-0.91), a negative predictive value of 0.61 (0.6-0.63), a sensitivity of 0.69 (0.66-0.72), and a specificity of 0.84 (0.8-0.88). Five hundred fifty-nine subjects experienced an unfavourable outcome (88.7%). The final classification model to predict unfavourable functional outcomes from IHCA at hospital discharge had an area under the receiver operating characteristic curve of 0.93 (95% CI, 0.92-0.93), a balanced accuracy of 0.59 (95% CI, 0.57-0.61), an F1-score of 0.94 (95% CI, 0.94-0.95), a positive predictive value of 0.91 (0.9-0.91), a negative predictive value of 0.57 (0.48-0.66), a sensitivity of 0.98 (0.97-0.99), and a specificity of 0.2 (0.16-0.24). Conclusion Using data readily available at emergency team arrival, machine learning algorithms had a high predictive power to forecast failure to achieve ROSC and unfavourable functional outcomes from IHCA while cardiopulmonary resuscitation was still ongoing; however, the positive predictive value of both models was not high enough to allow for early termination of resuscitation efforts.
Collapse
Affiliation(s)
- Martin W Dünser
- Department of Anesthesiology and Intensive Care Medicine, Kepler University Hospital and Johannes Kepler University, Linz, Austria
| | | | | | | | | |
Collapse
|
9
|
Chiu PY, Chung CC, Tu YK, Tseng CH, Kuan YC. Therapeutic hypothermia in patients after cardiac arrest: A systematic review and meta-analysis of randomized controlled trials. Am J Emerg Med 2023; 71:182-189. [PMID: 37421815 DOI: 10.1016/j.ajem.2023.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
OBJECTIVE Targeted temperature management (TTM) with therapeutic hypothermia (TH) has been used to improve neurological outcomes in patients after cardiac arrest; however, several trials have reported conflicting results regarding its effectiveness. This systematic review and meta-analysis assessed whether TH was associated with better survival and neurological outcomes after cardiac arrest. METHOD We searched online databases for relevant studies published before May 2023. Randomized controlled trials (RCTs) comparing TH and normothermia in post-cardiac-arrest patients were selected. Neurological outcomes and all-cause mortality were assessed as the primary and secondary outcomes, respectively. A subgroup analysis according to initial electrocardiography (ECG) rhythm was performed. RESULT Nine RCTs (4058 patients) were included. The neurological prognosis was significantly better in patients with an initial shockable rhythm after cardiac arrest (RR = 0.87, 95% confidence interval [CI] = 0.76-0.99, P = 0.04), especially in those with earlier TH initiation (<120 min) and prolonged TH duration (≥24 h). However, the mortality rate after TH was not lower than that after normothermia (RR = 0.91, 95% CI = 0.79-1.05). In patients with an initial nonshockable rhythm, TH did not provide significantly more neurological or survival benefits (RR = 0.98, 95% CI = 0.93-1.03 and RR = 1.00, 95% CI = 0.95-1.05, respectively). CONCLUSION Current evidence with a moderate level of certainty suggests that TH has potential neurological benefits for patients with an initial shockable rhythm after cardiac arrest, especially in those with faster TH initiation and longer TH maintenance.
Collapse
Affiliation(s)
- Po-Yun Chiu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of General Medicine, Department of Medical Education, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chen-Chih Chung
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan
| | - Chien-Hua Tseng
- Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chun Kuan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan; Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Viderman D, Abdildin YG, Batkuldinova K, Badenes R, Bilotta F. Artificial Intelligence in Resuscitation: A Scoping Review. J Clin Med 2023; 12:2254. [PMID: 36983255 PMCID: PMC10054374 DOI: 10.3390/jcm12062254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
INTRODUCTION Cardiac arrest is a significant cause of premature mortality and severe disability. Despite the death rate steadily decreasing over the previous decade, only 22% of survivors achieve good clinical status and only 25% of patients survive until their discharge from the hospital. The objective of this scoping review was to review relevant AI modalities and the main potential applications of AI in resuscitation. METHODS We conducted the literature search for related studies in PubMed, EMBASE, and Google Scholar. We included peer-reviewed publications and articles in the press, pooling and characterizing the data by their model types, goals, and benefits. RESULTS After identifying 268 original studies, we chose 59 original studies (reporting 1,817,419 patients) to include in the qualitative synthesis. AI-based methods appear to be superior to traditional methods in achieving high-level performance. CONCLUSION AI might be useful in predicting cardiac arrest, heart rhythm disorders, and post-cardiac arrest outcomes, as well as in the delivery of drone-delivered defibrillators and notification of dispatchers. AI-powered technologies could be valuable assistants to continuously track patient conditions. Healthcare professionals should assist in the research and development of AI-powered technologies as well as their implementation into clinical practice.
Collapse
Affiliation(s)
- Dmitriy Viderman
- Department of Surgery, Nazarbayev University School of Medicine (NUSOM), Kerei, Zhanibek khandar Str. 5/1, Astana 010000, Kazakhstan;
| | - Yerkin G. Abdildin
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Kamila Batkuldinova
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Rafael Badenes
- Department of Anaesthesiology and Intensive Care, Hospital Clìnico Universitario de Valencia, University of Valencia, 46001 Valencia, Spain
| | - Federico Bilotta
- Department of Anesthesia and Intensive Care, University La Sapienza, 00185 Rome, Italy
| |
Collapse
|
11
|
Yang CC, Bamodu OA, Chan L, Chen JH, Hong CT, Huang YT, Chung CC. Risk factor identification and prediction models for prolonged length of stay in hospital after acute ischemic stroke using artificial neural networks. Front Neurol 2023; 14:1085178. [PMID: 36846116 PMCID: PMC9947790 DOI: 10.3389/fneur.2023.1085178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Background Accurate estimation of prolonged length of hospital stay after acute ischemic stroke provides crucial information on medical expenditure and subsequent disposition. This study used artificial neural networks to identify risk factors and build prediction models for a prolonged length of stay based on parameters at the time of hospitalization. Methods We retrieved the medical records of patients who received acute ischemic stroke diagnoses and were treated at a stroke center between January 2016 and June 2020, and a retrospective analysis of these data was performed. Prolonged length of stay was defined as a hospital stay longer than the median number of days. We applied artificial neural networks to derive prediction models using parameters associated with the length of stay that was collected at admission, and a sensitivity analysis was performed to assess the effect of each predictor. We applied 5-fold cross-validation and used the validation set to evaluate the classification performance of the artificial neural network models. Results Overall, 2,240 patients were enrolled in this study. The median length of hospital stay was 9 days. A total of 1,101 patients (49.2%) had a prolonged hospital stay. A prolonged length of stay is associated with worse neurological outcomes at discharge. Univariate analysis identified 14 baseline parameters associated with prolonged length of stay, and with these parameters as input, the artificial neural network model achieved training and validation areas under the curve of 0.808 and 0.788, respectively. The mean accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of prediction models were 74.5, 74.9, 74.2, 75.2, and 73.9%, respectively. The key factors associated with prolonged length of stay were National Institutes of Health Stroke Scale scores at admission, atrial fibrillation, receiving thrombolytic therapy, history of hypertension, diabetes, and previous stroke. Conclusion The artificial neural network model achieved adequate discriminative power for predicting prolonged length of stay after acute ischemic stroke and identified crucial factors associated with a prolonged hospital stay. The proposed model can assist in clinically assessing the risk of prolonged hospitalization, informing decision-making, and developing individualized medical care plans for patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Cheng-Chang Yang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Research Center for Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Department of Hematology and Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ting Huang
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Department of Nursing, School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,*Correspondence: Chen-Chih Chung ✉
| |
Collapse
|
12
|
Chou SY, Bamodu OA, Chiu WT, Hong CT, Chan L, Chung CC. Artificial neural network-boosted Cardiac Arrest Survival Post-Resuscitation In-hospital (CASPRI) score accurately predicts outcome in cardiac arrest patients treated with targeted temperature management. Sci Rep 2022; 12:7254. [PMID: 35508580 PMCID: PMC9068683 DOI: 10.1038/s41598-022-11201-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
Existing prognostic models to predict the neurological recovery in patients with cardiac arrest receiving targeted temperature management (TTM) either exhibit moderate accuracy or are too complicated for clinical application. This necessitates the development of a simple and generalizable prediction model to inform clinical decision-making for patients receiving TTM. The present study explores the predictive validity of the Cardiac Arrest Survival Post-resuscitation In-hospital (CASPRI) score in cardiac arrest patients receiving TTM, regardless of cardiac event location, and uses artificial neural network (ANN) algorithms to boost the prediction performance. This retrospective observational study evaluated the prognostic relevance of the CASPRI score and applied ANN to develop outcome prediction models in a cohort of 570 patients with cardiac arrest and treated with TTM between 2014 and 2019 in a nationwide multicenter registry in Taiwan. In univariate logistic regression analysis, the CASPRI score was significantly associated with neurological outcome, with the area under the receiver operating characteristics curve (AUC) of 0.811. The generated ANN model, based on 10 items of the CASPRI score, achieved a training AUC of 0.976 and validation AUC of 0.921, with the accuracy, precision, sensitivity, and specificity of 89.2%, 91.6%, 87.6%, and 91.2%, respectively, for the validation set. CASPRI score has prognostic relevance in patients who received TTM after cardiac arrest. The generated ANN-boosted, CASPRI-based model exhibited good performance for predicting TTM neurological outcome, thus, we propose its clinical application to improve outcome prediction, facilitate decision-making, and formulate individualized therapeutic plans for patients receiving TTM.
Collapse
Affiliation(s)
- Szu-Yi Chou
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, ROC.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan, ROC
| | - Oluwaseun Adebayo Bamodu
- Department of Medical Research & Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan, ROC.,Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan, ROC.,Department of Hematology & Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan, ROC
| | - Wei-Ting Chiu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan, ROC.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110, Taiwan, ROC.,Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan, ROC
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan, ROC.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110, Taiwan, ROC
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan, ROC. .,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110, Taiwan, ROC.
| | - Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, 291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan, ROC. .,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110, Taiwan, ROC. .,Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei City, 110, Taiwan, ROC.
| |
Collapse
|
13
|
Chi CY, Ao S, Winkler A, Fu KC, Xu J, Ho YL, Huang CH, Soltani R. Predicting the Mortality and Readmission of In-Hospital Cardiac Arrest Patients With Electronic Health Records: A Machine Learning Approach. J Med Internet Res 2021; 23:e27798. [PMID: 34515639 PMCID: PMC8477292 DOI: 10.2196/27798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Background In-hospital cardiac arrest (IHCA) is associated with high mortality and health care costs in the recovery phase. Predicting adverse outcome events, including readmission, improves the chance for appropriate interventions and reduces health care costs. However, studies related to the early prediction of adverse events of IHCA survivors are rare. Therefore, we used a deep learning model for prediction in this study. Objective This study aimed to demonstrate that with the proper data set and learning strategies, we can predict the 30-day mortality and readmission of IHCA survivors based on their historical claims. Methods National Health Insurance Research Database claims data, including 168,693 patients who had experienced IHCA at least once and 1,569,478 clinical records, were obtained to generate a data set for outcome prediction. We predicted the 30-day mortality/readmission after each current record (ALL-mortality/ALL-readmission) and 30-day mortality/readmission after IHCA (cardiac arrest [CA]-mortality/CA-readmission). We developed a hierarchical vectorizer (HVec) deep learning model to extract patients’ information and predict mortality and readmission. To embed the textual medical concepts of the clinical records into our deep learning model, we used Text2Node to compute the distributed representations of all medical concept codes as a 128-dimensional vector. Along with the patient’s demographic information, our novel HVec model generated embedding vectors to hierarchically describe the health status at the record-level and patient-level. Multitask learning involving two main tasks and auxiliary tasks was proposed. As CA-mortality and CA-readmission were rare, person upsampling of patients with CA and weighting of CA records were used to improve prediction performance. Results With the multitask learning setting in the model learning process, we achieved an area under the receiver operating characteristic of 0.752 for CA-mortality, 0.711 for ALL-mortality, 0.852 for CA-readmission, and 0.889 for ALL-readmission. The area under the receiver operating characteristic was improved to 0.808 for CA-mortality and 0.862 for CA-readmission after solving the extremely imbalanced issue for CA-mortality/CA-readmission by upsampling and weighting. Conclusions This study demonstrated the potential of predicting future outcomes for IHCA survivors by machine learning. The results showed that our proposed approach could effectively alleviate data imbalance problems and train a better model for outcome prediction.
Collapse
Affiliation(s)
- Chien-Yu Chi
- Department of Emergency Medicine, Yunlin Branch, National Taiwan University Hospital, Yunlin, Taiwan
| | - Shuang Ao
- Knowtions Research, Toronto, ON, Canada
| | | | | | - Jie Xu
- Knowtions Research, Toronto, ON, Canada
| | - Yi-Lwun Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Hua Huang
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | |
Collapse
|
14
|
Chung CC, Chan L, Chen JH, Bamodu OA, Chiu HW, Hong CT. Plasma extracellular vesicles tau and β-amyloid as biomarkers of cognitive dysfunction of Parkinson's disease. FASEB J 2021; 35:e21895. [PMID: 34478572 DOI: 10.1096/fj.202100787r] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
The contribution of circulatory tau and β-amyloid in Parkinson's disease (PD), especially the cognitive function, remains inconclusive. Extracellular vesicles (EVs) cargo these proteins throughout the bloodstream after they are directly secreted from many cells, including neurons. The present study aims to investigate the role of the plasma EV-borne tau and β-amyloid as biomarkers for cognitive dysfunction in PD by investigating subjects with mild to moderate stage of PD (n = 116) and non-PD controls (n = 46). Plasma EVs were isolated, and immunomagnetic reduction-based immunoassay was used to assess the levels of α-synuclein, tau, and β-amyloid 1-42 (Aβ1-42) within the EVs. Artificial neural network (ANN) models were then applied to predict cognitive dysfunction. We observed no significant difference in plasma EV tau and Aβ1-42 between PD patients and controls. Plasma EV tau was significantly associated with cognitive function. Moreover, plasma EV tau and Aβ1-42 were significantly elevated in PD patients with cognitive impairment when compared to PD patients with optimal cognition. The ANN model used the plasma EV α-synuclein, tau, and Aβ1-42, as well as the patient's age and gender, as predicting factors. The model achieved an accuracy of 91.3% in identifying cognitive dysfunction in PD patients, and plasma EV tau and Aβ1-42 are the most valuable factors. In conclusion, plasma EV tau and Aβ1-42 are significant markers of cognitive function in PD patients. Combining with the plasma EV α-synuclein, age, and sex, plasma EV tau and Aβ1-42 can identify cognitive dysfunction in PD patients. This study corroborates the prognostic roles of plasma EV tau and Aβ1-42 in PD.
Collapse
Affiliation(s)
- Chen-Chih Chung
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Lung Chan
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Urology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
| | - Hung-Wen Chiu
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan.,Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Chiu WT, Chung CC, Huang CH, Chien YS, Hsu CH, Wu CH, Wang CH, Chiu HW, Chan L. Predicting the survivals and favorable neurologic outcomes after targeted temperature management by artificial neural networks. J Formos Med Assoc 2021; 121:490-499. [PMID: 34330620 DOI: 10.1016/j.jfma.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/12/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND To identify the outcome-associated predictors and develop predictive models for patients receiving targeted temperature management (TTM) by artificial neural network (ANN). METHODS The derived cohort consisted of 580 patients with cardiac arrest and ROSC treated with TTM between January 2014 and August 2019. We evaluated the predictive value of parameters associated with survival and favorable neurologic outcome. ANN were applied for developing outcome prediction models. The generalizability of the models was assessed through 5-fold cross-validation. The performance of the models was assessed according to the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). RESULTS The parameters associated with survival were age, duration of cardiopulmonary resuscitation, history of diabetes mellitus (DM), heart failure, end-stage renal disease (ESRD), systolic blood pressure (BP), diastolic BP, body temperature, motor response after ROSC, emergent coronary angiography or percutaneous coronary intervention (PCI), and the cooling methods. The parameters associated with the favorable neurologic outcomes were age, sex, DM, chronic obstructive pulmonary disease, ESRD, stroke, pre-arrest cerebral-performance category, BP, body temperature, motor response after ROSC, emergent coronary angiography or PCI, and cooling methods. After adequate training, ANN Model 1 to predict survival achieved an AUC of 0.80. Accuracy, sensitivity, and specificity were 75.9%, 71.6%, and 79.3%, respectively. ANN Model 4 to predict the favorable neurologic outcome achieved an AUC of 0.87, with accuracy, sensitivity, and specificity of 86.7%, 77.7%, and 88.0%, respectively. CONCLUSIONS The ANN-based models achieved good performance to predict the survival and favorable neurologic outcomes after TTM. The models proposed have clinical value to assist in decision-making.
Collapse
Affiliation(s)
- Wei-Ting Chiu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taiwan; Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taiwan; Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hua Huang
- Department of Emergency Medicine, National Taiwan University Medical College and Hospital, Taipei, Taiwan; Cardiovascular Division, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taiwan
| | - Yu-San Chien
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei Branch, Taiwan
| | - Chih-Hsin Hsu
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital Dou Liou Branch, College of Medicine, National Cheng Kung University, Taiwan
| | - Cheng-Hsueh Wu
- Department of Critical Care Medicine, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Hsu Wang
- Attending Physician, Coronary Care Unit, Cardiovascular Center, Cathay General Hospital, Taipei, Taiwan
| | - Hung-Wen Chiu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taiwan.
| |
Collapse
|