1
|
Kumar A, Suryakumar G, Singh SN, Rathor R. A comprehensive review on physiological and biological activities of carnosine: turning from preclinical facts to potential clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1341-1366. [PMID: 39302423 DOI: 10.1007/s00210-024-03427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Carnosine, a compound with plethora of benefits, was originally discovered in 1900 and is formed by the amide linkage of β-alanine and L-histidine. Carnosine production is limited by β-alanine whereas the imidazole ring of histidine moiety makes it a suitable buffer in physiological pH range. It is reported to be found in the skeletal muscle, brain, heart, and gastrointestinal tissues of humans. This review focuses on the biological properties of carnosine including pH buffering ability, antioxidant activity, anti-inflammatory activity, anti-aging effect, enhancement of cognitive function, and immunomodulation. The relevance of carnosine in muscle function attributing to enhancement of physical performance has also been highlighted. Studies spanning several years have proved the preclinical effectiveness of carnosine in treating diverse pathological diseases. A complete summary of all key activities of carnosine from in vivo investigations and clinical trials has been compiled. Considering its numerous advantages, carnosine may be a promising option for the development of a nutraceutical.
Collapse
Affiliation(s)
- Akshita Kumar
- Soldier Performance Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Geetha Suryakumar
- Soldier Performance Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Som Nath Singh
- Soldier Performance Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Richa Rathor
- Soldier Performance Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
2
|
D'Amato A, Altomare A, Gilardoni E, Baron G, Carini M, Melloni E, Padoani G, Vailati S, Caponetti G, Aldini G. A quantitative proteomic approach to evaluate the efficacy of carnosine in a murine model of chronic obstructive pulmonary disease (COPD). Redox Biol 2024; 77:103374. [PMID: 39393288 PMCID: PMC11663752 DOI: 10.1016/j.redox.2024.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
The aim of the work was to study a dose-dependent effect of inhaled carnosine (10, 50 or 100 mg/kg/day) in mice exposed to cigarette smoke as a model of chronic obstructive pulmonary disease (COPD). A dose-dependent loading of the dipeptide in lung tissue and bronchoalveolar lavage (BAL) was firstly demonstrated by LC-ESI-MS analysis. Cigarette smoke exposure induced a significant lung inflammation and oxidative stress in mice which was dose-dependently reduced by carnosine. Inflammation was firstly evaluated by measuring the cytokines content in the BAL. All the measured cytokines were found significantly higher in the smoke group in respect to control, although the data are affected by a significant variability. Carnosine was found effective only at the highest dose tested and significantly only for keratinocyte-derived cytokine (KC). Due to the high variability of cytokines, a quantitative proteomic approach to better understand the functional effect of carnosine and its molecular mechanisms was used. Proteomic data clearly indicate that smoke exposure had a great impact on lung tissue with 692 proteins differentially expressed above a threshold of 1.5-fold. Protein network analysis identified the activation of some pathways characteristic of COPD, including inflammatory response, fibrosis, induction of immune system by infiltration and migration of leukocyte pathways, altered pathway of calcium metabolism and oxidative stress. Carnosine at the tested dose of 100 mg/kg was found effective in reverting all the pathways evoked by smoke. Only a partial reverse of the dysregulated proteins was evident at low- and mid-tested doses, although, for some specific proteins, indicating an overall dose-dependent effect. Regarding the molecular mechanisms involved, we found that carnosine upregulated some key enzymes related to Nrf2 activation and in particular glutathione peroxidase, reductase, transferase, SOD, thioredoxins, and carbonyl reductase. Such mechanism would explain the antioxidant and anti-inflammatory effects of the dipeptide.
Collapse
Affiliation(s)
- Alfonsina D'Amato
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Elsa Melloni
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Gloria Padoani
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Silvia Vailati
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
3
|
Diniz F, Parmeggiani B, Brandão G, Ferreira BK, Teixeira MF, Streck EL, Olivera-Bravo S, Barbeito LH, Schuck PF, de Melo Reis RA, Ferreira GC. Dual Effect of Carnosine on ROS Formation in Rat Cultured Cortical Astrocytes. Mol Neurobiol 2024; 61:4908-4922. [PMID: 38151612 DOI: 10.1007/s12035-023-03880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023]
Abstract
Carnosine is composed of β-alanine and L-histidine and is considered to be an important neuroprotective agent with antioxidant, metal chelating, and antisenescence properties. However, children with serum carnosinase deficiency present increased circulating carnosine and severe neurological symptoms. We here investigated the in vitro effects of carnosine on redox and mitochondrial parameters in cultured cortical astrocytes from neonatal rats. Carnosine did not alter mitochondrial content or mitochondrial membrane potential. On the other hand, carnosine increased mitochondrial superoxide anion formation, levels of thiobarbituric acid reactive substances and oxidation of 2',7'-dichlorofluorescin diacetate (DCF-DA), indicating that carnosine per se acts as a pro-oxidant agent. Nonetheless, carnosine prevented DCF-DA oxidation induced by H2O2 in cultured cortical astrocytes. Since alterations on mitochondrial membrane potential are not likely to be involved in these effects of carnosine, the involvement of N-Methyl-D-aspartate (NMDA) receptors in the pro-oxidant actions of carnosine was investigated. MK-801, an antagonist of NMDA receptors, prevented DCF-DA oxidation induced by carnosine in cultured cortical astrocytes. Astrocyte reactivity induced by carnosine was also prevented by the coincubation with MK-801. The present study shows for the very first time the pro-oxidant effects of carnosine per se in astrocytes. The data raise awareness on the importance of a better understanding of the biological actions of carnosine, a nutraceutical otherwise widely reported as devoid of side effects.
Collapse
Affiliation(s)
- Fabiola Diniz
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States
| | - Belisa Parmeggiani
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Brandão
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Klippel Ferreira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Monique Fonseca Teixeira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio Luiz Streck
- Laboratório de Doenças Neurometabólicas, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | | | - Patricia Fernanda Schuck
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Augusto de Melo Reis
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratório de Erros Inatos do Metabolismo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas:Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Zhao Y, Jia H, Deng H, Ge C, Xing W, Yu H, Li J. Integrated microbiota and multi-omics analysis reveal the differential responses of earthworm to conventional and biodegradable microplastics in soil under biogas slurry irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168191. [PMID: 37907108 DOI: 10.1016/j.scitotenv.2023.168191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
As one of the promising alternatives of conventional plastic mulching film (C-PMF), biodegradable plastic mulching films (B-PMF) were employed in agronomy production to alleviate the environmental burden of C-PMF. However, information regarding the potential toxicity effects of biodegradable microplastics (MPs) in soil still in scarcity, and the available findings were found to be controversial. Additionally, little is known about the molecular toxicity effects of conventional and biodegradable MPs on terrestrial organisms. Thus, 5 % (w/w) biodegradable (polylactic acid, PLA) and conventional (polyvinylchloride, PVC; low-density polyvinylchloride, LDPE) MPs were employed to assess the toxicity effects on Eisenia fetida in agricultural soil with biogas slurry irrigation. In the present study, transcriptomic, metabolomic profiles and individual indexes were selected to reveal the toxicity mechanisms from molecular level to the individual response. Furthermore, dysbiosis of bacterial community in gut was also investigated for obtaining comprehensive knowledge on the MPs toxicity. At the end of the exposure, the number of survival earthworms after MPs exposure was significantly reduced. Compared with the initial body weight, PLA and LDPE increased the biomass of earthworms after MPs exposure, while no significant influence on the biomass was observed in PVC treatment. Microbacterium, Klebsiella and Chryseobacterium were significantly enriched in earthworm gut after PLA, PVC and LDPE exposure, respectively (p < 0.05). Transcriptomic and metabolomic analysis revealed that PLA exposure induced neurotransmission disorder and high energetic expenditure in earthworms. However, PVC and LDPE inhibited the nutrient absorption efficiency and activated the innate immunity responses of earthworms. The PLS-SEM results showed that the effects of MPs were dominated by the polymer types, and hence, significantly and directly influence the gut bacterial community of earthworms. This study provides a better understanding of the similarities and discrepancies in toxicity effects of biodegradable and conventional MPs from the perspectives of individual, gut bacterial community, transcriptome and metabolome.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huiting Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Wenzhe Xing
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Jiatong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| |
Collapse
|
5
|
Luo X, Li Y, Wang B, Zhu S, Liu X, Liu X, Qi X, Wu Y. Carnosine alleviates cisplatin-induced acute kidney injury by targeting Caspase-1 regulated pyroptosis. Biomed Pharmacother 2023; 167:115563. [PMID: 37742605 DOI: 10.1016/j.biopha.2023.115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
Acute kidney injury (AKI) is a syndrome characterized by rapid loss of renal excretory function. Its underlying mechanisms remain unclear. Pyroptosis, a form of programmed cell death, plays an important role in AKI. It is characterized by cell swelling and membrane rupture, triggering the release of cellular contents and activating robust inflammatory responses. Carnosine, a dipeptide with antioxidant and anti-inflammatory properties, has therapeutic effects in AKI. However, the mechanism by which carnosine treats AKI-associated pyroptosis remains unexplored. In this study, we investigated the protective effect of carnosine on renal tubule cells using in vivo and in vitro models of AKI. We found that carnosine therapy significantly alleviated altered serum biochemical markers and histopathological changes in mice with cisplatin-induced AKI. It also reduced the levels of inflammation and pyroptosis. These results were consistent with those seen in human kidney tubular epithelial cells (HK-2) treated with cisplatin. Through molecular docking and cellular thermal shift assay, we identified caspase-1 as a target of carnosine. By knocking down caspase-1 in HK-2 cells using caspase-1 siRNA, we demonstrated that carnosine did not exhibit a protective role in cisplatin-induced HK-2 cells. This study provides the first evidence that carnosine alleviates damage to kidney tubular epithelial cells by targeting caspase-1 and inhibiting pyroptosis. Therefore, carnosine holds promise as a potential therapeutic agent for AKI, with caspase-1 representing an effective therapeutic target in this pathology.
Collapse
Affiliation(s)
- Xiaomei Luo
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yuanyuan Li
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Bingdian Wang
- School of Nursing, Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Sai Zhu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xinran Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xiangming Qi
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|