1
|
Liu Y, Ni K, Zhao S, Zhao J, Zhong M, Cheng C, Ji W, Jiao J, Shao J. CBLB Regulates MAPK-P38 Pathway via MAP3K9 Ubiquitination to Inhibit GBM Cell Invasion and Migration. J Cell Physiol 2025; 240:e70037. [PMID: 40254893 DOI: 10.1002/jcp.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Glioma cells exhibit high invasiveness and have the ability to evade surgical resection, radiotherapy, and chemotherapy, which are major factors contributing to the challenges in effective treatment and recurrence. The ubiquitin-proteasome system (UPS) plays a crucial role in posttranslational modification, significantly contributing to the aggressive progression of glioblastoma (GBM). This study identified the E3 ubiquitin ligase CBLB as a crucial and abnormally regulated component of the UPS in GBM, noting its significant downregulation compared to normal brain tissue and its negative correlation with malignant phenotypes and poor prognosis. Experimental studies, both in vitro and in vivo, have shown that CBLB can inhibit the migration and invasion of GBM cells. Mechanistically, CBLB directly interacts with MAP3K9 through its RING domain, leading to K48-K63-linked polyubiquitination at the Lys 193 site, thereby promoting MAP3K9 proteasomal-mediated degradation. MAP3K9 downregulation suppresses MAPK-P38 pathway activation. This study identifies CBLB as a tumor suppressor that modulates the MAPK-P38 signaling pathway by promoting the polyubiquitination and degradation of MAP3K9, offering a new therapeutic approach for GBM treatment.
Collapse
Affiliation(s)
- Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Kaixiang Ni
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Jingjing Zhao
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mengmeng Zhong
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Wei Ji
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Jiantong Jiao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Junfei Shao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| |
Collapse
|
2
|
Srivastava S, Anbiaee R, Houshyari M, Laxmi, Sridhar SB, Ashique S, Hussain S, Kumar S, Taj T, Akbarnejad Z, Taghizadeh-Hesary F. Amino acid metabolism in glioblastoma pathogenesis, immune evasion, and treatment resistance. Cancer Cell Int 2025; 25:89. [PMID: 40082966 PMCID: PMC11908050 DOI: 10.1186/s12935-025-03721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025] Open
Abstract
Glioblastoma (GBM) ranks among the most lethal primary tumors of the central nervous system. This is partly due to its complex intracellular metabolism and interactions with the surrounding tumor microenvironment (TME). Compelling evidence represents that altered amino acids (AAs) metabolism plays a crucial role in both areas. The role of AAs and their metabolites in glioma biology is an emerging topic. Therefore, this review was conducted to summarize the current knowledge about the molecular mechanisms by which AAs participate in the GBM pathogenesis. AAs can directly influence tumor progression by affecting tumor cell metabolism or indirectly by releasing bioactive agents through particular metabolic pathways. This review begins by examining the metabolic pathways of essential AAs, such as tryptophan, tyrosine, and phenylalanine, which contribute to synthesizing critical neurotransmitters and shape tumor metabolism signatures. We explore how these pathways impact tumor growth and immune modulation, focusing on how AAs and their metabolites can promote malignant properties in GBM cells. AAs also play a pivotal role in reprogramming the TME, contributing to immune evasion and resistance to therapy. The review further discusses how tumor metabolism signatures, influenced by AA metabolism, can enhance the immunosuppressive microenvironment, providing new avenues for targeted immunotherapies. Finally, we outline potential therapeutic strategies to modulate AA metabolism and emphasize critical opportunities for future research to improve GBM management.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Robab Anbiaee
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Houshyari
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laxmi
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
| | | | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, 711316, West Bengal, India
| | - Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore, 575018, India
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhou M, Wu J, Shao Y, Zhang J, Zheng R, Shi Q, Wang J, Liu B. Short-chain fatty acids reverses gut microbiota dysbiosis-promoted progression of glioblastoma by up-regulating M1 polarization in the tumor microenvironment. Int Immunopharmacol 2024; 141:112881. [PMID: 39159556 DOI: 10.1016/j.intimp.2024.112881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024]
Abstract
Glioblastoma (GBM), known as the most malignant and common primary brain tumor of the central nervous system, has finite therapeutic options and a poor prognosis. Studies have shown that host intestinal microorganisms play a role in the immune regulation of parenteral tumors in a number of different ways, either directly or indirectly. However, the potential impact of gut microbiota on tumor microenvironment, particularly glioma immunological milieu, has not been clarified exactly. In this study, by using an orthotopic GBM model, we found gut microbiota dysbiosis caused by antibiotic cocktail treatment boosted the tumor process in vivo. An obvious change that followed gut microbiota dysbiosis was the enhanced percentage of M2-like macrophages in the TME, in parallel with a decrease in the levels of gut microbial metabolite, short-chain fatty acids (SCFAs) in the blood and tumor tissues. Oral supplementation with SCFAs can increase the proportion of M1-like macrophages in the TME, which improves the outcomes of glioma. In terms of mechanism, SCFAs-activated glycolysis in the tumor-associated macrophages may be responsible for the elevated M1 polarization in the TME. This study will enable us to better comprehend the "gut-brain" axis and be meaningful for the development of TAM-targeting immunotherapeutic strategies for GBM patients.
Collapse
Affiliation(s)
- Mengnan Zhou
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China; Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianqi Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Shao
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jiameng Zhang
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Rui Zheng
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Qi Shi
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jia Wang
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Beixing Liu
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
4
|
Grimi A, Bono BC, Lazzarin SM, Marcheselli S, Pessina F, Riva M. Gliomagenesis, Epileptogenesis, and Remodeling of Neural Circuits: Relevance for Novel Treatment Strategies in Low- and High-Grade Gliomas. Int J Mol Sci 2024; 25:8953. [PMID: 39201639 PMCID: PMC11354416 DOI: 10.3390/ijms25168953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas present a complex challenge in neuro-oncology, often accompanied by the debilitating complication of epilepsy. Understanding the biological interaction and common pathways between gliomagenesis and epileptogenesis is crucial for improving the current understanding of tumorigenesis and also for developing effective management strategies. Shared genetic and molecular mechanisms, such as IDH mutations and dysregulated glutamate signaling, contribute to both tumor progression and seizure development. Targeting these pathways, such as through direct inhibition of mutant IDH enzymes or modulation of glutamate receptors, holds promise for improving patient outcomes. Additionally, advancements in surgical techniques, like supratotal resection guided by connectomics, offer opportunities for maximally safe tumor resection and enhanced seizure control. Advanced imaging modalities further aid in identifying epileptogenic foci and tailoring treatment approaches based on the tumor's metabolic characteristics. This review aims to explore the complex interplay between gliomagenesis, epileptogenesis, and neural circuit remodeling, offering insights into shared molecular pathways and innovative treatment strategies to improve outcomes for patients with gliomas and associated epilepsy.
Collapse
Affiliation(s)
- Alessandro Grimi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Beatrice C. Bono
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | | | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Marco Riva
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
5
|
Feyissa AM. Wild Seizing Gliomas! Time-Dependent Characteristics and Prognosis of Glioblastoma-Related Epilepsy. Epilepsy Curr 2024; 24:271-273. [PMID: 39309056 PMCID: PMC11412406 DOI: 10.1177/15357597241253374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 09/25/2024] Open
Abstract
Characteristics and Prognosis of Tumor-Related Epilepsy During Tumor Evolution in Patients With IDH Wild-Type Glioblastoma Pallud J, Roux A, Moiraghi A, Aboubakr O, Elia A, Guinard E, Oppenheim C, Tauziede-Espariat A, Parraga E, Gavaret M, Chrètien F, Huberfeld G, Zanello M. Neurology . 2024;102(1): e207902. doi:10.1212/WNL.0000000000207902 Background and Objectives: Tumor-related epilepsy is a well-known symptom of glioblastoma. However, the particular characteristics of epileptic seizures related to glioblastoma, isocitrate dehydrogenase (IDH)-wild-type is almost unexplored longitudinally during the whole course of the disease. We assessed tumor-related epilepsy and seizure control during tumor evolution and the prognostic significance of tumor-related epilepsy. Methods: We performed an observational, retrospective single-center study at one tertiary referral neuro-oncology surgical center (2000-2020). We included adult patients treated for a newly diagnosed supratentorial glioblastoma, IDH-wild-type with available preoperative and postoperative MRI and with available epileptic seizure status at diagnosis. To determine factors associated with tumor-related epilepsy or seizure control, univariate analyses were performed using the χ2 or Fisher exact tests for categorical variables and the unpaired t test or Mann-Whitney rank-sum test for continuous variables. Predictors associated with tumor-related epilepsy and seizure control in unadjusted analysis were entered into backward stepwise logistic regression models. Results: One thousand six patients were enrolled. The cumulative incidence of tumor-related epilepsy increased during tumor evolution (33.1% at diagnosis, 44.7% after oncologic treatment, 52.4% at progression, and 51.8% at the end-of-life phase) and is related to tumor features (cortex involvement, no necrosis, and small volume). Uncontrolled epileptic seizures increased during tumor evolution (20.1% at diagnosis, 32.0% after oncologic treatment, 46.7% at progression, and 41.1% at the end-of-life phase). Epileptic seizure control after oncologic treatment was related to seizure features (uncontrolled before oncologic treatment and focal-to-bilateral tonic-clonic seizures) and to the extent of resection. Epileptic seizure control at tumor progression was related to seizure features (presence at diagnosis and uncontrolled after oncologic treatment) and to the time to progression. Tumor-related epilepsy at diagnosis was a predictor of a longer overall survival (adjusted hazard ratio, 0.78; 95% CI 0.67-0.90; p < 0.001) independent of age, Karnofsky Performance Status score, tumor location and volume, extent of resection, standard combined chemoradiotherapy, levetiracetam use, and MGMT promoter methylation. Discussion: The progression of tumor-related epilepsy with the evolution of glioblastoma, IDH-wild-type, and the effects of surgery on seizure control argue for proper antiseizure medication and maximal safe resection. Tumor-related epilepsy is an independent predictor of a longer survival.
Collapse
|
6
|
Marvi PK, Ahmed SR, Das P, Ghosh R, Srinivasan S, Rajabzadeh AR. Prunella vulgaris-phytosynthesized platinum nanoparticles: Insights into nanozymatic activity for H 2O 2 and glutamate detection and antioxidant capacity. Talanta 2024; 274:125998. [PMID: 38574541 DOI: 10.1016/j.talanta.2024.125998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Artificial nanozymes (enzyme-mimics), specifically metallic nanomaterials, have garnered significant attention recently due to their reduced preparation cost and enhanced stability in a wide range of environments. The present investigation highlights, for the first time, a straightforward green synthesis of biogenic platinum nanoparticles (PtNPs) from a natural resource, namely Prunella vulgaris (Pr). To demonstrate the effectiveness of the phytochemical extract as an effective reducing agent, the PtNPs were characterized by various techniques such as UV-vis spectroscopy, High-resolution Transmission electron microscopy (HR-TEM), zeta-potential analysis, Fourier-transform infrared spectroscopy (FTIR), and Energy dispersive spectroscopy (EDS). The formation of PtNPs with narrow size distribution was verified. Surface decoration of PtNPs was demonstrated with multitudinous functional groups springing from the herbal extract. To demonstrate their use as viable nanozymes, the peroxidase-like activity of Pr/PtNPs was evaluated through a colorimetric assay. Highly sensitive visual detection of H2O2 with discrete linear ranges and a low detection limit of 3.43 μM was demonstrated. Additionally, peroxidase-like catalytic activity was leveraged to develop a colorimetric platform to quantify glutamate biomarker levels with a high degree of selectivity, the limit of detection (LOD) being 7.00 μM. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test was used to explore the scavenging nature of the PtNPs via the degradation of DPPH. Overall, the colorimetric assay developed using the Pr/PtNP nanozymes in this work could be used in a broad spectrum of applications, ranging from biomedicine and food science to environmental monitoring.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Syed Rahin Ahmed
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Raja Ghosh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada; School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| |
Collapse
|
7
|
Jiang C, Zhang B, Jiang W, Liu P, Kong Y, Zhang J, Teng W. Metal ion stimulation-related gene signatures correlate with clinical and immunologic characteristics of glioma. Heliyon 2024; 10:e27189. [PMID: 38533032 PMCID: PMC10963200 DOI: 10.1016/j.heliyon.2024.e27189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Background Environmental factors serve as one of the important pathogenic factors for gliomas. Yet people focus only on the effect of electromagnetic radiation on its pathogenicity, while metals in the environment are neglected. This study aimed to investigate the relationship between metal ion stimulation and the clinical characteristics and immune status of GM patients. Methods Firstly, mRNA expression profiles of GM patients and normal subjects were obtained from Chinese GM Genome Atlas (CGGA) and Gene Expression Omnibus (GEO) to identify differentially expressed metal ion stimulation-related genes(DEMISGs). Secondly, two molecular subtypes were identified and validated based on these DEMISGs using consensus clustering. Diagnostic and prognostic models for GM were constructed after screening these features based on machine learning. Finally, supervised classification and unsupervised clustering were combined to classify and predict the grade of GM based on SHAP values. Results GM patients are divided into two different response states to metal ion stimulation, M1 and M2, which are related to the grade and IDH status of the GM. Six genes with diagnostic value were obtained: SLC30A3, CRHBP, SYT13, DLG2, CDK1, and WNT5A. The AUC in the external validation set was higher than 0.90. The SHAP value improves the performance of classification prediction. Conclusion The gene features associated with metal ion stimulation are related to the clinical and immune characteristics of transgenic patients. XGboost/LightGBM Kmeans has a higher classification prediction accuracy in predicting glioma grades compared to using purely supervised classification techniques.
Collapse
Affiliation(s)
- Chengzhi Jiang
- Shandong Second Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Binbin Zhang
- Qingdao Municipal Hospital (Group), Qingdao, Shandong, 266000, People's Republic of China
| | - Wenjuan Jiang
- Qingdao Municipal Hospital (Group), Qingdao, Shandong, 266000, People's Republic of China
| | - Pengtao Liu
- Shandong Second Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Yujia Kong
- Shandong Second Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Jianhua Zhang
- Jining Medical University, Jining, Shandong, 272067, People's Republic of China
| | - Wenjie Teng
- Shandong Second Medical University, Weifang, Shandong, 261053, People's Republic of China
| |
Collapse
|
8
|
Feyissa AM, Sanchez-Boluarte SS, Moniz-Garcia D, Chaichana KL, Sherman WJ, Freund BE, Tatum WO, Middlebrooks EH, Sirven JI, Quinones-Hinojosa A. Risk factors for preoperative and postoperative seizures in patients with glioblastoma according to the 2021 World Health Organization classification. Seizure 2023; 112:26-31. [PMID: 37729723 DOI: 10.1016/j.seizure.2023.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVE To identify risk factors for developing glioblastoma (GBM) related preoperative (PRS) and postoperative seizures (POS). Also, we aimed to analyze the impact of PRS and POS on survival in a GBM cohort according to the revised 2021 WHO glioma classification. METHODS We performed a single-center retrospective cohort study of patients with GBM (according to the 2021 World Health Organization Classification) treated at Mayo Clinic Florida between January 2018 and July 2022. Seizures were stratified into preoperative seizures (PRS) and postoperative seizures (POS, >7 days after surgery). Associations between patients' characteristics and overall survival with PRS and POS were assessed. RESULTS One hundred nineteen adults (mean =60.9 years), 49 (41.2 %) females, were identified. The rates of PRS and POS in the cohort were 35.3 % (n = 42) and 37.8 % (n = 45), respectively. Patients with PRS were younger (p = 0.035) and were likely to undergo intraoperative electrocorticography. The incidence of PRS (p = 0.049) and POS (p<0.001) was lower among patients with tumors located in the occipital location. PRS increased the risk of POS after adjusting for age and sex (RR: 2.59, CI = 1.44-4.65, p = 0.001). There was no association between PRS or POS and other patient-related factors, including several tumor molecular markers (TMMs) examined. PRS (p = 0.036), POS (p<0.001), and O6-Methylguanine-DNA Methyltransferase (MGMT) promotor methylation status (p = 0.032) were associated with longer survival time. CONCLUSIONS PRS and POS are associated with non-occipital tumor location and longer survival time in patients with GBM. While younger ages predicted PRS, PRS predicted POS. Well-designed prospective studies with larger sample sizes are needed to clarify the influence of TMMs in the genesis of epileptic seizures in patients with GBM.
Collapse
Affiliation(s)
| | | | | | | | - Wendy J Sherman
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | - Brin E Freund
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | - William O Tatum
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | | | - Joseph I Sirven
- Department of Neurology, Mayo Clinic Florida, FL, United States
| | | |
Collapse
|