1
|
Baraniuk JN. Exertional Exhaustion (Post-Exertional Malaise, PEM) Evaluated by the Effects of Exercise on Cerebrospinal Fluid Metabolomics-Lipidomics and Serine Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Int J Mol Sci 2025; 26:1282. [PMID: 39941050 PMCID: PMC11818353 DOI: 10.3390/ijms26031282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Post-exertional malaise (PEM) is a defining condition of myalgic encephalomyelitis (ME/CFS). The concept requires that a provocation causes disabling limitation of cognitive and functional effort ("fatigue") that does not respond to rest. Cerebrospinal fluid was examined as a proxy for brain metabolite and lipid flux and to provide objective evidence of pathophysiological dysfunction. Two cohorts of ME/CFS and sedentary control subjects had lumbar punctures at baseline (non-exercise) or after submaximal exercise (post-exercise). Cerebrospinal fluid metabolites and lipids were quantified by targeted Biocrates mass spectrometry methods. Significant differences between ME/CFS and control, non-exercise vs. post-exercise, and by gender were examined by multivariate general linear regression and Bayesian regression methods. Differences were found at baseline between ME/CFS and control groups indicating disease-related pathologies, and between non-exercise and post-exercise groups implicating PEM-related pathologies. A new, novel finding was elevated serine and its derivatives sarcosine and phospholipids with a decrease in 5-methyltetrahydrofolate (5MTHF), which suggests general dysfunction of folate and one-carbon metabolism in ME/CFS. Exercise led to consumption of lipids in ME/CFS and controls while metabolites were consumed in ME/CFS but generated in controls. In general, the frequentist and Bayesian analyses generated complementary but not identical sets of analytes that matched the metabolic modules and pathway analysis. Cerebrospinal fluid is unique because it samples the choroid plexus, brain interstitial fluid, and cells of the brain parenchyma. The quantitative outcomes were placed into the context of the cell danger response hypothesis to explain shifts in serine and phospholipid synthesis; folate and one-carbon metabolism that affect sarcosine, creatine, purines, and thymidylate; aromatic and anaplerotic amino acids; glucose, TCA cycle, trans-aconitate, and coenzyme A in energy metabolism; and vitamin activities that may be altered by exertion. The metabolic and phospholipid profiles suggest the additional hypothesis that white matter dysfunction may contribute to the cognitive dysfunction in ME/CFS.
Collapse
Affiliation(s)
- James N Baraniuk
- Department of Medicine and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, 3900 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
2
|
Wang S, Yu L, Chen L, Zeng T, Xing X, Wei Z. Discovery of metabolite biomarkers for odontogenic keratocysts. Metabolomics 2024; 20:30. [PMID: 38416246 DOI: 10.1007/s11306-024-02101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Odontogenic keratocysts (OKCs) are locally aggressive and have a high rate of recurrence, but the pathogenesis of OKCs is not fully understood. We aimed to investigate the serum metabolomic profile of OKCs and discover potential biomarkers. METHODS Metabolomic analysis was performed on 42 serum samples from 22 OKC patients and 20 healthy controls (HCs) using gas chromatography‒mass spectrometry to identify dysregulated metabolites in the OKC samples. LASSO regression and receiver operating characteristic (ROC) curve analyses were used to select and validate metabolic biomarkers and develop diagnostic models. RESULTS A total of 73 metabolites were identified in the serum samples, and 24 metabolites were dysregulated in the OKC samples, of which 4 were upregulated. Finally, a diagnostic panel of 10 metabolites was constructed that accurately diagnosed OKCs (sensitivity of 100%, specificity of 100%, area under the curve of 1.00). CONCLUSION This study is the first to investigate the metabolic characteristics and potential metabolic biomarkers in the serum of OKC patients using GC‒MS. Our study provides further evidence to explore the pathogenesis of OKC.
Collapse
Affiliation(s)
- Shuai Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, 210008, Jiangsu, China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Liyuan Yu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Lin Chen
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Tao Zeng
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xianghui Xing
- Pediatric Dentistry, Nanjing Stomatology Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Zheng Wei
- Pediatric Dentistry, Nanjing Stomatology Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
3
|
Tripathi R, Guglani A, Ghorpade R, Wang B. Biotin conjugates in targeted drug delivery: is it mediated by a biotin transporter, a yet to be identified receptor, or (an)other unknown mechanism(s)? J Enzyme Inhib Med Chem 2023; 38:2276663. [PMID: 37955285 PMCID: PMC10653662 DOI: 10.1080/14756366.2023.2276663] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Conjugation of drugs with biotin is a widely studied strategy for targeted drug delivery. The structure-activity relationship (SAR) studies through H3-biotin competition experiments conclude with the presence of a free carboxylic acid being essential for its uptake via the sodium-dependent multivitamin transporter (SMVT, the major biotin transporter). However, biotin conjugation with a payload requires modification of the carboxylic acid to an amide or ester group. Then, there is the question as to how/whether the uptake of biotin conjugates goes through the SMVT. If not, then what is the mechanism? Herein, we present known uptake mechanisms of biotin and its applications reported in the literature. We also critically analyse possible uptake mechanism(s) of biotin conjugates to address the disconnect between the results from SMVT-based SAR and "biotin-facilitated" targeted drug delivery. We believe understanding the uptake mechanism of biotin conjugates is critical for their future applications and further development.
Collapse
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Anchala Guglani
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Rujuta Ghorpade
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
4
|
Kang M, Wang H, Chen C, Suo R, Sun J, Yue Q, Liu Y. Analytical strategies based on untargeted and targeted metabolomics for the accurate authentication of organic milk from Jersey and Yak. Food Chem X 2023; 19:100786. [PMID: 37780248 PMCID: PMC10534096 DOI: 10.1016/j.fochx.2023.100786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 10/03/2023] Open
Abstract
Organic milk has a high risk of food fraud as it can easily be adulterated with non-organic milk. This study aimed to identify metabolite markers for assessing the authenticity of organic milk from Jersey and Yak. In the untargeted strategy, ultra-high performance liquid chromatography-Q Exactive HF-X mass spectrometer coupled with chemometrics analysis was used to screen and identify tentative markers of organic milk from Jersey and Yak. In the targeted strategy, a quick and easy method of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to quantify three markers. The peptide of Thr-Ala-Val and D-biotin were determined to be metabolite markers for distinguishing organic and non-organic Jersey milk, whereas trimethylamine N-oxide was determined to be a metabolite marker for distinguishing organic and non-organic Yak milk. These findings provide critical information to facilitate assessments of organic milk authenticity.
Collapse
Affiliation(s)
- Min Kang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Hongxia Wang
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Chuxin Chen
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Quanhong Yue
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, 289th Lingyusi Street, Lianchi District, Baoding 071000, China
| |
Collapse
|
5
|
Xu L, Chen Y, Wang Z, Zhang Y, He Y, Zhang A, Chen H, Xue G. Discovering dominant ammonia assimilation: Implication for high-strength nitrogen removal in full scale biological treatment of landfill leachate. CHEMOSPHERE 2023; 312:137256. [PMID: 36395888 DOI: 10.1016/j.chemosphere.2022.137256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Landfill leachate containing high-strength nitrogen is generated in domestic waste landfilling. The integration of anoxic and aerobic process (AO) based on nitrification and denitrification, has been a mainstream process of biological nitrogen removal (BNR). But the high-strength organics as well as aerobic effluent reflux might change the biochemical environment designed and operated as AO. In view of the nitrogen balance in a full scale landfill leachate treatment plant with two-stage AO, we found that approximately 90% removal of total nitrogen (TN) and ammonia (NH4+-N) focused on primary anoxic and aerobic stage. Meanwhile, the less nitrate and nitrite in the aerobic effluent were incapable of sustaining denitrification or anaerobic ammonia oxidation (anammox). The high reflux flow from aerobic to anoxic process enabled the similar microbial community and functional genes in anoxic and aerobic process units. However, the functional genes involving ammonia assimilation in all process units showcased the highest abundance compared to those correlated with other BNR pathways, including nitrification and denitrification, assimilatory and dissimilatory nitrate reduction, nitrogen fixation and anammox. The ammonia assimilation dominated the removals of TN and NH4+-N, rather than other BNR mechanism. The insight of dominant ammonia assimilation is favorable for illustrating the authentic BNR mechanism of landfill leachate in AO, thereby guiding the optimization of engineering design and operation.
Collapse
Affiliation(s)
- Lei Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuting Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zheng Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200000, China.
| |
Collapse
|
6
|
Pan C, Zhao A, Li M. Atopic Dermatitis-like Genodermatosis: Disease Diagnosis and Management. Diagnostics (Basel) 2022; 12:diagnostics12092177. [PMID: 36140582 PMCID: PMC9498295 DOI: 10.3390/diagnostics12092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic disorders such as acrodermatitis enteropathy, multiple carboxylase deficiency, prolidase deficiency; and other rare syndromes like severe dermatitis, multiple allergies and metabolic wasting syndrome, Netherton syndrome, and peeling skin syndrome frequently perform with eczema-like lesions. These genodermatosis may be misguided in the context of eczematous phenotype. Misdiagnosis of severe disorders unavoidably affects appropriate treatment and leads to irreversible outcomes for patients, which underlines the importance of molecular diagnosis and genetic analysis. Here we conclude clinical manifestations, molecular mechanism, diagnosis and management of several eczema-related genodermatosis and provide accessible advice to physicians.
Collapse
Affiliation(s)
- Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Anqi Zhao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Department of Dermatology, The Children’s Hospital of Fudan University, Shanghai 200092, China
- Correspondence: ; Tel.: +86-2125078571
| |
Collapse
|
7
|
Mishra S, Salichs O, DiGennaro P. Temporally Regulated Plant-Nematode Gene Networks Implicate Metabolic Pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:616-626. [PMID: 35343249 DOI: 10.1094/mpmi-10-21-0256-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Root-knot nematodes (RKN) (Meloidogyne spp.) constantly communicate with their host to establish and maintain specialized feeding cells. They likely regulate this interaction by monitoring host biology. As plant host biology is influenced by light and gene expression varies correspondingly, RKN gene transcription and biology likely follow similar patterns. We profiled RKN transcripts over a period of 24 h and identified approximately 1,000 differentially expressed genes (DEG) in nematode and model host Medicago truncatula, with the majority of DEG occurring in the middle of the dark period. Many of the plant DEG are involved in defense-response pathways, while the nematode DEG are involved in establishing infection, suggesting a strong host-nematode interaction occurring during the dark. To identify interacting genes, we developed a plant-nematode gene network based on DEG signals. The phenylpropanoid pathway was identified as a significant plant-nematode interacting pathway, representing four of 33 genes in the network. We further examined if this pathway interacts similarly in another host, tomato, by quantifying phenolic and flavonoid compounds produced by this pathway. Phenolic compounds showed a significant increase in production during the day in uninoculated plants as compared with during the night. However, during the dark period, there was an increase in flavonoid content in infected plants when compared with uninfected controls, indicating potential host defense mechanisms active during the height of nematode activity at night. This study elucidated cross-species interacting pathways that could be targeted to develop novel management strategies to these important pests.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shova Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Oscar Salichs
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Peter DiGennaro
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
8
|
Zheng S, Wu W, Zhang Y, Hu P, Li J, Jiang J. Improvement of tomato sour soup fermentation by
Lacticaseibacillus casei
H1
addition. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shasha Zheng
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Wenyan Wu
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Yulong Zhang
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Ping Hu
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Juan Li
- College of Brewing and Food Engineering Guizhou University Guiyang China
| | - Jingzhu Jiang
- College of Brewing and Food Engineering Guizhou University Guiyang China
| |
Collapse
|
9
|
Metabolomics Deciphering the Potential Biomarkers of Hengqing I Prescription against Vascular Dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1636145. [PMID: 35399642 PMCID: PMC8986386 DOI: 10.1155/2022/1636145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022]
Abstract
With the aging of population, vascular dementia (VaD) seriously threatens people's health and quality of life. It is of great significance to explore biomarkers of VaD from the perspective of metabolomics and traditional Chinese medicine (TCM). Therefore, VaD was divided into kidney deficiency and blood stasis syndrome (KDBS) and non-KDBS according to TCM. Then, some patients received the treatment of Hengqing I (HQI) prescription. The urine of six groups (VaD group, normal group, KDBS group, non-KDBS group, HQI group, and control group) was detected on LC-MS/MS. Multivariate statistical analysis showed that the metabolic profiles of the three comparisons were significantly different. The top analysis-ready molecules of downregulated histamine and upregulated biotin, methionine, pantothenic acid, SAH, histidine, and kaempferol may be the most related metabolites. These putative biomarkers play an important role in the regulation of key metabolic processes linked to VaD. Additionally, pathway analysis showed aminoacyl-tRNA biosynthesis, and amino acids metabolic pathways were highly correlated with the occurrence of VaD. In this present paper, vitamins, amino acids, and their derivatives were selected as the basis for VaD diagnosis and treatment monitoring, and the significance of TCM classification and Hengqing I prescription in the treatment of VaD was discussed.
Collapse
|
10
|
Biotinidase deficiency in differential diagnosis of neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2020; 44:102280. [PMID: 32559702 DOI: 10.1016/j.msard.2020.102280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022]
Abstract
We present a case of biotinidase deficiency mimicking neuromyelitis optica spectrum disorder (NMOSD) with tetraparesis and transverse myelitis, who was diagnosed with profound biotinidase deficiency after developing optic atrophy and hearing loss before the age of one year, and was untreated for six months. Biotinidase deficiency should be considered in the differential diagnosis of seronegative NMOSD.
Collapse
|
11
|
Carvalho NO, Del Castillo DM, Januário JN, Starling ALP, Arantes RR, Norton RC, Viana MB. Novel mutations causing biotinidase deficiency in individuals identified by the newborn screening program in Minas Gerais, Brazil. Am J Med Genet A 2019; 179:978-982. [PMID: 30912303 DOI: 10.1002/ajmg.a.61137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 11/05/2022]
Abstract
Biotinidase deficiency is an autosomal recessive inherited metabolic disorder caused by mutations in the BTD gene. Clinical manifestations can be treated and effectively prevented with pharmacological doses of biotin. Nine novel mutations in BTD are reported in 14 children diagnosed by the newborn screening program in Minas Gerais, Brazil, from June 2013 to December 2017. Serum BTD enzyme activity was determined for all cases and some parents. Two of the mutations are deletions and seven missense mutations located in the exonic region of the BTD gene, mostly in exon 4. Two newborns were profoundly biotinidase-deficient (one homozygous p.A534V [c.1601C > T] and another, double heterozygous for a novel mutation p.R211S [c.631C > A] co-inherited with an already described mutation p.T532 M [c.1595C > T]). Two mutations were associated with a partial deficiency of biotinidase (p.F361 V [c.1081 T > G] in two homozygous children, and p.S311 T [c.932G > C] in a compound heterozygous child who co-inherited a known severe mutation p.Y438X [c.1314 T > A]). The remaining five mutations were found in compound heterozygous children. Hence, a definitive conclusion about the degree of biotinidase deficiency is not possible yet. These results emphasize the importance of sequencing the BTD gene as an important tool to gain a better understanding of the correlation between biochemical phenotype and genotype.
Collapse
Affiliation(s)
- Nara O Carvalho
- Nupad - Center for Newborn Screening and Genetic Diagnostics, UFMG - Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Dora M Del Castillo
- Nupad - Center for Newborn Screening and Genetic Diagnostics, UFMG - Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - José N Januário
- Nupad - Center for Newborn Screening and Genetic Diagnostics, UFMG - Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana L P Starling
- Nupad - Center for Newborn Screening and Genetic Diagnostics, UFMG - Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo R Arantes
- Nupad - Center for Newborn Screening and Genetic Diagnostics, UFMG - Federal University of Minas Gerais, Belo Horizonte, Brazil.,University Hospital, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rocksane C Norton
- Nupad - Center for Newborn Screening and Genetic Diagnostics, UFMG - Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcos B Viana
- Nupad - Center for Newborn Screening and Genetic Diagnostics, UFMG - Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Srirangan K, Bruder M, Akawi L, Miscevic D, Kilpatrick S, Moo-Young M, Chou CP. Recent advances in engineering propionyl-CoA metabolism for microbial production of value-added chemicals and biofuels. Crit Rev Biotechnol 2016; 37:701-722. [PMID: 27557613 DOI: 10.1080/07388551.2016.1216391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diminishing fossil fuel reserves and mounting environmental concerns associated with petrochemical manufacturing practices have generated significant interests in developing whole-cell biocatalytic systems for the production of value-added chemicals and biofuels. Although acetyl-CoA is a common natural biogenic precursor for the biosynthesis of numerous metabolites, propionyl-CoA is unpopular and non-native to most organisms. Nevertheless, with its C3-acyl moiety as a discrete building block, propionyl-CoA can serve as another key biogenic precursor to several biological products of industrial importance. As a result, engineering propionyl-CoA metabolism, particularly in genetically tractable hosts with the use of inexpensive feedstocks, has paved an avenue for novel biomanufacturing. Herein, we present a systematic review on manipulation of propionyl-CoA metabolism as well as relevant genetic and metabolic engineering strategies for microbial production of value-added chemicals and biofuels, including odd-chain alcohols and organic acids, bio(co)polymers and polyketides. [Formula: see text].
Collapse
Affiliation(s)
| | - Mark Bruder
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| | - Lamees Akawi
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| | - Dragan Miscevic
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| | - Shane Kilpatrick
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| | - Murray Moo-Young
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| | - C Perry Chou
- a Department of Chemical Engineering , University of Waterloo , Waterloo , ON , Canada
| |
Collapse
|
13
|
Parent BA, Seaton M, Sood RF, Gu H, Djukovic D, Raftery D, O'Keefe GE. Use of Metabolomics to Trend Recovery and Therapy After Injury in Critically Ill Trauma Patients. JAMA Surg 2016; 151:e160853. [PMID: 27223119 DOI: 10.1001/jamasurg.2016.0853] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IMPORTANCE Metabolomics is the broad and parallel study of metabolites within an organism and provides a contemporaneous snapshot of physiologic state. Use of metabolomics in the clinical setting may help achieve precision medicine for those who have experienced trauma, where diagnosis and treatment are tailored to the individual patient. OBJECTIVE To examine whether metabolomics can (1) distinguish healthy volunteers from trauma patients and (2) quantify changes in catabolic metabolites over time after injury. DESIGN, SETTING, AND PARTICIPANTS Prospective cohort study with enrollment from September 2014 to May 2015 at an urban, level 1 trauma center. Included in the study were 10 patients with severe blunt trauma admitted within 12 hours of injury with systolic blood pressure less than 90 mm Hg or base deficit greater than 6 mEq/L and 5 healthy volunteers. Plasma samples (n = 35) were obtained on days 1, 3, and 7, and they were analyzed using mass spectrometry. MAIN OUTCOMES AND MEASURES Principal component analyses, multiple linear regression, and paired t tests were used to select biomarkers of interest. A broad-based metabolite profile comparison between trauma patients and healthy volunteers was performed. Specific biomarkers of interest were oxidative catabolites. RESULTS Trauma patients had a median age of 45 years and a median injury severity score of 43 (interquartile range, 34-50). Healthy fasting volunteers had a median age of 33 years. Compared with healthy volunteers, trauma patients showed oxidative stress on day 1: niacinamide concentrations were a mean (interquartile range) of 0.95 (0.30-1.45) relative units for trauma patients vs 1.06 (0.96-1.09) relative units for healthy volunteers (P = .02), biotin concentrations, 0.43 (0.27-0.58) relative units for trauma patients vs 1.21 (0.93-1.56) relative units for healthy volunteers (P = .049); and choline concentrations, 0.17 (0.09-0.22) relative units for trauma patients vs 0.21 (0.18-0.22) relative units for healthy volunteers (P = .004). Trauma patients showed lower nucleotide synthesis on day 1: adenylosuccinate concentrations were 0.08 (0.04-0.12) relative units for trauma patients vs 0.15 (0.14-0.17) relative units for healthy volunteers (P = .02) and cytidine concentrations were 1.44 (0.95-1.73) relative units for trauma patients vs 1.74 (1.62-1.98) relative units for healthy volunteers (P = .05). From trauma day 1 to day 7, trauma patients showed increasing muscle catabolism: serine levels increased from 42.03 (31.20-54.95) µM to 79.37 (50.29-106.37) µM (P = .002), leucine levels increased from 69.21 (48.36-99.89) µM to 114.16 (92.89-143.52) µM (P = .004), isoleucine levels increased from 20.43 (10.92-27.41) µM to 48.72 (36.28-64.84) µM (P < .001), and valine levels increased from 122.56 (95.63-140.61) µM to 190.52 (136.68-226.07) µM (P = .004). There was an incomplete reversal of oxidative stress. CONCLUSIONS AND RELEVANCE Metabolomics can function as a serial, comprehensive, and potentially personalized tool to characterize metabolism after injury. A targeted metabolomics approach was associated with ongoing oxidative stress, impaired nucleotide synthesis, and initial suppression of protein metabolism followed by increased nitrogen turnover. This technique may provide new therapeutic and nutrition targets in critically injured patients.
Collapse
Affiliation(s)
- Brodie A Parent
- Harborview Department of Surgery, University of Washington Medical Center, Seattle
| | - Max Seaton
- Harborview Department of Surgery, University of Washington Medical Center, Seattle
| | - Ravi F Sood
- Harborview Department of Surgery, University of Washington Medical Center, Seattle
| | - Haiwei Gu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle
| | - Danijel Djukovic
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle
| | - Daniel Raftery
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle
| | - Grant E O'Keefe
- Harborview Department of Surgery, University of Washington Medical Center, Seattle
| |
Collapse
|
14
|
Xia B, Yang LQ, Huang HY, Pang L, Yang XF, Yi YJ, Ren XH, Li J, Zhuang ZX, Liu JJ. Repression of Biotin-Related Proteins by Benzo[a]Pyrene-Induced Epigenetic Modifications in Human Bronchial Epithelial Cells. Int J Toxicol 2016; 35:336-43. [PMID: 26960346 DOI: 10.1177/1091581816637071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Benzo[a]pyrene (B[a]P) exposure has been associated with the alteration in epigenetic marks that are involved in cancer development. Biotinidase (BTD) and holocarboxylase synthetase (HCS) are 2 major enzymes involved in maintaining the homeostasis of biotinylation, and the deregulation of this pathway has been associated with a number of cancers. However, the link between B[a]P exposure and the dysregulation of BTD/HCS in B[a]P-associated tumorigenesis is unknown. Here we showed that the expression of both BTD and HCS was significantly decreased upon B[a]P treatment in human bronchial epithelial (16HBE) cells. Benzo[a]pyrene exposure led to the global loss of DNA methylation by immunofluorescence, which coincided with the reduction in acetylation levels on histones H3 and H4 in 16HBE cells. Consistent with decreased histone acetylation, histone deacetylases (HDACs) HDAC2 and HDAC3 were significantly upregulated in a dosage-dependent manner. When DNA methylation or HDAC activity was inhibited, we found that the reduction in BTD and HCS was separately regulated through distinct epigenetic mechanisms. Together, our results suggested the potential link between B[a]P toxicity and deregulation of biotin homeostasis pathway in B[a]P-associated cancer development.
Collapse
Affiliation(s)
- Bo Xia
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Lin-Qing Yang
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hai-Yan Huang
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Li Pang
- College of Horticulture and Gardening, Hunan Agricultural University, Changsha, Hunan, China
| | - Xi-Fei Yang
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - You-Jin Yi
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao-Hu Ren
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jie Li
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhi-Xiong Zhuang
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jian-Jun Liu
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
15
|
Biotin-mediated epigenetic modifications: Potential defense against the carcinogenicity of benzo[a]pyrene. Toxicol Lett 2016; 241:216-24. [DOI: 10.1016/j.toxlet.2015.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022]
|
16
|
Etemadzadeh MH, Arashkia A, Roohvand F, Norouzian D, Azadmanesh K. Isolation, cloning, and expression of E. coli BirA gene for biotinylation applications. Adv Biomed Res 2015; 4:149. [PMID: 26380234 PMCID: PMC4551058 DOI: 10.4103/2277-9175.161576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022] Open
Abstract
Background: The key enzyme in biotin-(strept) avidin systems, Escherichia coli BirA biotin ligase, is currently obtained by overexpression of the long protein-tagged versions of the gene to prevent its toxic effect in E. coli. Herein we describe a rather simple and efficient system for expression of E. coli BirA without the application of long-tag proteins. Materials and Methods: The coding sequence of BirA gene was isolated by polymerase chain reaction using DNA extract of E. coli-DH5α as template. BirA amplicon harboring a GS-linker at its C-terminal was cloned into NdeI-XhoI sites of pET24a(+) vector under control of T7 promoter and upstream of the vector-derived 6xHis-tag. pET24-BirA transformed BL21-cells were induced for protein expression by IPTG and analyzed by SDS-PAGE and Western blotting. Protein expression yields were assessed by image analysis of the SDS-PAGE scans using ImageJ software. Result: Agarose gel electrophoresis indicated proper size of the BirA gene amplicon (963 bp) and accuracy of the recombinant pET24-BirA construct. Sequence alignment analysis indicated identical sequence (100%) of our isolate with that of the standard E. coli-K12 BirA gene sequence (accession number: NC_000913.3). SDS-PAGE and Western blot results indicated specific expression of the 36.6 kDa protein corresponding to the BirA protein. Image analysis estimated a yield of 12% of total protein for the BirA expression. Conclusions: By application of pET24a(+) we achieved relatively high expression of BirA in E. coli without application of any long protein-tags. Introduction of the present expression system may provide more readily available source of BirA enzyme for (strept) avidin–biotin applications and studies.
Collapse
Affiliation(s)
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Department of Pilot Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
17
|
Aldahmash BA, El-Nagar DM, Ibrahim KE, Metwaly MS. Biotin amelioration of nephrotoxicity in streptozotocin-induced diabetic mice. Saudi J Biol Sci 2015; 22:564-9. [PMID: 26288559 PMCID: PMC4537877 DOI: 10.1016/j.sjbs.2015.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 03/05/2015] [Indexed: 12/14/2022] Open
Abstract
The current study was carried out to investigate the protective role of biotin in kidney injury and oxidative stress in diabetic mice type 1. Male Swiss albino mice were randomly divided into 3 groups. Control group received saline. Diabetes type 1 was induced in second and third groups by intraperitoneal injection of streptozotocin as a single dose (150 mg/kg). Second group remained as the untreated diabetic group and the third group received 15 mg/kg daily oral dose of biotin for 12 successive days. Biochemical results showed significant elevation in blood glucose and urea levels in both diabetic groups. Also, there is an increase in glomerular areas and decrease in glomerular cellularity in both diabetic groups. Histopathological results showed severe alterations in the untreated diabetic group represented by distorted glomeruli, inflammatory cells, and giant macrophages. In addition, there was an intense immune-reaction response toward acrolein indicator of oxidative damage. Upon biotin administration of diabetic mice, the above mentioned histopathological changes were reduced and also acroline reaction of oxidative damage was diminished. Our findings prove that biotin has a protective role against streptozotocin-induced oxidative damage in kidneys of laboratory mice.
Collapse
Affiliation(s)
- Badr A Aldahmash
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Doaa M El-Nagar
- Department of Zoology, College of Girls for Science, Arts and Education, Ain Shams University, Cairo, Egypt
| | - Khalid E Ibrahim
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud S Metwaly
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Biotin enhances salt tolerance of Torulopsis mogii. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
Saracino GAA, Gelain F. Modelling and analysis of early aggregation events of BMHP1-derived self-assembling peptides. J Biomol Struct Dyn 2013; 32:759-75. [PMID: 23730849 DOI: 10.1080/07391102.2013.790848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the increasing use and development of peptide-based scaffolds in different fields including that of regenerative medicine, the understanding of the factors governing the self-assembly process and the relationship between sequence and properties have not yet been fully understood. BMHP1-derived self-assembling peptides (SAPs) have been developed and characterized showing that biotinylation at the N-terminal cap corresponds to better performing assembly and scaffold biomechanics. In this study, the effects of biotinylation on the self-assembly dynamics of seven BMHP1-derived SAPs have been investigated by molecular dynamics simulations. We confirmed that these SAPs self-assemble into β-structures and that proline acts as a β-breaker of the assembled aggregates. In biotinylated peptides, the formation of ordered β-structured aggregates is triggered by both the establishment of a dense and dynamic H-bonds network and the formation of a 'hydrophobic wall' available to interact with other peptides. Such conditions result from the peculiar chemical composition of the biotinyl-cap, given by the synergic cooperation of the uracil function of the ureido ring with the high hydrophobic portion consisting of the thiophenyl ring and valeryl chain. The inbuilt propensity of biotinylated peptides towards the formation of ordered small aggregates makes them ideal precursors of higher hierarchically organized self-assembled nanostructures as experimentally observed.
Collapse
Affiliation(s)
- Gloria Anna Ada Saracino
- a Center of Nanomedicine and Tissue Engineering A. O. Ospedale Niguarda Ca' Granda , Milan , 20162 Italy
| | | |
Collapse
|
20
|
Liu W, Wang L, Jiang R. Specific Enzyme Immobilization Approaches and Their Application with Nanomaterials. Top Catal 2012. [DOI: 10.1007/s11244-012-9893-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Chen N, Hong FL, Wang HH, Yuan QH, Ma WY, Gao XN, Shi R, Zhang RJ, Sun CS, Wang SB. Modified recombinant proteins can be exported via the Sec pathway in Escherichia coli. PLoS One 2012; 7:e42519. [PMID: 22912705 PMCID: PMC3418276 DOI: 10.1371/journal.pone.0042519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 07/10/2012] [Indexed: 01/29/2023] Open
Abstract
The correct folding of a protein is a pre-requirement for its proper posttranslational modification. The Escherichia coli Sec pathway, in which preproteins, in an unfolded, translocation-competent state, are rapidly secreted across the cytoplasmic membrane, is commonly assumed to be unfavorable for their modification in the cytosol. Whether posttranslationally modified recombinant preproteins can be efficiently transported via the Sec pathway, however, remains unclear. ACP and BCCP domain (BCCP87) are carrier proteins that can be converted into active phosphopantetheinylated ACP (holo-ACP) and biotinylated-BCCP (holo-BCCP) by AcpS and BirA, respectively. In the present study, we show that, when ACP or BCCP87 is fused to the C-terminus of secretory protein YebF or MBP, the resulting fusion protein preYebF-ACP, preYebF-BCCP87, preMBP-ACP or preMBP-BCCP87 can be modified and then secreted. Our data demonstrate that posttranslational modification of preYebF-ACP, preYebF-BCCP87 preMBP-ACP and preMBP-BCCP87 can take place in the cytosol prior to translocation, and the Sec machinery accommodates these previously modified fusion proteins. High levels of active holo-ACP and holo-BCCP87 are achieved when AcpS or BirA is co-expressed, especially when sodium azide is used to retard their translocation across the inner membrane. Our results also provide an alternative to achieve a high level of modified recombinant proteins expressed extracellularly.
Collapse
Affiliation(s)
- Nan Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Fu-Lin Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Hai-Hong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Qi-Hang Yuan
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Wan-Yan Ma
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Xu-Na Gao
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Rui Shi
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Rui-Juan Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Chang-Sheng Sun
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Sheng-Bin Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
- * E-mail:
| |
Collapse
|
22
|
Li J, Brader G, Helenius E, Kariola T, Palva ET. Biotin deficiency causes spontaneous cell death and activation of defense signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:315-26. [PMID: 22126457 DOI: 10.1111/j.1365-313x.2011.04871.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In addition to its essential metabolic functions, biotin has been suggested to play a critical role in regulating gene expression. The first committed enzyme in biotin biosynthesis in Arabidopsis, 7-keto-8-aminopelargonic acid synthase, is encoded by At5g04620 (BIO4). We isolated a T-DNA insertion mutant of BIO4 (bio4-1) with a spontaneous cell death phenotype, which was rescued both by exogenous biotin and genetic complementation. The bio4-1 plants exhibited massive accumulation of hydrogen peroxide and constitutive up-regulation of a number of genes that are diagnostic for defense and reactive oxygen species signaling. The cell-death phenotype was independent of salicylic acid and jasmonate signaling. Interestingly, the observed increase in defense gene expression was not accompanied by enhanced resistance to bacterial pathogens, which may be explained by uncoupling of defense gene transcription from accumulation of the corresponding protein. Characterization of biotinylated protein profiles showed a substantial reduction of both chloroplastic biotinylated proteins and a nuclear biotinylated polypeptide in the mutant. Our results suggest that biotin deficiency results in light-dependent spontaneous cell death and modulates defense gene expression. The isolation and molecular characterization of the bio4-1 mutant provides a valuable tool for elucidating new functions of biotin.
Collapse
Affiliation(s)
- Jing Li
- Division of Genetics, Department of Biosciences, Viikki Biocenter, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
23
|
Greenway FL, Ingram DK, Ravussin E, Hausmann M, Smith SR, Cox L, Tomayko K, Treadwell BV. Loss of taste responds to high-dose biotin treatment. J Am Coll Nutr 2012; 30:178-81. [PMID: 21896875 DOI: 10.1080/07315724.2011.10719958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND OBJECTIVE We saw 2 patients who lost their sense of taste, which was restored by pharmacologic doses of biotin. The key objective is to describe the 2 case reports and suggest a potential treatment for unexplained loss of taste. METHODS AND DESIGN The first patient was a 67-year-old woman who lost her sense of taste taking Juvenon, a dietary herbal supplement containing acyl-L-carnitine, lipoic acid, calcium, phosphorus, and biotin 300 μg per day. The second patient was a 60-year-old man who lost his sense of taste after a sleeve gastrectomy for obesity. RESULTS The first patient did not respond to 5 mg per day of biotin, but taste was restored with 10 mg of biotin per day. Biotin was prescribed based on information that lipoic acid bound to the biotin transporter. Baseline urine gave no evidence of a pre-existing biotin deficiency. The second patient did not have restoration of taste after taking biotin 5 mg per day for 7 weeks but did have taste restoration on biotin 20 mg per day. Neither subject had an abnormal biotinidase level. CONCLUSIONS Further research into the relationship of biotin to taste is clearly indicated. Loss of taste was very distressing and significantly altered the quality of life for both patients. Since biotin up to 40 mg per day has been shown to be safe, a therapeutic trial of pharmacologic doses of biotin should be considered as a potentially curative treatment in patients who present with a loss of taste that has no obvious cause.
Collapse
Affiliation(s)
- Frank L Greenway
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Significant progress has been made in our understanding of the biochemical, physiological and nutritional aspects of the water-soluble vitamin biotin (vitamin H). It is well know now that biotin plays important roles in a variety of critical metabolic reactions in the cell, and thus, is essential for normal human health, growth and development. This is underscored by the serious clinical abnormalities that occur in conditions of biotin deficiency, which include, among other things, growth retardation, neurological disorders, and dermatological abnormalities (reviewed in 1). Studies in animals have also shown that biotin deficiency during pregnancy leads to embryonic growth retardation, congenital malformation and death (Watanabe 1983; Cooper and Brown 1958; Mock et al. 2003; Zempleni and Mock 2000). The aim of this chapter is to provide coverage of current knowledge of the biochemical, physiological, and clinical aspects of biotin nutrition. Many sections of this chapter have been the subject of excellent recent reviews by others (Wolf 2001; McMahon 2002; Mock 2004; Rodriguez-Melendez and Zempleni 2003; Said 2004; Said et al. 2000; Said and Seetheram 2006), and thus, for more information the reader is advised to consider these additional sources.
Collapse
Affiliation(s)
- Hamid M Said
- University of California-School of Medicine, Irvine, CA, USA,
| |
Collapse
|
25
|
Mutational analysis for biotinidase deficiency of a Greek patients’ cohort ascertained through expanded newborn screening. J Hum Genet 2011; 56:861-5. [DOI: 10.1038/jhg.2011.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Wang Z, Liu L, Xu Y, Sun L, Li G. Simulation and assay of protein biotinylation with electrochemical technique. Biosens Bioelectron 2011; 26:4610-3. [DOI: 10.1016/j.bios.2011.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/25/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
|
27
|
Liu F, Gu H, Yuan X, Lin Y, Dong X. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/277/1/012025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Al-Qudah KM, Ismail ZB. The relationship between serum biotin and oxidant/antioxidant activities in bovine lameness. Res Vet Sci 2010; 92:138-41. [PMID: 21074230 DOI: 10.1016/j.rvsc.2010.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 08/16/2010] [Accepted: 10/05/2010] [Indexed: 11/17/2022]
Abstract
Serum biotin concentrations, erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), reduced glutathione (GSH) and plasma thiobarbituric acid reactive substances (TBARS) were measured in 36 dairy cows, 18 of them were healthy and served as control. In the 18 cows with lameness problems, there were 5 cows with interdigital necrobacillosis, 5 cows with subsolar abscessation, 2 cows with solar ulcers, 2 cows with white line disease, 2 cows with chronic laminitis and 2 cows with septic arthritis. The degree of lameness was estimated to be slight in 3 cows, moderate in 11 cows and severe in 4 cows. Plasma fibrinogen levels and TBARS concentrations were increased significantly (P≤0.05) in lame cows compared to control group. The antioxidant enzymes GSH-Px, and CAT concentrations were increased significantly (P≤0.05) in lame cows. The level of reduced glutathione and the activity of SOD were significantly decreased in affected cows compared to healthy ones. Serum biotin levels in healthy cows ranged from 2.25 to 3.5ng/ml while in lame cows, biotin levels ranged from 1.17 to 2.3ng/ml. Biotin levels correlated positively with blood GSH (r=0.870, P≤0.05), (r=0.735, P≤0.05) and with GSH-Px (r=0.539, P≤0.05), (r=0.637, P≤0.05) and with SOD (r=0.637, P≤0.05), (r=0.449, P≤0.05) and with catalase (r=0.533, P≤0.05), (r=0.585, P≤0.05) in both healthy and lameness affected subjects, respectively.
Collapse
Affiliation(s)
- Khaled M Al-Qudah
- Department of Veterinary Clinical Sciences, Jordan University of Science and Technology, Irbid, Jordan.
| | | |
Collapse
|
29
|
Angaroni CJ, Giner-Ayala AN, Hill LP, Guelbert NB, Paschini-Capra AE, Dodelson de Kremer R. Evaluation of the biotinidase activity in hepatic glycogen storage disease patients. Undescribed genetic finding associated with atypical enzymatic behavior: an outlook. J Inherit Metab Dis 2010; 33:S289-94. [PMID: 20532819 DOI: 10.1007/s10545-010-9139-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/14/2010] [Accepted: 05/19/2010] [Indexed: 11/28/2022]
Abstract
Repeated evaluation of biotinidase (BTD) activity was carried out for a long-term follow-up in patients with hepatic glycogen storage diseases (GSDs). The results indicated inter-intra variability among the GSD-Ia, GSD-III and GSD-IX patients. In addition, a c.1330G>C transversion in the BTD gene, resulting in a p.Asp444His substitution was detected in one allele of a GSD-Ia patient with sustained normal enzyme activity. Thus far, it is necessary to be cautious in the interpretation of the results of BTD activity as a presumptive GSD diagnostic element. It is not known why plasma BTD activity increases in GSDs patients, or the clinical importance of the increment. When viewed from a global perspective, there are some lines of biotin biology that could indicate a relationship between BTD´s behavior and GSDs.
Collapse
Affiliation(s)
- Celia J Angaroni
- Centro de Estudio de las Metabolopatías Congénitas, CEMECO, Hospital de Niños de la Santísima Trinidad, Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | | | | | | | | |
Collapse
|
30
|
Papasarantos I, Klimentzou P, Koutrafouri V, Anagnostouli M, Zikos C, Paravatou-Petsotas M, Livaniou E. Solid-phase synthesis of a biotin derivative and its application to the development of anti-biotin antibodies. Appl Biochem Biotechnol 2009; 162:221-32. [PMID: 19950001 DOI: 10.1007/s12010-009-8870-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
A biotin derivative, namely biotin-aminocaproic acid-lysine (BAL), was synthesized with solid-phase chemistry, conjugated to a carrier-protein, and used for rabbit immunization. The aminocaproic acid-lysine "long-arm" was used in order to project the biotin-hapten above the carrier-protein surface. Lysine was selected due to its N(epsilon)-amino group, through which BAL was conjugated to the carrier-protein. BAL was synthesized on a commercially available resin with the Fmoc-solid-phase strategy; this has simplified the experimental procedure, overcome the need for intermediate purification steps, and led to a final product of high purity, with high yield. The anti-BAL antibodies recognized free biotin, as shown with an in-house-developed ELISA, in which biotin conjugated to a synthetic "lysine-dendrimer" was used to coat the ELISA microwells. In immunocytology and Western-blot experiments, the anti-BAL antibodies led to similar results with those obtained with streptavidin. Synthetic derivatives of hapten molecules that can be easily prepared with solid-phase chemistry, such as BAL, may be used for the development of specific antibodies for the corresponding hapten.
Collapse
Affiliation(s)
- Ilias Papasarantos
- Immunopeptide Chemistry Lab, Institute of Radioisotopes & Radiodiagnostic Products, National Centre for Scientific Research Demokritos, Patriarchou Grigoriou & Neapoleos, Aghia Paraskevi Attikis, Athens 153 10, Greece
| | | | | | | | | | | | | |
Collapse
|
31
|
Glatter T, Wepf A, Aebersold R, Gstaiger M. An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol Syst Biol 2009; 5:237. [PMID: 19156129 PMCID: PMC2644174 DOI: 10.1038/msb.2008.75] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/04/2008] [Indexed: 11/15/2022] Open
Abstract
Protein complexes represent major functional units for the execution of biological processes. Systematic affinity purification coupled with mass spectrometry (AP-MS) yielded a wealth of information on the compendium of protein complexes expressed in Saccharomyces cerevisiae. However, global AP-MS analysis of human protein complexes is hampered by the low throughput, sensitivity and data robustness of existing procedures, which limit its application for systems biology research. Here, we address these limitations by a novel integrated method, which we applied and benchmarked for the human protein phosphatase 2A system. We identified a total of 197 protein interactions with high reproducibility, showing the coexistence of distinct classes of phosphatase complexes that are linked to proteins implicated in mitosis, cell signalling, DNA damage control and more. These results show that the presented analytical process will substantially advance throughput and reproducibility in future systematic AP-MS studies on human protein complexes.
Collapse
Affiliation(s)
- Timo Glatter
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
| | - Alexander Wepf
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
- Institute for Systems Biology, Seattle, WA, USA
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Biotin-sensitive 3-methylcrotonylglycinuria in a patient with severe growth delay, ectodermal abnormalities, neonatal progeroid appearance, and developmental delay. Clin Dysmorphol 2008; 17:195-198. [PMID: 18541968 DOI: 10.1097/mcd.0b013e3282fe99c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|