1
|
Greifová H, Jambor T, Tokárová K, Knížatová N, Lukáč N. In Vitro Effect of Resveratrol Supplementation on Oxidative Balance and Intercellular Communication of Leydig Cells Subjected to Induced Oxidative Stress. Folia Biol (Praha) 2022. [DOI: 10.3409/fb_70-1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many studies have revealed that oxidative stress is a primary factor in the pathogenesis of male reproductive system dysfunctions. The strong antioxidant and cytoprotective effects of resveratrol have previously been demonstrated, but its effect in the context of the male reproduction
remains unconvincing. To observe the biological activity of resveratrol in protecting the male reproductive function, hydrogen peroxide-induced oxidative stress in Leydig cells was used as a cell model. The aim of the present study was to examine if resveratrol could induce changes in the
gap junction intercellular communication (GJIC), nitric oxide production, total oxidant status (TOS) and total antioxidant capacity (TAC) in TM3 Leydig cells subjected to H2O2. The Leydig cells were exposed to a resveratrol treatment (5, 10, 20, 50 and 100 μM) in the
presence or absence of H2O2 (300/600 μM) during a 24 h in vitro culture. The cell lysates to assess TOS and TAC, NO production were quantified in a culture medium using the Griess method, and the Scrape Loading/Dye Transfer (SL/DT) technique was used for the
determination of GJIC in the exposed TM3 Leydig cells. Treatment with higher doses of resveratrol alone led to a significantly increased TOS (p<0.05 with 100 μM) and NO production (p<0.05 with 50 μM and 100 μM), but significantly reduced TAC (p<0.01 with 100 μM) and GJIC
(p<0.05 with 100 μM), while the SL/DT evaluation in the cells exposed to resveratrol at concentrations 5 μM (p<0.05) and 10 μM (p<0.01) revealed a significant stimulation of GJIC. The most potent cytoprotective or stimulatory effect of resveratrol in the cells co-exposed
to oxidative stress (300 μM H2O2) was observed at a concentration of 10 μM in the case of GJIC, which was manifested by a significant increase in the values (p<0.05) compared to the control group treated with H2O2 alone.
Collapse
Affiliation(s)
- Hana Greifová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Jambor
- BioFood Centre, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Katarína Tokárová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Nikola Knížatová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Norbert Lukáč
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
2
|
Jiang Y, Pei J, Zheng Y, Miao YJ, Duan BZ, Huang LF. Gallic Acid: A Potential Anti-Cancer Agent. Chin J Integr Med 2021; 28:661-671. [PMID: 34755289 DOI: 10.1007/s11655-021-3345-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 10/19/2022]
Abstract
Cancer is one of the most devastating diseases worldwide and definitive therapeutics for treating cancer are not yet available despite extensive research efforts. The key challenges include limiting factors connected with traditional chemotherapeutics, primarily drug resistance, low response rates, and adverse side-effects. Therefore, there is a high demand for novel anti-cancer drugs that are both potent and safe for cancer prevention and treatment. Gallic acid (GA), a natural botanic phenolic compound, can mediate various therapeutic properties that are involved in anti-inflammation, anti-obesity, and anti-cancer activities. More recently, GA has been shown to exert anti-cancer activities via several biological pathways that include migration, metastasis, apoptosis, cell cycle arrest, angiogenesis, and oncogene expression. This review discusses two aspects, one is the anti-cancer potential of GA against different types of cancer and the underlying molecular mechanisms, the other is the bibliometric analysis of GA in cancer and tumor research. The results indicated that lung cancer, prostate cancer, stomach cancer, and colon adenocarcinoma may become a hot topic in further research. Overall, this review provides evidence that GA represents a promising novel, potent, and safe anti-cancer drug candidate for treating cancer.
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,College of Pharmaceutical Science, Dali University, Dali, Yunnan Province, 671000, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yan Zheng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yu-Jing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Bao-Zhong Duan
- College of Pharmaceutical Science, Dali University, Dali, Yunnan Province, 671000, China
| | - Lin-Fang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China. .,State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
4
|
Santolim LV, Amaral MECD, Fachi JL, Mendes MF, Oliveira CAD. Vitamin E and caloric restriction promote hepatic homeostasis through expression of connexin 26, N-cad, E-cad and cholesterol metabolism genes. J Nutr Biochem 2017; 39:86-92. [PMID: 27816814 DOI: 10.1016/j.jnutbio.2016.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022]
Abstract
Connexins (Cx) and cadherins are responsible for cell homeostasis. The Cx activity is directly related to cholesterol. The present work investigates whether vitamin E, with or without caloric restriction (CR), alters the mRNA expression of Cx26, Cx32, Cx43, N-cadherins (N-cads), E-cadherins (E-cads) and alpha-smooth muscle actin (α-SMA), and evaluates their relation to cholesterol metabolism in rat liver. Animals were divided into different groups: control with ad libitum diet (C), control+vitamin E (CV), aloric restriction with intake to 60% of group C (CR), and the intake of group CR+vitamin E (RV). There were increases of manganese superoxide dismutase (Mn-SOD) and glutathione S-transferase mu 1, indicating antioxidant effects of CR and vitamin E. An increase of nitric oxide in the CR group was in agreement with the Mn-SOD data. Supplementation with vitamin E, with or without CR, upregulated the expression of Cx26 mRNA and increased low-density lipoprotein cholesterol (LDL-c) in the CV group. Reductions of Cx32 and Cx43 were associated with lower LDL-c. Increases in Hmgcr and low-density lipoprotein receptor (LDLr) in the CV and RV groups could be explained by the effect of vitamin E. A reduction of LDLr in the CR group was due to the reduced dietary intake. Increases in cadherins in the CV, CR and RV groups were indicative of tissue maintenance, which was also supported by increases of α-SMA in groups CV and RV. Finally, vitamin E, with or without CR, increased Cx26, probably modulated by expression of the Hmgcr and LDLr genes. This suggests important relationship of Cxs and cholesterol metabolism genes.
Collapse
Affiliation(s)
- Leonardo Vinícius Santolim
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, SP 13607339, Brazil
| | | | - José Luís Fachi
- School of Biomedicine, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, SP 13607339, Brazil
| | - Maíra Felonato Mendes
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, SP 13607339, Brazil
| | - Camila Andréa de Oliveira
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, UNIARARAS, Araras, SP 13607339, Brazil.
| |
Collapse
|
5
|
Babica P, Čtveráčková L, Lenčešová Z, Trosko JE, Upham BL. Chemopreventive Agents Attenuate Rapid Inhibition of Gap Junctional Intercellular Communication Induced by Environmental Toxicants. Nutr Cancer 2016; 68:827-37. [PMID: 27266532 DOI: 10.1080/01635581.2016.1180409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Altered gap junctional intercellular communication (GJIC) has been associated with chemical carcinogenesis, where both chemical tumor promoters and chemopreventive agents (CPAs) are known to conversely modulate GJIC. The aim of this study was to investigate whether attenuation of chemically inhibited GJIC represents a common outcome induced by different CPAs, which could be effectively evaluated using in vitro methods. Rat liver epithelial cells WB-F344 were pretreated with a CPA for either 30 min or 24 h, and then exposed to GJIC-inhibiting concentration of a selected tumor promoter or environmental toxicant [12-O-tetradecanoylphorbol-13-acetate (TPA), lindane, fluoranthene, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), perfluorooctanoic acid (PFOA), or pentachlorophenol]. Out of nine CPAs tested, quercetin and silibinin elicited the most pronounced effects, preventing the dysregulation of GJIC by all the GJIC inhibitors, but DDT. Metformin and curcumin attenuated the effects of three GJIC inhibitors, whereas the other CPAs prevented the effects of two (diallyl sulfide, emodin) or one (indole-3-carbinol, thymoquinone) GJIC inhibitor. Significant attenuation of chemically induced inhibition of GJIC was observed in 27 (50%) out of 54 possible combinations of nine CPAs and six GJIC inhibitors. Our data demonstrate that in vitro evaluation of GJIC can be used as an effective screening tool for identification of chemicals with potential chemopreventive activity.
Collapse
Affiliation(s)
- Pavel Babica
- a Department of Experimental Phycology and Ecotoxicology , Institute of Botany of the ASCR , Brno , Czech Republic.,b RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University , Brno , Czech Republic
| | - Lucie Čtveráčková
- a Department of Experimental Phycology and Ecotoxicology , Institute of Botany of the ASCR , Brno , Czech Republic.,b RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University , Brno , Czech Republic
| | - Zuzana Lenčešová
- a Department of Experimental Phycology and Ecotoxicology , Institute of Botany of the ASCR , Brno , Czech Republic.,b RECETOX - Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University , Brno , Czech Republic
| | - James E Trosko
- c Department of Pediatrics and Human Development & Institute for Integrative Toxicology, Michigan State University , Michigan , USA
| | - Brad L Upham
- c Department of Pediatrics and Human Development & Institute for Integrative Toxicology, Michigan State University , Michigan , USA
| |
Collapse
|
6
|
Vinken M. Regulation of connexin signaling by the epigenetic machinery. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:262-8. [PMID: 26566120 DOI: 10.1016/j.bbagrm.2015.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
Connexins and their channels are involved in the control of all aspects of the cellular life cycle, ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular communication. These multifaceted aspects of connexin-related cellular signaling obviously require strict regulation. While connexin channel activity is mainly directed by posttranslational modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over the past few years, it has become clear that connexin production is equally dictated by epigenetic actions. This paper provides an overview of the role of major determinants of the epigenome, including DNA methylation, histone acetylation and microRNA species, in connexin expression.
Collapse
Affiliation(s)
- Mathieu Vinken
- Vrije Universiteit Brussel, Department of In Vitro Toxicology and Dermato-Cosmetology, Building G, Room G226, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| |
Collapse
|
7
|
Olayinka ET, Ore A, Ola OS, Adeyemo OA. Ameliorative Effect of Gallic Acid on Cyclophosphamide-Induced Oxidative Injury and Hepatic Dysfunction in Rats. Med Sci (Basel) 2015; 3:78-92. [PMID: 29083393 PMCID: PMC5635756 DOI: 10.3390/medsci3030078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/29/2022] Open
Abstract
Cyclophosphamide (CP), a bifunctional alkylating agent used in chemotherapy has been reported to induce organ toxicity mediated by generation of reactive oxygen species and oxidative stress. Gallic acid (GA), a phenolic substance, is a natural antioxidant with proven free radical scavenging activity and offers protection against oxidative damage. This research study was designed to investigate the ameliorative effect of GA against CP-induced toxicity in rats. Twenty-five male Wistar rats (180-200 g) were randomized into five treatment groups: (A) control, (B) CP, 2 mg/kg body weight (b.w.), (C) pre-treatment with GA (20 mg/kg b.w.) for seven days followed by CP (2 mg/kg b.w.) for seven days, (D) co-treatment with GA (20 mg/kg b.w) and CP (2 mg/kg b.w.) for seven days, and (E) GA (20 mg/kg b.w.) for seven days. CP induced marked renal and hepatic damages as plasma levels of urea, creatinine, bilirubin and activities of AST, ALT, ALP and GGT were significantly elevated (p < 0.05) in the CP-treated group relative to control. In addition, hepatic levels of GSH, vitamin C and activities of SOD, catalase and GST significantly reduced in the CP-treated group when compared with control. This was accompanied with a significant increase in hepatic lipid peroxidation. The restoration of the markers of renal and hepatic damages as well as antioxidant indices and lipid peroxidation by pre- and co-treatment with GA clearly shows that GA offers ameliorative effect by scavenging the reactive oxygen species generated by CP. This protective effect may be attributed to the antioxidant property of gllic acid.
Collapse
Affiliation(s)
- Ebenezer Tunde Olayinka
- Biochemistry Unit, Department of Chemical Sciences, Ajayi Crowther University, PMB 1066, Oyo, Oyo State 211213, Nigeria.
| | - Ayokanmi Ore
- Biochemistry Unit, Department of Chemical Sciences, Ajayi Crowther University, PMB 1066, Oyo, Oyo State 211213, Nigeria.
| | - Olaniyi Solomon Ola
- Biochemistry Unit, Department of Chemical Sciences, Ajayi Crowther University, PMB 1066, Oyo, Oyo State 211213, Nigeria.
| | - Oluwatobi Adewumi Adeyemo
- Biochemistry Unit, Department of Chemical Sciences, Ajayi Crowther University, PMB 1066, Oyo, Oyo State 211213, Nigeria.
| |
Collapse
|
8
|
Electrochemical Determination of Phenolic Acids at a Zn/Al Layered Double Hydroxide Film Modified Glassy Carbon Electrode. ELECTROANAL 2014. [DOI: 10.1002/elan.201400156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Ouhtit A, Gaur RL, Abdraboh M, Ireland SK, Rao PN, Raj SG, Al-Riyami H, Shanmuganathan S, Gupta I, Murthy SN, Hollenbach A, Raj MHG. Simultaneous inhibition of cell-cycle, proliferation, survival, metastatic pathways and induction of apoptosis in breast cancer cells by a phytochemical super-cocktail: genes that underpin its mode of action. J Cancer 2013; 4:703-15. [PMID: 24312140 PMCID: PMC3842439 DOI: 10.7150/jca.7235] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022] Open
Abstract
Traditional chemotherapy and radiotherapy for cancer treatment face serious challenges such as drug resistance and toxic side effects. Complementary / Alternative medicine is increasingly being practiced worldwide due to its safety beneficial therapeutic effects. We hypothesized that a super combination (SC) of known phytochemicals used at bioavailable levels could induce 100% killing of breast cancer (BC) cells without toxic effects on normal cells and that microarray analysis would identify potential genes for targeted therapy of BC. Mesenchymal Stems cells (MSC, control) and two BC cell lines were treated with six well established pro-apoptotic phytochemicals individually and in combination (super cocktail), at bioavailable levels. The compounds were ineffective individually. In combination, they significantly suppressed BC cell proliferation (>80%), inhibited migration and invasion, caused cell cycle arrest and induced apoptosis resulting in 100% cell death. However, there were no deleterious effects on MSC cells used as control. Furthermore, the SC down-regulated the expression of PCNA, Rb, CDK4, BcL-2, SVV, and CD44 (metastasis inducing stem cell factor) in the BC cell lines. Microarray analysis revealed several differentially expressed key genes (PCNA, Rb, CDK4, Bcl-2, SVV, P53 and CD44) underpinning SC-promoted BC cell death and motility. Four unique genes were highly up-regulated (ARC, GADD45B, MYLIP and CDKN1C). This investigation indicates the potential for development of a highly effective phytochemical combination for breast cancer chemoprevention / chemotherapy. The novel over-expressed genes hold the potential for development as markers to follow efficacy of therapy.
Collapse
Affiliation(s)
- Allal Ouhtit
- 1. Stanley S Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana
- 2. Present address: Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Rajiv Lochan Gaur
- 1. Stanley S Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana
- 3. Present address: Department of Pathology, Stanford University, California
| | - Mohamed Abdraboh
- 1. Stanley S Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana
- 4. Present address: Faculty of Science, University of Mansora, Egypt
| | - Shubha K. Ireland
- 5. Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - Prakash N Rao
- 6. New Jersey Organ and Tissue Sharing Network, New Jersey
| | | | - Hamad Al-Riyami
- 2. Present address: Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Somya Shanmuganathan
- 2. Present address: Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Ishita Gupta
- 2. Present address: Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Subramanyam N Murthy
- 8. Departnent of Environmental Toxicology, Southern University and A & M College, Baton Rouge, Louisiana
| | - Andrew Hollenbach
- 9. Department of Genetics, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Madhwa HG Raj
- 1. Stanley S Scott Cancer Center, Louisiana Health Sciences Center, New Orleans, Louisiana
- 10. Department of Obstetrics & Gynecology, Louisiana Health Sciences Center
| |
Collapse
|
10
|
Wang J, Dai Y, Huang Y, Chen X, Wang H, Hong Y, Xia J, Cheng B. All-trans retinoic acid restores gap junctional intercellular communication between oral cancer cells with upregulation of Cx32 and Cx43 expressions in vitro. Med Oral Patol Oral Cir Bucal 2013; 18:e569-77. [PMID: 23524428 PMCID: PMC3731083 DOI: 10.4317/medoral.18693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/31/2012] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE All-trans retinoic acid (ATRA) has been demonstrated to inhibit tumor growth by restoration of gap junctional intercellular communication (GJIC) via upregulation of connexin (Cx) expression in some solid tumors. However, the relationship between ATRA and GJIC remains unclear in oral squamous cell carcinoma (OSCC). The aim of this study was to investigate the effect of ATRA on the GJIC function of OSCC. STUDY DESIGN We measured the effects of ATRA on the viability and cell cycle distribution of SCC9 and Tca8113 OSCC cells. The GJIC function was observed using the scrape-loading dye transfer technique, and the mRNA and protein levels of Cx32 and Cx43 were detected by qRT-PCR, Western blot, and immunofluorescence assays. RESULTS ATRA inhibited the growth of OSCC cells in a dose- and time-dependent manner (P <0.05) and caused cell cycle arrest. ATRA-treated cells showed a 2.69-fold and 2.06-fold enhancement of GJIC in SCC9 and Tca8113 cells, respectively (P <0.05). Moreover, ATRA induced upregulation of Cx32 and Cx43 at both the mRNA and protein levels in OSCC cells. CONCLUSION Our results indicated that restoration of GJIC via enhanced Cx32 and Cx43 expression might serve as a novel mechanism for the anti-tumor effect of ATRA in OSCC.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oral Medicine, The Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Rakib MA, Kim YS, Jang WJ, Jang JS, Kang SJ, Ha YL. Preventive effect of t,t-conjugated linoleic acid on 12-O-tetradecanoylphorbol-13-acetate-induced inhibition of gap junctional intercellular communication in human mammary epithelial MCF-10A cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4164-4170. [PMID: 21391601 DOI: 10.1021/jf1046909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The anti-tumor promotional effects of t9,t11-conjugated linoleic acid (t9,t11-CLA) and t10,t12-CLA were evaluated on the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inhibition of gap junctional intercellular communication (GJIC) in the human mammary epithelial cell line MCF-10A. The results were compared to those obtained from c9,t11-CLA, which is a more effective anti-tumor promoter on TPA-induced GJIC inhibition in MCF-10A cells than t10,c12-CLA. Cells were treated with 20 μM t9,t11-CLA, t10,t12-CLA, or c9,t11-CLA for 24 h followed by 60 nM TPA for 1 h. Both t9,t11-CLA and t10,t12-CLA equally protected MCF-10A cells from TPA-induced inhibition of GJIC with inferior efficacy to c9,t11-CLA.The protection was due to the ameliorated phosphorylation of connexin43 via suppression of extracellular signal-regulated kinases (ERK1/2) activation. Suppression of TPA-induced reactive oxygen species (ROS) generation by t9,t11-CLA and t10,t12-CLA was less effective, relative to c9,t11-CLA. The results suggest that the anti-promotional activities of t9,t11-CLA and t10,t12-CLA are equal but less potent than c9,t11-CLA in TPA-treated MCF-10A cells. The activity might be mediated by the attenuation of ROS production in MCF-10A cells by preventing the downregulation of GJIC during the cancer promotion stage.
Collapse
Affiliation(s)
- Md Abdur Rakib
- Division of Applied Life Science (BK21 Program), Graduate School, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
Rakib MA, Kim YS, Jang WJ, Choi BD, Kim JO, Kong IK, Ha YL. Attenuation of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced gap junctional intercellular communication (GJIC) inhibition in MCF-10A cells by c9,t11-conjugated linoleic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12022-12030. [PMID: 21028875 DOI: 10.1021/jf103205c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The protective effect of c9,t11-conjugated linoleic acid (CLA) on the inhibition of gap junctional intercellular communication (GJIC) was examined in a human mammary epithelial cell line (MCF-10A) treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), relative to t10,c12-CLA isomer. TPA inhibited GJIC in a dose-dependent and reversible manner and was associated with connexin 43 phosphorylation. Pretreatment of 20 μM c9,t11-CLA for 24 h prior to 60 nM TPA for 1 h prevented the inhibition of GJIC by reducing the phosphorylation of connexin 43 via suppressing extracellular signal-regulated kinases (ERK1/2) activation. Reactive oxygen species (ROS) accumulation by TPA was attenuated by c9,t11-CLA. The efficacy of c9,t11-CLA in protecting inhibition of GJIC, connexin 43 phosphorylation, and ROS production was superior to that of t10,c12-CLA. These results suggest that c9,t11-CLA, including t10,c12-CLA, prevents the carcinogenesis of MCF-10A cells by protecting down-regulation of GJIC during the cancer promotion stage, and lack of their toxicities could be an excellent indicator for the chemoprevention of breast cancer.
Collapse
Affiliation(s)
- Md Abdur Rakib
- Division of Applied Life Science (BK21 Program), Graduate School, and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Leone A, Zefferino R, Longo C, Leo L, Zacheo G. Supercritical CO(2)-extracted tomato Oleoresins enhance gap junction intercellular communications and recover from mercury chloride inhibition in keratinocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4769-4778. [PMID: 20235579 DOI: 10.1021/jf1001765] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A nutritionally relevant phytochemical such as lycopene, found in tomatoes and other fruits, has been proposed to have health-promoting effects by modulating hormonal and immune systems, metabolic pathways, and gap junction intercellular communication (GJIC). This work analyzes lycopene extracts, obtained from tomato and tomato added with grape seeds by using a safe and environmentally friendly extraction process, based on supercritical carbon dioxide technology (S-CO(2)). Analysis of the innovative S-CO(2)-extracted oleoresins showed peculiar chemical composition with high lycopene concentration and the presence of other carotenoids, lipids, and phenol compounds. The oleoresins showed a higher in vitro antioxidant activity compared with pure lycopene and beta-carotene and the remarkable ability to enhance the GJIC and to increase cx43 expression in keratinocytes. The oleoresins, (0.9 microM lycopene), were also able to overcome, completely, the GJIC inhibition induced by 10 nM HgCl(2), mercury(II) chloride, suggesting a possible action mechanism.
Collapse
Affiliation(s)
- Antonella Leone
- National Research Council, Institute of Science of Food Production (CNR, ISPA), Lecce, Italy.
| | | | | | | | | |
Collapse
|
14
|
Bishayee A, Politis T, Darvesh AS. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat Rev 2009; 36:43-53. [PMID: 19910122 DOI: 10.1016/j.ctrv.2009.10.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and lethal diseases in the world. Although the majority of HCC cases occur in developing countries of Asia and Africa, the prevalence of liver cancer has risen considerably in Japan, Western Europe as well as the United States. HCC most commonly develops in patients with chronic liver disease, the etiology of which includes viral hepatitis (B and C), alcohol, obesity, iron overload and dietary carcinogens, including aflatoxins and nitrosamines. The current treatment modalities, including surgical resection and liver transplantation, have been found to be mostly ineffective. Hence, there is an obvious critical need to develop alternative strategies for the chemoprevention and treatment of HCC. Oxidative stress as well as inflammation has been implicated in the development and progression of hepatic neoplasia. Using naturally occurring phytochemicals and dietary compounds endowed with potent antioxidant and antiinflammatory properties is a novel approach to prevent and control HCC. One such compound, resveratrol, present in grapes, berries, peanuts as well as red wine, has emerged as a promising molecule that inhibits carcinogenesis with a pleiotropic mode of action. This review examines the current knowledge on mechanism-based in vitro and in vivo studies on the chemopreventive and chemotherapeutic potential of resveratrol in liver cancer. Pre-clinical and clinical toxicity studies as well as pharmacokinetic data of resveratrol have also been highlighted in this review. Future directions and challenges involved in the use of resveratrol for the prevention and treatment of HCC are also discussed.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, 44272, USA
| | | | | |
Collapse
|
15
|
Vinken M, Doktorova T, Decrock E, Leybaert L, Vanhaecke T, Rogiers V. Gap junctional intercellular communication as a target for liver toxicity and carcinogenicity. Crit Rev Biochem Mol Biol 2009; 44:201-22. [PMID: 19635038 DOI: 10.1080/10409230903061215] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Direct communication between hepatocytes, mediated by gap junctions, constitutes a major regulatory platform in the control of liver homeostasis, ranging from hepatocellular proliferation to hepatocyte cell death. Inherent to this pivotal task, gap junction functionality is frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity and carcinogenicity. In the present paper, the deleterious effects of a number of chemical and biological toxic compounds on hepatic gap junctions are discussed, including environmental pollutants, biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. Particular attention is paid to the molecular mechanisms that underlie the abrogation of gap junction functionality. Since hepatic gap junctions are specifically targeted by tumor promoters and epigenetic carcinogens, both in vivo and in vitro, inhibition of gap junction functionality is considered as a suitable indicator for the detection of nongenotoxic hepatocarcinogenicity.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|