1
|
Das UN. Syntaxin interacts with arachidonic acid to prevent diabetes mellitus. Lipids Health Dis 2022; 21:73. [PMID: 35982452 PMCID: PMC9389802 DOI: 10.1186/s12944-022-01681-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Syntaxin regulates pancreatic β cell mass and participates in insulin secretion by regulating insulin exocytosis. In addition, syntaxin 4 reduces IFNγ and TNF-α signaling via NF-ĸB in islet β-cells that facilitates plasma glucose sensing and appropriate insulin secretion. Arachidonic acid (AA) has potent anti-inflammatory actions and prevents the cytotoxic actions of alloxan and streptozotocin (STZ) against pancreatic β cells and thus, prevents the development of type 1 diabetes mellitus (induced by alloxan and STZ) and by virtue of its anti-inflammatory actions protects against the development of type 2 diabetes mellitus (DM) induced by STZ in experimental animals that are models of type 1 and type 2 DM in humans. AA has been shown to interact with syntaxin and thus, potentiate exocytosis. AA enhances cell membrane fluidity, increases the expression of GLUT and insulin receptors, and brings about its anti-inflammatory actions at least in part by enhancing the formation of its metabolite lipoxin A4 (LXA4). Prostaglandin E2 (PGE2), the pro-inflammatory metabolite of AA, activates ventromedial hypothalamus (VMH) neurons of the hypothalamus and inhibits insulin secretion leading to reduced glucose tolerance and decreases insulin sensitivity in the skeletal muscle and liver. This adverse action of PGE2 on insulin release and action can be attributed to its (PGE2) pro-inflammatory action and inhibitory action on vagal tone (vagus nerve and its principal neurotransmitter acetylcholine has potent anti-inflammatory actions). High fat diet fed animals have hypothalamic inflammation due to chronic elevation of PGE2. Patients with type 2 DM show low plasma concentrations of AA and LXA4 and elevated levels of PGE2. Administration of AA enhances LXA4 formation without altering or reducing PGE2 levels and thus, tilts the balance more towards anti-inflammatory events. These results suggest that administration of AA is useful in the prevention and management of DM by enhancing the action of syntaxin, increasing cell membrane fluidity, and reducing VMH inflammation. Docosahexaenoic acid (DHA) has actions like AA: it increases cell membrane fluidity; has anti-inflammatory actions by enhancing the formation of its anti-inflammatory metabolites resolvins, protectins and maresins; interacts with syntaxin and enhance exocytosis in general and of insulin. But the DHA content of cell membrane is lower compared to AA and its content in brain is significant. Hence, it is likely DHA is important in neurotransmitters secretion and regulating hypothalamic inflammation. It is likely that a combination of AA and DHA can prevent DM.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA, 98604, USA. .,Department of Biotechnology, Indian Institute of Technology, IITH Road, Sangareddy, Kandi, Telangana, 502285, India.
| |
Collapse
|
2
|
Potential Toxic Effects of Exposure to Titanium Silicon Oxide Nanoparticles in Male Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042029. [PMID: 35206216 PMCID: PMC8872251 DOI: 10.3390/ijerph19042029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
Recently, nano titanium silicon oxide (TiSiO4 NPs) has been used in different fields and industries. Very few toxicological data exist for TiSiO4 NPs. In the present study, the potential adverse effects of oral exposure to a single dose of TiSiO4 NPs ≤ 50 nm (250 mg/kg b.w.) in adult male rats were investigated through the assessment of biomarkers for serum biochemical parameters, liver DNA damage, and histopathological examination and determination of Si and Ti in the exposed rat tissues. The results revealed that there were no significant changes in serum total protein, albumin, and triglycerides content, while total cholesterol level was significantly increased 7 days after exposure. TiSiO4 NPs significantly increased superoxide dismutase (SOD), glutathione peroxidase (GPx), acetylcholine esterase (AChE), lactate dehydrogenase (LDH) activity, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels in the exposed rat serum, whereas alanine aminotransferase (ALT), aspartate aminotransferase (AST) activity, urea level, immunoglobulins (IgG and IgM) concentrations, progesterone, and testosterone levels were significantly decreased. The liver comet assay indices were significantly increased after 7 days post-exposure. Moreover, histopathological changes and the accumulation of Si and Ti in liver, kidney, spleen, and lung tissues of treated rats were recorded.
Collapse
|
3
|
Meinilä J, Klemetti MM, Huvinen E, Engberg E, Andersson S, Stach-Lempinen B, Koivusalo S. Macronutrient intake during pregnancy in women with a history of obesity or gestational diabetes and offspring adiposity at 5 years of age. Int J Obes (Lond) 2021; 45:1030-1043. [PMID: 33558642 PMCID: PMC8081655 DOI: 10.1038/s41366-021-00762-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVES The impact of maternal macronutrient intake during pregnancy on offspring childhood adiposity is unclear. We assessed the associations between maternal macronutrient intake during and after pregnancy with offspring adiposity at 5 years of age. Additionally, we investigated whether gestational diabetes (GDM), BMI, or breastfeeding modified these associations. SUBJECTS/METHODS Altogether, 301 mother-child dyads with maternal prepregnancy BMI ≥ 30 and/or previous GDM participated in the Finnish Gestational Diabetes Prevention Study (RADIEL) and its 5 years follow-up. Macronutrient intakes (E%) were calculated from 3-day food records collected at 5-18 weeks' gestation, in the third trimester, and at 12 months and 5 years after pregnancy. Offspring body fat mass (BFM) and fat percentage (BF%) at 5 years were measured by bioimpedance. Statistical analyses were multivariate linear regression. RESULTS Mean (SD) prepregnancy BMI was 33(4) kg/m2. GDM was diagnosed in 47%. In normoglycemic women, higher first half of pregnancy n-3 PUFA intake was associated with lower offspring BFM (g) (ß -0.90; 95% CI -1.62, -0.18) and BF% (ß -3.45; 95% CI -6.17, -0.72). In women with GDM, higher first half of pregnancy n-3 PUFA intake was associated with higher offspring BFM (ß 0.94; 95% CI 0.14, 1.75) and BF% (ß 3.21; 95% CI 0.43, 5.99). Higher SFA intake in the third trimester and cumulative intake across pregnancy (mean of the first half and late pregnancy) was associated with higher BFM and BF% (across pregnancy: ß 0.12; 95% CI 0.03, 0.20 and ß 0.44; 95% CI 0.15, 0.73, respectively). Higher carbohydrate intake across pregnancy was associated with lower BFM (ß -0.044; 95% CI -0.086, -0.003), and borderline associated with BF% (ß -0.15; 95% CI -0.31, 0.00). CONCLUSIONS The macronutrient composition of maternal diet during pregnancy is associated with offspring BFM and BF% at 5 years. GDM modifies the association between prenatal n-3 PUFA intake and offspring anthropometrics.
Collapse
Affiliation(s)
- Jelena Meinilä
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Miira M Klemetti
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, South Karelia Central Hospital, Lappeenranta, Finland
- Department of Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Emilia Huvinen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elina Engberg
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Beata Stach-Lempinen
- Department of Obstetrics and Gynecology, South Karelia Central Hospital, Lappeenranta, Finland
| | - Saila Koivusalo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Liang J, Jia Y, Yan H, Shen Q, Bian W, Zhao D, Xu Y, Jin Y, Yang M. Prdm16-Mediated Browning is Involved in Resistance to Diet-Induced and Monosodium Glutamate-Induced Obesity. Diabetes Metab Syndr Obes 2021; 14:4351-4360. [PMID: 34737591 PMCID: PMC8558318 DOI: 10.2147/dmso.s335526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate resistance to diet-induced obesity (DIO) and monosodium glutamate (MSG)-induced obesity as well as the underlying mechanisms. METHODS Newborn mice were used to construct DIO and MSG-induced obesity models. Obesity indices, such as body weight, body length, Lee index, body temperature, food intake, fat weight, and leptin level, were examined. Mice that did not exhibit obesity were defined as the obesity-resistant group. The morphological changes of white adipose tissue were observed by hematoxylin and eosin staining, and expression levels of PR domain containing 16 (Prdm16) and uncoupling protein-1 (Ucp-1) in white adipose tissue were measured by Western blot. RESULTS Obesity-resistant mice fed a high-fat diet showed resistance beginning at week 5 along with lower weights and lengths than those in the obesity group from weeks 5 to 12. MSG-induced obesity-resistant mice showed features consistent with resistance to obesity from week 1 along with higher body lengths relative to the obesity group; however, the weight difference was not significant until week 10, when body weights decreased significantly in obesity-resistant mice. The Lee index was lower in obesity-resistant mice than in the obesity group and the normal group, further suggesting obesity resistance. Additionally, obesity-resistant mice showed higher levels of leptin, whereas obese mice induced by a high-fat diet showed leptin resistance. Furthermore, Prdm16 and Ucp-1 levels were both downregulated in the obesity group and upregulated in obesity-resistant mice, showing that white fat browning was highest in obesity-resistant mice. CONCLUSION The phenotypes of mice with DIO and MSG-induced obesity differed. Obesity resistance might be related to Prdm16 and Ucp-1-mediated white adipocyte browning.
Collapse
Affiliation(s)
- Jia Liang
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Ying Jia
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Haijing Yan
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Qingyu Shen
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Weihua Bian
- Department of Cell Biology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Dongmei Zhao
- Department of Anatomy, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yong Xu
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yongjun Jin
- Department of Endocrinology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Meizi Yang
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
- Correspondence: Meizi Yang; Yongjun Jin Department of Pharmacology, Binzhou Medical University, Yantai, 264003, People’s Republic of ChinaTel +86 535 691 9507Fax +86 535 691 3163 Email ;
| |
Collapse
|
5
|
Bathina S, Gundala NKV, Rhenghachar P, Polavarapu S, Hari AD, Sadananda M, Das UN. Resolvin D1 Ameliorates Nicotinamide-streptozotocin-induced Type 2 Diabetes Mellitus by its Anti-inflammatory Action and Modulating PI3K/Akt/mTOR Pathway in the Brain. Arch Med Res 2020; 51:492-503. [PMID: 32451116 DOI: 10.1016/j.arcmed.2020.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To study whether resolvin D1 (RvD1), a metabolite of docosahexaenoic acid (DHA), prevents NA-STZ-induced type 2 diabetes mellitus (type 2 DM) in vivo and if so, what could be the mechanism of this action. MATERIAL AND METHODS Single intra-peritoneal (i.p) injection of NA-STZ (175 mg/kg body weight of NA and 65 mg/kg of STZ) was injected simultaneously with RvD1 (60 ng/animal) (injected for 5 consecutive days) to Wistar rats. The effect of RvD1 on plasma glucose levels and apoptotic (Bcl2/Bax) and inflammatory (NF-κB/iNOS) protein expression, plasma lipoxin A4 and BDNF (brain-derived neurotrophic factor) were studied. Protein expressions of PI3k-Akt-mTOR pathway along with histopathological studies of brain were also evaluated. RESULTS NA-STZ-induced type 2 DM rats showed hyperglycemia, enhanced plasma IL-6/TNF-α (p ≤0.01), reduced plasma BDNF (p ≤0.01) and LXA4 (p ≤0.01) levels and low BDNF in pancreatic, hepatic and brain tissues (p <0.001), which were restored to near normal (p ≤0.01) in RvD1 treated group. RvD1 increased insulin sensitivity by suppressing inflammation (NF-κB/iNOS) (p ≤0.01) and decreasing apoptosis (Bcl2/Bax) and restoring BDNF and LXA4 levels to near normal. RvD1 treatment increased phosphorylation of Akt (Ser473), and subsequent activation (phosphorylation) of downstream signaling molecules of PI3K and mTOR indicating that RvD1 acts through PI3K/Akt/mTOR axis. DISCUSSION RvD1 is effective in preventing NA-STZ-induced type 2 DM in vivo by suppressing oxidative damage, enhancing the production of anti-inflammatory LXA4 and enhancing neuronal cell survival by augmenting the production of BDNF. Thus, RvD1 may be of benefit not only in preventing diabetes mellitus but also diabetes associated Alzheimer's disease and memory loss.
Collapse
Affiliation(s)
- Siresha Bathina
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Medical College and Hospital, Visakhapatnam, India
| | - Naveen K V Gundala
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Medical College and Hospital, Visakhapatnam, India
| | - Poorani Rhenghachar
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Medical College and Hospital, Visakhapatnam, India
| | - Sailaja Polavarapu
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Medical College and Hospital, Visakhapatnam, India
| | - Anasuya D Hari
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Medical College and Hospital, Visakhapatnam, India
| | - Monika Sadananda
- Department of BioSciences, Mangalore University, Mangalagangotri, Karnataka, India
| | - Undurti N Das
- BioScience Research Centre and Department of Medicine, Gayatri Vidya Parishad Medical College and Hospital, Visakhapatnam, India; UND Life Sciences, Battle Ground, Washington, USA.
| |
Collapse
|
6
|
Kamal MA, Shakil S, Nawaz MS, Yu QS, Tweedie D, Tan Y, Qu X, Greig NH. Inhibition of Butyrylcholinesterase with Fluorobenzylcymserine, An Experimental Alzheimer's Drug Candidate: Validation of Enzoinformatics Results by Classical and Innovative Enzyme Kinetic Analyses. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2018; 16:820-827. [PMID: 28176640 DOI: 10.2174/1871527316666170207160606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/03/2016] [Accepted: 08/30/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Selective butyrylcholinesterase (BuChE)-inhibition, increases acetylcholine (ACh) levels. In rodents, this inhibition is known to boost cognition. Also, this occurs without the typical unwanted adverse effects of acetylcholinesterase-inhibitors or AChE-Is. The novel compound, fluorobenzylcymserine (FBC), is derived from our effort to design a selective BuChE-inhibitor. Also, we wanted to check whether butyrylcholinesterase-inhibitors (BuChE-Is) possessed an edge over AChE-Is in Alzheimer's disease (AD) in terms of efficacy and/or tolerance. METHOD FBC was synthesized as reported earlier while enzymatic activity of BuChE was calculated by Ellman-technique. Molecular docking was performed using Autodock4.2. We applied classical as well as innovative analyses of enzyme-kinetics for exploring "FBC:human BuChE-interaction". The mode of inhibition and kinetic parameters were also determined. RESULTS Docking results displayed two strong interacting sites for FBC. One of these binding sites was previously identified as a deep narrow groove having polar aromatic residues while a second site was identified during this study which displayed better interaction and was lined with aliphatic and sulphur containing residues. At low concentrations of BuChE, the IC50 was found to be very low i.e. 4.79 and 6.10 nM for 12 and 36 µg, respectively, whereas it increased exponentially by increasing the units of BuChE. CONCLUSION These analyses indicate that FBC is an interesting AD drug candidate that could provide a potent and partial mixed type of inhibition of human BuChE.
Collapse
Affiliation(s)
- Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| | - Shazi Shakil
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah. Saudi Arabia
| | - Muhammad S Nawaz
- Department of Biological Science, COMSATS, Islamabad, Pakistan; 4Novel Global Community Educational Foundation, New South Wales. Australia
| | - Qian-Sheng Yu
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224. United States
| | - David Tweedie
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224. United States
| | - Y Tan
- Department of Medical & Molecular Biosciences, Faculty of Science, University of Technology, Sydney, NSW. Australia
| | - Xianqin Qu
- Department of Medical & Molecular Biosciences, Faculty of Science, University of Technology, Sydney, NSW. Australia
| | - Nigel H Greig
- Drug Design & Development Section, Gerontology Research Center, Room 4B02, 5600 Nathan Shock Dr., Baltimore, MD 21224. United States
| |
Collapse
|
7
|
Dain A, Repossi G, Diaz-Gerevini GT, Vanamala J, Das UN, Eynard AR. Long chain polyunsaturated fatty acids (LCPUFAs) and nordihydroguaiaretic acid (NDGA) modulate metabolic and inflammatory markers in a spontaneous type 2 diabetes mellitus model (Stillman Salgado rats). Lipids Health Dis 2016; 15:205. [PMID: 27884155 PMCID: PMC5123226 DOI: 10.1186/s12944-016-0363-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 11/04/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a complex disease with alterations in metabolic and inflammatory markers. Stillman Salgado rats (eSS) spontaneously develop type 2 DM by middle age showing progressive impairment of glucose tolerance with hyperglycemia, hypertriglyceridemia and hyperinsulinemia. We analyzed the effects of supplementation of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) with or without nordihydroguaiaretic acid (NDGA) added, an antioxidant and lipoxygenase inhibitor, on metabolic and inflammatory parameters in eSS rats to evaluate whether they can delay development and/or prevent progression of DM. METHODS After weaning, eSS rats received, intraperitoneally, once a month ω-3 (EPA 35% and DHA 40%-6.25 mg/Kg) or ω-6 (90% arachidonic acid- 6. 25 mg/Kg) for twelve months. Two additional groups of rats received 1.9 mg/kg NDGA added to ω-3 and ω-6 fatty acids. Blood samples were collected at day 40, and at the end of the 6th month and 12th month of age to determine plasma triglycerides (TGs), total plasma fatty acids (FA), A1C hemoglobin (HbA1C), C-reactive protein (CRP), gamma glutamyl transpeptidase (GGT), lipo and hydro peroxides, nitrites and IL-6 (in plasma and liver, kidney, and pancreas) and underwent oral glucose tolerance test (OGTT) as well. Wistar and eSS rats that received saline solution were used as controls. RESULTS Plasma lipids profile, TG, fasting and post-prandial blood glucose levels, and glycosylated HbA1C showed significant improvements in ω-3 and ω-3 + NDGA treated animals compared to eSS control group. ω-3 and ω-3 + NDGA groups showed an inverse correlation with fasting blood glucose and showed lower plasma levels of GGT, TG, and CRP. eSS rats treated with ω-3 LCPUFAs showed reduced level of inflammatory and oxidative indices in plasma and liver, kidney and pancreas tissues in comparison with eSS control (non-treated) and ω-6 treated groups. CONCLUSIONS eSS rats are a useful model to study type 2 DM pathophysiology and related inflammatory indices. ω-3 + NDGA supplementation, at the doses tested, ameliorated inflammatory, metabolic and oxidative stress markers studied.
Collapse
Affiliation(s)
- Alejandro Dain
- Biología Celular, Histología y Embriología, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Gaston Repossi
- Biología Celular, Histología y Embriología, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
- Cátedra de Histología, Embriología y Genética, Universidad Nacional de La Rioja, La Rioja, Argentina
- CONICET, Córdoba, Argentina
| | - Gustavo T Diaz-Gerevini
- Biología Celular, Histología y Embriología, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Jairam Vanamala
- Department of Food Science, Penn State University, 326 Food Science Building, University Park, PA, 16802, USA
| | - Undurti N Das
- UND Life Sciences, 2020 S 360th St, # K-202, Federal Way, WA, 98003, USA.
- BioScience Research Centre and Department of Medicine, GVP Hospital, Gayatri Vidya Parishad College of Engineering Campus, Visakhapatnam, 530 048, India.
| | - Aldo R Eynard
- Biología Celular, Histología y Embriología, Facultad de Ciencias Medicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.
- CONICET, Córdoba, Argentina.
| |
Collapse
|
8
|
Allergic fetal priming leads to developmental, behavioral and neurobiological changes in mice. Transl Psychiatry 2015; 5:e543. [PMID: 25849982 PMCID: PMC4462603 DOI: 10.1038/tp.2015.40] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/05/2015] [Accepted: 01/28/2015] [Indexed: 02/06/2023] Open
Abstract
The state of the mother's immune system during pregnancy has an important role in fetal development and disruptions in the balance of this system are associated with a range of neurologic, neuropsychiatric and neurodevelopmental disorders. Epidemiological and clinical reports reveal various clues that suggest a possible association between developmental neuropsychiatric disorders and family history of immune system dysfunction. Over the past three decades, analogous increases have been reported in both the incidence of neurodevelopmental disorders and immune-related disorders, particularly allergy and asthma, raising the question of whether allergic asthma and characteristics of various neurodevelopmental disorders share common causal links. We used a mouse model of maternal allergic asthma to test this novel hypothesis that early fetal priming with an allergenic exposure during gestation produces behavioral deficits in offspring. Mothers were primed with an exposure to ovalbumin (OVA) before pregnancy, then exposed to either aerosolized OVA or vehicle during gestation. Both male and female mice born to mothers exposed to aerosolized OVA during gestation exhibited altered developmental trajectories in weight and length, decreased sociability and increased marble-burying behavior. Moreover, offspring of OVA-exposed mothers were observed to have increased serotonin transporter protein levels in the cortex. These data demonstrate that behavioral and neurobiological effects can be elicited following early fetal priming with maternal allergic asthma and provide support that maternal allergic asthma may, in some cases, be a contributing factor to neurodevelopmental disorders.
Collapse
|
9
|
Kasbi-Chadli F, Ferchaud-Roucher V, Krempf M, Ouguerram K. Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet. Eur J Nutr 2015; 55:589-599. [DOI: 10.1007/s00394-015-0879-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
|
10
|
Shen J, Bi YL, Das UN. Potential role of polyunsaturated fatty acids in diabetic retinopathy. Arch Med Sci 2014; 10:1167-74. [PMID: 25624855 PMCID: PMC4296072 DOI: 10.5114/aoms.2014.47826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/05/2014] [Accepted: 03/12/2014] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a serious complication of long-standing diabetes mellitus. It affects about 25% of all patients with diabetes mellitus and causes a significant decrease in the quality of life. Despite many years of research, the exact pathway that leads to the development and progression of DR is not clear. Recent studies suggest that polyunsaturated fatty acids (PUFAs) and their metabolites could play a significant role in DR. There is evidence to suggest that an imbalance between pro- and anti-inflammatory eicosanoids and enhanced production of pro-angiogenic factors may initiate the onset and progression of DR. This implies that PUFAs and their metabolites that possess anti-inflammatory actions and suppress the production of angiogenic factors could be employed in the prevention and management of DR.
Collapse
Affiliation(s)
- Junhui Shen
- Department of Ophthalmology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yan-Long Bi
- Department of Ophthalmology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | | |
Collapse
|
11
|
Marroquín-Segura R, Calvillo-Esparza R, Mora-Guevara JLA, Tovalín-Ahumada JH, Aguilar-Contreras A, Hernández-Abad VJ. Increased acetylcholine esterase activity produced by the administration of an aqueous extract of the seed kernel of Thevetia peruviana and its role on acute and subchronic intoxication in mice. Pharmacogn Mag 2014; 10:S171-5. [PMID: 24914300 PMCID: PMC4047589 DOI: 10.4103/0973-1296.127370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/11/2012] [Accepted: 02/21/2014] [Indexed: 12/03/2022] Open
Abstract
Background: The real mechanism for Thevetia peruviana poisoning remains unclear. Cholinergic activity is important for cardiac function regulation, however, the effect of T. peruviana on cholinergic activity is not well-known. Objective: To study the effect of the acute administration of an aqueous extract of the seed kernel of T. peruviana on the acetylcholine esterase (AChE) activity in CD1 mice as well its implications in the sub-chronic toxicity of the extract. Materials and Methods: A dose of 100 mg/kg of the extract was administered to CD1 mice and after 7 days, serum was obtained for ceruloplasmin (CP) quantitation and liver function tests. Another group of mice received a 50 mg/kg dose of the extract 3 times within 1 h time interval and AChE activity was determined for those animals. Heart tissue histological preparation was obtained from a group of mice that received a daily 50 mg/kg dose of the extract by a 30-days period. Results: CP levels for the treated group were higher than those for the control group (Student's t-test, P ≤ 0.001). AChE activity in the treated group was significantly higher than the control group (Tukey test, control vs. T. peruviana, P ≤ 0.001). Heart tissue histological preparations showed leukocyte infiltrates and necrotic areas, consistent with infarcts. Conclusion: The increased levels of AChE and the hearth tissue infiltrative lesions induced by the aqueous seed kernel extract of T. peruviana explains in part the poisoning caused by this plant, which can be related to an inflammatory process.
Collapse
Affiliation(s)
- Rubén Marroquín-Segura
- Laboratorio de Inmunología, Unidad Multidisciplinaria de Investigación Experimental, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México. Batalla de 5 de mayo s/n, Col. Ejército de Oriente, CP 09230, Mexico City, Mexico
| | - Ricardo Calvillo-Esparza
- Laboratorio de Inmunología, Unidad Multidisciplinaria de Investigación Experimental, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México. Batalla de 5 de mayo s/n, Col. Ejército de Oriente, CP 09230, Mexico City, Mexico
| | - José Luis Alfredo Mora-Guevara
- Laboratorio de Inmunología, Unidad Multidisciplinaria de Investigación Experimental, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México. Batalla de 5 de mayo s/n, Col. Ejército de Oriente, CP 09230, Mexico City, Mexico
| | - José Horacio Tovalín-Ahumada
- Laboratorio de Inmunología, Unidad Multidisciplinaria de Investigación Experimental, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México. Batalla de 5 de mayo s/n, Col. Ejército de Oriente, CP 09230, Mexico City, Mexico
| | - Abigail Aguilar-Contreras
- Herbario de plantas medicinales, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social. Av. Cuauhtemoc 330, Col. Doctores, CP 06725, Mexico City, Mexico
| | - Vicente Jesús Hernández-Abad
- Laboratorio de Inmunología, Unidad Multidisciplinaria de Investigación Experimental, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México. Batalla de 5 de mayo s/n, Col. Ejército de Oriente, CP 09230, Mexico City, Mexico ; Laboratorio de Investigación Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México. Batalla de 5 de mayo s/n, Col. Ejército de Oriente, CP 09230, Mexico City, Mexico
| |
Collapse
|
12
|
Bolton JL, Auten RL, Bilbo SD. Prenatal air pollution exposure induces sexually dimorphic fetal programming of metabolic and neuroinflammatory outcomes in adult offspring. Brain Behav Immun 2014; 37:30-44. [PMID: 24184474 DOI: 10.1016/j.bbi.2013.10.029] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/07/2013] [Accepted: 10/26/2013] [Indexed: 12/26/2022] Open
Abstract
Environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal exposure to diesel exhaust particles (DEP), a primary component of air pollution, would prime microglia long-term, resulting in exacerbated metabolic and affective outcomes following exposure to a high-fat diet in adulthood. Time-mated mouse dams were intermittently exposed to respiratory instillations of either vehicle (VEH) or DEP throughout gestation. Adult male and female offspring were then fed either a low-fat diet (LFD) or high-fat diet (HFD) for 9 weeks. The male offspring of DEP-exposed dams exhibited exaggerated weight gain, insulin resistance, and anxiety-like behavior on HFD compared to the male offspring of VEH-exposed dams, whereas female offspring did not differ according to prenatal treatment. Furthermore, HFD induced evidence of macrophage infiltration of both adipose tissue and the brain in both sexes, but these cells were more activated specifically in DEP/HFD males. DEP/HFD males also expressed markedly higher levels of microglial/macrophage, but not astrocyte, activation markers in the hippocampus, whereas females exhibited only a suppression of astrocyte activation markers due to HFD. In a second experiment, DEP male offspring mounted an exaggerated peripheral IL-1β response to an LPS challenge at postnatal day (P)30, whereas their central IL-1β response did not differ from VEH male offspring, which is suggestive of macrophage priming due to prenatal DEP exposure. In sum, prenatal air pollution exposure "programs" offspring for increased susceptibility to diet-induced metabolic, behavioral, and neuroinflammatory changes in adulthood in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Jessica L Bolton
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Richard L Auten
- Department of Pediatrics, Division of Neonatal Medicine, Duke University Medical Center, Durham, NC 27708, USA
| | - Staci D Bilbo
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
13
|
Kamal MA, Priyamvada S, Anbazhagan AN, Jabir NR, Tabrez S, Greig NH. Linking Alzheimer's disease and type 2 diabetes mellitus via aberrant insulin signaling and inflammation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2014; 13:338-46. [PMID: 24074448 PMCID: PMC5947865 DOI: 10.2174/18715273113126660137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/16/2013] [Accepted: 04/02/2013] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two progressive and devastating health disorders afflicting millions of people worldwide. The probability and incidence of both have increased considerably in recent years consequent to increased longevity and population growth. Progressively more links are being continuously found between inflammation and central nervous system disorders like AD, Parkinson's disease, Huntington's disease, motor neuron disease, multiple sclerosis, stroke, traumatic brain injury and even cancers of the nervous tissue. The depth of the relationship depends on the timing and extent of anti- or pro-inflammatory gene expression. Inflammation has also been implicated in T2DM. Misfolding and fibrillization (of tissue specific and/or non-specific proteins) are features common to both AD and T2DM and are induced by as well as contribute to inflammation and stress (oxidative/ glycation). This review appraises the roles of inflammation and abnormalities in the insulin signaling system as important shared features of T2DM and AD. The capacity of anti-cholinesterases in reducing the level of certain common inflammatory markers in particular if they may provide therapeutic potential to mitigate awry mechanisms leading to AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Nigel H Greig
- Metabolomics & Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
14
|
Das >UN. Lipoxins, resolvins, protectins, maresins and nitrolipids, and their clinical implications with specific reference to diabetes mellitus and other diseases: part II. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.32] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Das UN. Lipoxins, resolvins, protectins, maresins and nitrolipids, and their clinical implications with specific reference to cancer: part I. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Drenowatz C, Carlson JJ, Pfeiffer KA, Eisenmann JC. Joint association of physical activity/screen time and diet on CVD risk factors in 10-year-old children. Front Med 2012; 6:428-435. [PMID: 23224418 DOI: 10.1007/s11684-012-0232-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/08/2012] [Indexed: 12/19/2022]
Abstract
The increasing prevalence of childhood overweight and obesity has been associated with an increased risk for cardiovascular disease (CVD). While several studies examined the effect of single behaviors such as physical activity (PA), sedentary behavior or diet on CVD risk, there is a lack of research on combined associations, specifically in children. Therefore, the purpose of this study was to examine the joint association of PA or screen time (ST) and diet on CVD risk factors in children. PA, STand diet were assessed via questionnaire in 210 fifth grade students (age: 10.6 ± 0.4 years). The healthy eating index (HEI) was subsequently calculated as indicator for diet quality. Height, weight, % body fat, and resting blood pressure were measured according to standard procedures and blood samples obtained via fingerprick were assayed for blood lipids. Total cholesterol HDL ratio (TC:HDL), mean arterial pressure (MAP), and % body fat were used as indicators of CVD risk. 55% of children did not meet current PA recommendations on at least 5 days/week and 70% exceeded current recommendations for ST. Further, only 2.5% possessed a "good" diet (HEI> 80). There was no significant association of PA or STand diet on CVD risk score. Neither TC:HDL, MAP, and % body fat nor the total CVD risk score was significantly correlated with diet, PA, or ST. Children in the high PA group, however, had significantly better diet scores. Despite the fact that self-reported PA, ST, or dietary intake were not directly related to CVD risk in this sample, higher activity levels were associated with a healthier diet and lower ST indicating an overall healthier lifestyle of this subgroup.
Collapse
Affiliation(s)
- Clemens Drenowatz
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
17
|
Das UN. Vagal nerve stimulation in prevention and management of coronary heart disease. World J Cardiol 2011; 3:105-10. [PMID: 21526047 PMCID: PMC3082733 DOI: 10.4330/wjc.v3.i4.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/27/2011] [Accepted: 04/03/2011] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease (CHD) that is due to atherosclerosis is associated with low-grade systemic inflammation. Congestive cardiac failure and arrhythmias that are responsible for mortality in CHD can be suppressed by appropriate vagal stimulation that is anti-inflammatory in nature. Acetylcholine, the principal vagal neurotransmitter, is a potent anti-inflammatory molecule. Polyunsaturated fatty acids (PUFAs) augment acetylcholine release, while acetylcholine can enhance the formation of prostacyclin, lipoxins, resolvins, protectins and maresins from PUFAs, which are anti-inflammatory and anti-arrhythmic molecules. Furthermore, plasma and tissue levels of PUFAs are low in those with CHD and atherosclerosis. Hence, vagal nerve stimulation is beneficial in the prevention of CHD and cardiac arrhythmias. Thus, measurement of catecholamines, acetylcholine, various PUFAs, and their products lipoxins, resolvins, protectins and maresins in the plasma and peripheral leukocytes, and vagal tone by heart rate variation could be useful in the prediction, prevention and management of CHD and cardiac arrhythmias.
Collapse
Affiliation(s)
- Undurti N Das
- Undurti N Das, UND Life Sciences, 13800 Fairhill Road, #321, Shaker Heights, OH 44120, United States.
| |
Collapse
|
18
|
Das UN. Influence of polyunsaturated fatty acids and their metabolites on stem cell biology. Nutrition 2011; 27:21-25. [DOI: 10.1016/j.nut.2010.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 02/06/2023]
|
19
|
Why and How Meet n-3 PUFA Dietary Recommendations? Gastroenterol Res Pract 2010; 2011:364040. [PMID: 21197079 PMCID: PMC3004387 DOI: 10.1155/2011/364040] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/20/2010] [Accepted: 10/09/2010] [Indexed: 01/12/2023] Open
Abstract
Obesity and the metabolic syndrome are systemic inflammatory diseases reaching epidemic proportions. Contemporary changes in human nutrition occurred characterized by increased consumption of fat and of vegetable oils rich in n-6 polyunsaturated fatty acids (PUFAs) together with decrease in n-3 PUFA-rich foods, resulting in an n-6/n-3 ratio of 10–20/1 in Western diet for a ratio around 1/1 in the diet of our ancestors. The literature provides compelling evidence for the health benefit of n-3 PUFA consumption on inflammation and metabolic syndrome prevention and treatment. Such evidence led to the establishment of comprehensive recommendations. However, we show here that, both in collective catering proposed to children and in hospital diet, it is not straightforward to meet such recommendations. Willingness of governments to institute changes, with accountable decisions on catering, nutritional education, and food processing, is required to face our neglected responsibility in promoting balanced diet and consumption of foods rich in essential nutrients in the general population.
Collapse
|
20
|
Das UN. Hypothesis: Intensive insulin therapy-induced mortality is due to excessive serotonin autoinhibition and autonomic dysregulation. World J Diabetes 2010; 1:101-8. [PMID: 21537434 PMCID: PMC3083892 DOI: 10.4239/wjd.v1.i4.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 08/06/2010] [Accepted: 08/13/2010] [Indexed: 02/05/2023] Open
Abstract
Action to Control Cardiovascular Risk in Diabetes (ACCORD), The Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation and the Veterans Affairs Diabetes Trial were designed to study whether older patients with type 2 diabetes mellitus could reduce the risk of heart attacks and stroke and thereby prolong their lives by maintaining their blood glucose levels at near-healthy levels but failed to demonstrate the hoped-for benefit. Why the trials failed, though, and why ACCORD saw significantly more deaths due to increased rates of cardiovascular events in the intensive therapy arm of the study are not clear. These data have now been confirmed by the results of the recently concluded NICE-SUGAR Study which again revealed that intensive glucose control increased mortality among adults in intensive care units. I propose that the negative results noted in these trials are due to altered brain serotonin concentrations and autonomic dysregulation in addition to the low-grade systemic inflammation, decreased endothelial nitric oxide and enhanced free radical generation, diminished anti-oxidant defenses and altered metabolism of essential fatty acids present in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Undurti N Das
- Undurti N Das, Jawaharlal Nehru Technological University, Kakiada 533 003, Andhra Pradesh, India
| |
Collapse
|
21
|
Das UN. Obesity: genes, brain, gut, and environment. Nutrition 2009; 26:459-73. [PMID: 20022465 DOI: 10.1016/j.nut.2009.09.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 09/21/2009] [Accepted: 09/27/2009] [Indexed: 01/04/2023]
Abstract
Obesity, which is assuming alarming proportions, has been attributed to genetic factors, hypothalamic dysfunction, and intestinal gut bacteria and an increase in the consumption of energy-dense food. Obesity predisposes to the development of type 2 diabetes mellitus, hypertension, coronary heart disease, and certain forms of cancer. Recent studies have shown that the intestinal bacteria in obese humans and mice differ from those in lean that could trigger a low-grade systemic inflammation. Consumption of a calorie-dense diet that initiates and perpetuates obesity could be due to failure of homeostatic mechanisms that regulate appetite, food consumption, and energy balance. Hypothalamic factors that regulate energy needs of the body, control appetite and satiety, and gut bacteria that participate in food digestion play a critical role in the onset of obesity. Incretins, cholecystokinin, brain-derived neurotrophic factor, leptin, long-chain fatty acid coenzyme A, endocannabinoids and vagal neurotransmitter acetylcholine play a role in the regulation of energy intake, glucose homeostasis, insulin secretion, and pathobiology of obesity and type 2 diabetes mellitus. Thus, there is a cross-talk among the gut, liver, pancreas, adipose tissue, and hypothalamus. Based on these evidences, it is clear that management of obesity needs a multifactorial approach.
Collapse
|
22
|
Panickar K, Bhathena S. Control of Fatty Acid Intake and the Role of Essential Fatty Acids in Cognitive Function and Neurological Disorders. Front Neurosci 2009. [DOI: 10.1201/9781420067767-c18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
23
|
Ménesi D, Kitajka K, Molnár E, Kis Z, Belleger J, Narce M, Kang JX, Puskás LG, Das UN. Gene and protein expression profiling of the fat-1 mouse brain. Prostaglandins Leukot Essent Fatty Acids 2009; 80:33-42. [PMID: 19138887 DOI: 10.1016/j.plefa.2008.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 01/07/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential structural components of all cell membranes and, more so, of the central nervous system. Several studies revealed that n-3 PUFAs possess anti-inflammatory actions and are useful in the treatment of dyslipidemia. These actions explain the beneficial actions of n-3 PUFAs in the management of cardiovascular diseases, inflammatory conditions, neuronal dysfunction, and cancer. But, the exact molecular targets of these beneficial actions of n-3 PUFAs are not known. Mice engineered to carry a fat-1 gene from Caenorhabditis elegans add a double bond into an unsaturated fatty acid hydrocarbon chain and convert n-6 to n-3 fatty acids. This results in an abundance of n-3 eicosapentaenoic acid and docosapentaenoic acid specifically in the brain and a reduction in n-6 fatty acids of these mice that can be used to evaluate the actions of n-3 PUFAs. Gene expression profile, RT-PCR and protein microarray studies in the hippocampus and whole brain of wild-type and fat-1 transgenic mice revealed that genes and proteins concerned with inflammation, apoptosis, neurotransmission, and neuronal growth and synapse formation are specifically modulated in fat-1 mice. These results may explain as to why n-3 PUFAs are of benefit in the prevention and treatment of diseases such as Alzheimer's disease, schizophrenia and other diseases associated with neuronal dysfunction, low-grade systemic inflammatory conditions, and bronchial asthma. Based on these data, it is evident that n-3 PUFAs act to modulate specific genes and formation of their protein products and thus, bring about their various beneficial actions.
Collapse
Affiliation(s)
- Dalma Ménesi
- Functional Genomics Laboratory, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Herrera E, Ramos MP. Long-term effects oftransfatty acid intake during pregnancy and lactation: does it have deleterious consequences? ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.5.489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Das UN. Can essential fatty acids reduce the burden of disease(s)? Lipids Health Dis 2008; 7:9. [PMID: 18348729 PMCID: PMC2276500 DOI: 10.1186/1476-511x-7-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 03/18/2008] [Indexed: 12/14/2022] Open
Abstract
Coronary heart disease, stroke, diabetes mellitus, hypertension, cancer, depression schizophrenia, Alzheimer's disease, and collagen vascular diseases are low-grade systemic inflammatory conditions that are a severe burden on health care resources. Essential fatty acids (EFAs) and their metabolites: eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), dihomo-gamma-linolenic acid (DGLA), and arachidonic acid (AA) and their products: prostaglandin E1, prostacyclin, lipoxins, resolvins, and protectins suppress inflammation, augment healing, and are of benefit in the prevention and management of these conditions. Hence, supplementation of EFAs could reduce burden of these disease(s).
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road, #321, Shaker Heights, OH 44120, USA.
| |
Collapse
|
26
|
Das UN. Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer's disease--but how and why? Prostaglandins Leukot Essent Fatty Acids 2008; 78:11-9. [PMID: 18054217 DOI: 10.1016/j.plefa.2007.10.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/18/2007] [Accepted: 10/21/2007] [Indexed: 01/14/2023]
Abstract
Low blood folate and raised homocysteine concentrations are associated with poor cognitive function. Folic acid supplementation improves cognitive function. Folic acid enhances the plasma concentrations of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). EPA, DHA, and arachidonic acid (AA) are of benefit in dementia and Alzheimer's disease by up-regulating gene expression concerned with neurogenesis, neurotransmission and connectivity, improving endothelial nitric oxide (eNO) generation, enhancing brain acetylcholine levels, and suppressing the production of pro-inflammatory cytokines. EPA, DHA, and AA also form precursors to anti-inflammatory compounds such as lipoxins, resolvins, and neuroprotectin D1 (NPD1) that protect neurons from the cytotoxic action of various noxious stimuli. Furthermore, various neurotrophins and statins enhance the formation of NPD1 and thus, protect neurons from oxidative stress and prevent neuronal apoptosis Folic acid improves eNO generation, enhances plasma levels of EPA/DHA and thus, could augment the formation of NPD1. These results suggest that a combination of EPA, DHA, AA and folic acid could be of significant benefit in dementia, depression, and Alzheimer's disease and improve cognitive function.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road #321, Shaker Heights, OH 44120, USA.
| |
Collapse
|
27
|
Das UN, Rao AA. Gene expression profile in obesity and type 2 diabetes mellitus. Lipids Health Dis 2007; 6:35. [PMID: 18078524 PMCID: PMC2242786 DOI: 10.1186/1476-511x-6-35] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 12/14/2007] [Indexed: 01/04/2023] Open
Abstract
Obesity is an important component of metabolic syndrome X and predisposes to the development of type 2 diabetes mellitus. The incidence of obesity, type 2 diabetes mellitus and metabolic syndrome X is increasing, and the cause(s) for this increasing incidence is not clear. Although genetics could play an important role in the higher prevalence of these diseases, it is not clear how genetic factors interact with environmental and dietary factors to increase their incidence. We performed gene expression profile in subjects with obesity and type 2 diabetes mellitus with and without family history of these diseases. It was noted that genes involved in carbohydrate, lipid and amino acid metabolism pathways, glycan of biosynthesis, metabolism of cofactors and vitamin pathways, ubiquitin mediated proteolysis, signal transduction pathways, neuroactive ligand-receptor interaction, nervous system pathways, neurodegenerative disorders pathways are upregulated in obesity compared to healthy subjects. In contrast genes involved in cell adhesion molecules, cytokine-cytokine receptor interaction, insulin signaling and immune system pathways are downregulated in obese. Genes involved in signal transduction, regulation of actin cytoskeleton, antigen processing and presentation, complement and coagulation cascades, axon guidance and neurodegenerative disorders pathways are upregulated in subjects with type 2 diabetes with family history of diabetes compared to those who are diabetic but with no family history. Genes involved in oxidative phosphorylation, immune, nervous system, and metabolic disorders pathways are upregulated in those with diabetes with family history of diabetes compared to those with diabetes but with no family history. In contrast, genes involved in lipid and amino acid pathways, ubiquitin mediated proteolysis, signal transduction, insulin signaling and PPAR signaling pathways are downregulated in subjects with diabetes with family history of diabetes. It was noted that genes involved in inflammatory pathway are differentially expressed both in obesity and type 2 diabetes. These results suggest that genes concerned with carbohydrate, lipid and amino acid metabolic pathways, neuronal function and inflammation play a significant role in the pathobiology of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road, #321, Shaker Heights, OH 44120, USA.
| | | |
Collapse
|