1
|
Złowocka-Perłowska E, Baszuk P, Marciniak W, Derkacz R, Tołoczko-Grabarek A, Słojewski M, Lemiński A, Soczawa M, Matuszczak M, Kiljańczyk A, Scott RJ, Lubiński J. Blood and Serum Se and Zn Levels and 10-Year Survival of Patients after a Diagnosis of Kidney Cancer. Biomedicines 2024; 12:1775. [PMID: 39200240 PMCID: PMC11351416 DOI: 10.3390/biomedicines12081775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
The aim of the project was to evaluate the association between selenium (Se) and zinc (Zn) levels in blood and serum and kidney cancer mortality. In a prospective group of 284 consecutive, unselected patients with kidney cancer, we evaluated their 10-year survival rate in relation to the levels of Se and Zn in their blood and serum. Micronutrient levels were measured using an inductively coupled plasma mass spectrometer. Patients were divided into quartiles based on the distribution of Se and Zn levels arranged in increasing order. The following variables were taken into account in the multivariable models: age at diagnosis, gender, smoking, type of surgery and histopathological examination results. We observed a statistically significant association of all-cause mortality when subgroups with low blood selenium levels were compared to patients with high selenium levels (HR = 7.74; p < 0.001). We found, in addition, that this correlation was much stronger when only men were assessed (HR = 11.6; p < 0.001). We did not find a statistically significant association for zinc alone. When we combined selenium and zinc levels (SeQI-ZnQI vs. SeQIV-ZnQIV), we observed the hazard ratio for kidney cancer death to be 12.4; p = 0.016. For patients in the highest quartile of blood zinc/selenium ratio, compared to those in the lowest, the HR was 2.53; p = 0.008. Our study suggests that selenium levels, combined selenium and zinc levels (SeQI-ZnQI vs. SeQIV-ZnQIV) and zinc-to-selenium ratio (Zn/Se) are attractive targets for clinical trials aimed at improving the survival of kidney cancer patients.
Collapse
Affiliation(s)
- Elżbieta Złowocka-Perłowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Aleksandra Tołoczko-Grabarek
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Marcin Słojewski
- Department of Urology and Oncological Urology Clinic, Pomeranian Medical University, 70-204 Szczecin, Poland; (M.S.); (M.S.)
| | - Artur Lemiński
- Department of Biochemical Research, Pomeranian Medical University, 70-204 Szczecin, Poland;
| | - Michał Soczawa
- Department of Urology and Oncological Urology Clinic, Pomeranian Medical University, 70-204 Szczecin, Poland; (M.S.); (M.S.)
| | - Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Rodney J. Scott
- School of Biomedical Sciences and Pharmacy, Centre for Information-Based Medicine, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia;
- Division of Molecular Medicine, Pathology North, NSW Pathology, Newcastle, NSW 2305, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| |
Collapse
|
2
|
Trame S, Brüggemann A, Rink L. Calculating zinc uptake by Zinc-APP. J Trace Elem Med Biol 2023; 77:127132. [PMID: 36640701 DOI: 10.1016/j.jtemb.2023.127132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Affiliation(s)
- Sarah Trame
- Institute of Immunology, Medical Faculty, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Andreas Brüggemann
- Institute of Immunology, Medical Faculty, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
3
|
Prevalence of low dietary zinc intake in women and pregnant women in Ireland. Ir J Med Sci 2022:10.1007/s11845-022-03181-w. [PMID: 36224463 PMCID: PMC9556144 DOI: 10.1007/s11845-022-03181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022]
Abstract
Background In humans, zinc is involved in many biological functions acting as signaling ion, neurotransmitter, structural component of proteins, and cofactor for many enzymes and, through this, is an important regulator of the immune and nervous system. Food supplies zinc to the human body, but a high prevalence of inadequate dietary zinc intake has been reported worldwide. Aims The objective of this study was to investigate the zinc intake and bioavailability of over 250 women (pregnant and non-pregnant) based in Ireland, in order to evaluate the dietary inadequacy of zinc. Methodology We used a food frequency questionnaire designed to assess the zinc intake and bioavailability of the participants. Results Our results show that 58% of participants are at risk of inadequate zinc intake and that 29% may be zinc deficient. The prevalence of inadequate zinc intake was lower for pregnant women (zinc deficient 9%, at risk 38%) than for non-pregnant women due to more frequent consumption of supplements. Low zinc intake was not correlated with the age of participants and resulted from a combination of inadequate intake of zinc-rich food and relatively higher intake of food items rich in phytate, a major zinc uptake inhibitor. Conclusions We conclude that at present, low zinc intake may be prevalent in as much as 87% of women, including 47% of pregnant women. Therefore, zinc status needs to be considered as a factor impacting the health of women, and in particular pregnant women, also in industrialized and developed countries such as Ireland. Supplementary Information The online version contains supplementary material available at 10.1007/s11845-022-03181-w.
Collapse
|
4
|
Abstract
The human lifespan and quality of life depend on complex interactions among genetic, environmental, and lifestyle factors. Aging research has been remarkably advanced by the development of high-throughput "omics" technologies. Differences between chronological and biological ages, and identification of factors (eg, nutrition) that modulate the rate of aging can now be assessed at the individual level on the basis of telomere length, the epigenome, and the metabolome. Nevertheless, the understanding of the different responses of people to dietary factors, which is the focus of precision nutrition research, remains incomplete. The lack of reliable dietary assessment methods constitutes a significant challenge in nutrition research, especially in elderly populations. For practical and successful personalized diet advice, big data techniques are needed to analyze and integrate the relevant omics (ie, genomic, epigenomic, metabolomics) with an objective and longitudinal capture of individual nutritional and environmental information. Application of such techniques will provide the scientific evidence and knowledge needed to offer actionable, personalized health recommendations to transform the promise of personalized nutrition into reality.
Collapse
Affiliation(s)
- Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA-HNRCA at Tufts University, Boston, Massachusetts, USA
| | - Silvia Berciano
- Nutrition and Genomics Laboratory, JM-USDA-HNRCA at Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Yildiz A, Kaya Y, Tanriverdi O. Effect of the Interaction Between Selenium and Zinc on DNA Repair in Association With Cancer Prevention. J Cancer Prev 2019; 24:146-154. [PMID: 31624720 PMCID: PMC6786808 DOI: 10.15430/jcp.2019.24.3.146] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is the most common cause of death worldwide. Annually, more than ten million new cancer cases are diagnosed, and more than six million deaths occur due to cancer. Nonetheless, over 80% of human cancer may be preventable through proper nutrition. Numerous nutritional compounds are effective in preventing cancer. Selenium and zinc are essential micronutrients that have important roles in reducing oxidative stress and protecting DNA from the attack of reactive oxygen species. Selenium is an essential trace element that possesses several functions in many cellular processes for cancer prevention. Meanwhile, zinc may have protective effects on tumor initiation and progression, and it is an essential cofactor of several mammalian proteins. Results show that both selenium and zinc provide an effective progression of DNA repair system; thus, cancer development that originated from DNA damage is decreased. Results mostly focus on the separate effects of these two elements on different cell types, tissues, and organs, and their combined effects are largely unknown. This review aimed to emphasize the joint role of selenium and zinc specifically on DNA repair for cancer prevention.
Collapse
Affiliation(s)
- Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Yesim Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ozgur Tanriverdi
- Department of Medical Oncology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey.,Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
6
|
Trame S, Wessels I, Haase H, Rink L. A short 18 items food frequency questionnaire biochemically validated to estimate zinc status in humans. J Trace Elem Med Biol 2018; 49:285-295. [PMID: 29496418 DOI: 10.1016/j.jtemb.2018.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022]
Abstract
Inadequate dietary zinc intake is wide-spread in the world's population. Despite the clinical significance of zinc deficiency there is no established method or biomarker to reliably evaluate the zinc status. The aim of our study was to develop a biochemically validated questionnaire as a clinically useful tool that can predict the risk of an individual being zinc deficient. From 71 subjects aged 18-55 years blood and urine samples were collected. Zinc concentrations in serum and urine were determined by atomic absorption spectrometry. A food frequency questionnaire (FFQ) including 38 items was filled out representing the consumption during the last 6 months obtaining nutrient diet scores. Latter were calculated by multiplication of the particular frequency of consumption, the nutrient intake of the respective portion size and the extent of the consumed quantity. Results from the FFQ were compared with nutrient intake information gathered in 24-h dietary recalls. A hemogram was performed and cytokine concentrations were obtained using Enzyme-linked Immunosorbent Assay. Reducing the items of the primary FFQ from 38 to 18 did not result in a significant variance between both calculated scores. Zinc diet scores showed highly significant correlation with serum zinc (r = 0.37; p < 0.01) and urine zinc concentrations (r = 0.34; p < 0.01). Serum zinc concentrations and zinc diet scores showed a significant positive correlation with animal protein intake (r = 0.37; p < 0.01/r = 0.54; p < 0.0001). Higher zinc diet scores were found in omnivores compared to vegetarians (213.5 vs. 111.9; p < 0.0001). The 18 items FFQ seems to be a sufficient tool to provide a good estimation of the zinc status. Moreover, shortening of the questionnaire to 18 items without a loss of predictive efficiency enables a facilitated and resource-saving routine use. A validation of the questionnaire in other cohorts could enable the progression towards clinical utilization of this promising tool.
Collapse
Affiliation(s)
- Sarah Trame
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Hajo Haase
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany; Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam, Berlin, Jena, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
7
|
Genetic Variations as Modifying Factors to Dietary Zinc Requirements-A Systematic Review. Nutrients 2017; 9:nu9020148. [PMID: 28218639 PMCID: PMC5331579 DOI: 10.3390/nu9020148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/30/2022] Open
Abstract
Due to reduced cost and accessibility, the use of genetic testing has appealed to health professionals for personalising nutrition advice. However, translation of the evidence linking polymorphisms, dietary requirements, and pathology risk proves to be challenging for nutrition and dietetic practitioners. Zinc status and polymorphisms of genes coding for zinc-transporters have been associated with chronic diseases. The present study aimed to systematically review the literature to assess whether recommendations for zinc intake could be made according to genotype. Eighteen studies investigating 31 Single Nucleotide Polymorphisms (SNPs) in relation to zinc intake and/or status were identified. Five studies examined type 2 diabetes; zinc intake was found to interact independently with two polymorphisms in the zinc-transporter gene SLC30A8 to affect glucose metabolism indicators. While the outcomes were statistically significant, the small size of the effect and lack of replication raises issues regarding translation into nutrition and dietetic practice. Two studies assessed the relationship of polymorphisms and cognitive performance; seven studies assessed the association between a range of outcomes linked to chronic conditions in aging population; two papers described the analysis of the genetic contribution in determining zinc concentration in human milk; and two papers assessed zinc concentration in plasma without linking to clinical outcomes. The data extracted confirmed a connection between genetics and zinc requirements, although the direction and magnitude of the dietary modification for carriers of specific genotypes could not be defined. This study highlights the need to summarise nutrigenetics studies to enable health professionals to translate scientific evidence into dietary recommendations.
Collapse
|
8
|
The Effect of Zinc and Selenium Supplementation Mode on Their Bioavailability in the Rat Prostate. Should Administration Be Joint or Separate? Nutrients 2016; 8:nu8100601. [PMID: 27782038 PMCID: PMC5083989 DOI: 10.3390/nu8100601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/21/2016] [Indexed: 11/17/2022] Open
Abstract
It is thought that zinc and selenium deficiency may play a significant role in the etiology of prostate cancer. Although joint zinc and selenium supplementation is frequently applied in the prevention of prostate diseases, the bioavailability of these elements in the prostate after co-administration is still unknown. The study examines the effect of subchronic supplementation of zinc gluconate and selenium compounds (sodium selenite or selenomethionine), administered together or separately, on their bioavailability in the prostate, as well as the induction of metallothionein-like proteins (MTs) bound to zinc in the prostate and liver. Zinc concentration in the dorso-lateral lobe of the prostate was significantly elevated already after the first month of supplementation of zinc alone. In the supplementation period, the MTs level increased together with zinc concentration. In contrast, the ventral lobe of the prostate did not demonstrate significantly higher levels of zinc until after three months of supplementation, despite the MTs induction noted after one-month supplementation. Increased selenium levels in the dorsolateral lobe were observed throughout the administration and post-administration periods, regardless of the selenium compound used or whether zinc was co-administered. The results of our studies suggested for the first time that these elements should not be administered jointly in supplementation.
Collapse
|
9
|
Main biomarkers associated with age-related plasma zinc decrease and copper/zinc ratio in healthy elderly from ZincAge study. Eur J Nutr 2016; 56:2457-2466. [DOI: 10.1007/s00394-016-1281-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
10
|
Li B, Xiao Y, Xing D, Ma XL, Liu J. Circulating interleukin-6 and rheumatoid arthritis: A Mendelian randomization meta-analysis. Medicine (Baltimore) 2016; 95:e3855. [PMID: 27281095 PMCID: PMC4907673 DOI: 10.1097/md.0000000000003855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6), as a pleiotropic cytokine, has been demonstrated to be closely associated with the pathogenisis of rheumatoid arthritis (RA). However, whether this association is causal or not remains unclear, because of the multifactorial role of IL-6 and related confounding factors. We aimed to evaluate the causal relevance between circulating IL-6 levels and the risk of RA through meta-analytical Mendelian randomization approach. IL-6 gene -174G/C variant was selected as an instrument in this Mendelian randomization meta-analysis. Article identification and data collection were conducted in duplicate and independently by 2 authors. The STATA software was used for data analysis. In total, 15 and 5 articles on the association of the -174G/C variant with RA risk and circulating IL-6 level, respectively, were included. The overall analysis showed that C allelic and GC+CC genotype were significantly with 1.59-fold (95% CI: 1.19-2.14) and 1.63-fold (95% CI: 1.17-2.26) increased risk of developing RA, respectively. Asian populations showed stronger association with 4.55-fold (95% CI: 1.62-12.75), 1.84-fold (95% CI: 1.13-2.99), and 4.69-fold (95% CI: 1.68-13.14) increased RA risk in carriers of -174C allelic, CC, and GC+CC genotype, respectively. Carriers of GC+CC genotype showed significant reduction in the circulating IL-6 level compared with GG carriers (WMD = -0.77; 95% CI: -1.16 to -0.38; P = 0.000) in overall populations. Mendelian randomization presented 6% and 22% increased risk of RA with 0.1 pg/mL reduction of circulating IL-6 level in overall and Asian populations, respectively. This Mendelian randomization meta-analysis demonstrated that the long-term genetically reduced circulating IL-6 level might be causally related to a higher risk of RA, especially in Asian populations.
Collapse
Affiliation(s)
| | | | | | | | - Jun Liu
- ∗Correspondence: Jun Liu, Joint Department, Tianjin Hospital, Tianjin 300211, China (e-mail: )
| |
Collapse
|
11
|
Ma Y, Smith CE, Lai CQ, Irvin MR, Parnell LD, Lee YC, Pham LD, Aslibekyan S, Claas SA, Tsai MY, Borecki IB, Kabagambe EK, Ordovás JM, Absher DM, Arnett DK. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter. Mol Nutr Food Res 2016; 60:410-9. [PMID: 26518637 PMCID: PMC4844557 DOI: 10.1002/mnfr.201500436] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/11/2015] [Accepted: 10/21/2015] [Indexed: 01/04/2023]
Abstract
SCOPE Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. METHODS AND RESULTS Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10(-7) ). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. CONCLUSION Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs.
Collapse
Affiliation(s)
- Yiyi Ma
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- Biomedical Genetics, Department of Medicine, Boston University, Boston, MA, USA
| | - Caren E. Smith
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laurence D. Parnell
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Yu-Chi Lee
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Lucia D. Pham
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven A. Claas
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Ingrid B. Borecki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - José M. Ordovás
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- Department of Epidemiology, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Alimentacion (IMDEA-FOOD), Madrid, Spain
| | - Devin M. Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Donna K. Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Giacconi R, Costarelli L, Malavolta M, Cardelli M, Galeazzi R, Piacenza F, Gasparini N, Basso A, Mariani E, Fulop T, Rink L, Dedoussis G, Herbein G, Jajte J, Provinciali M, Busco F, Mocchegiani E. Effect of ZIP2 Gln/Arg/Leu (rs2234632) polymorphism on zinc homeostasis and inflammatory response following zinc supplementation. Biofactors 2015; 41:414-23. [PMID: 26643924 DOI: 10.1002/biof.1247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022]
Abstract
Zinc dyshomeostasis may lead to an augmented production of proinflammatory cytokines promoting chronic inflammation and increasing the susceptibility to age-related diseases. Several studies suggest that the zinc transporter protein ZIP2 may play a relevant role in the immune system especially during zinc deficiency, while a polymorphism on the coding region of ZIP2 gene (Gln/Arg/Leu) has been associated with severe carotid artery disease. The aim of this study is to investigate the role of ZIP2 SNP on zinc and inflammatory status in 1090 elderly healthy free-living subjects enrolled in the ZincAge project and to assess the effect of zinc supplementation on zinc status, inflammatory mediators, and zinc transporter expression depending on ZIP2 genotype. ZIP2 Leu- (Arg43Arg) carriers showed enhanced IL-6, TNF-α, and RANTES plasma levels associated with decreased free cytosolic zinc in PBMCs and an upregulation of zinc transporters ZIP2, ZIP8, and Znt1. Moreover, Leu- subjects displayed significant decrement of inflammatory mediators such as MCP-1, TNF-α, and RANTES following zinc supplementation. In summary, this investigation provides new evidence on the effect of ZIP2 Gln/Arg/Leu polymorphism on proinflammatory mediators and zinc homeostasis in elderly population with a more pronounced anti-inflammatory effect of zinc supplementation in subjects carrying ZIP2 Leu- (Arg43Arg) genotype. These novel findings could be useful in identifying elderly subjects who may benefit of zinc intervention to decrease the inflammatory status and to prevent or delay the development of age-related diseases.
Collapse
Affiliation(s)
- Robertina Giacconi
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Laura Costarelli
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Marco Malavolta
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostics, INRCA-IRCCS, Ancona, Italy
| | - Francesco Piacenza
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Nazzarena Gasparini
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Andrea Basso
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Erminia Mariani
- Department of Medical and Surgical Sciences, Laboratory of Immunereumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopedic Institute, Bologna, University of Bologna, Italy
| | - Tamas Fulop
- Department of Medicine Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Canada
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - George Dedoussis
- Department of Dietetics and Nutritional Science, Harokopio University of Athens, Greece
| | - Georges Herbein
- Department Pathogens and Inflammation EA 4266, Université Bourgogne Franche-Comté, CHRU Besançon, France
| | - Jolanta Jajte
- Department of Toxicology, Faculty of Pharmacy, Medical University, Lodz, Poland
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Franco Busco
- Clinical Laboratory and Molecular Diagnostics, INRCA-IRCCS, Ancona, Italy
| | - Eugenio Mocchegiani
- Translational Research Ctr. of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| |
Collapse
|
13
|
Giacconi R, Simm A, Santos AN, Costarelli L, Malavolta M, Mecocci P, Piacenza F, Basso A, Fulop T, Rink L, Dedoussis G, Kanoni S, Herbein G, Jajte J, Mocchegiani E. Influence of +1245 A/G MT1A polymorphism on advanced glycation end-products (AGEs) in elderly: effect of zinc supplementation. GENES AND NUTRITION 2014; 9:426. [PMID: 25149676 DOI: 10.1007/s12263-014-0426-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/09/2014] [Indexed: 11/25/2022]
Abstract
Advanced glycation end-products (AGEs) stimulate reactive oxygen species (ROS) generation and represent a risk factor for atherosclerosis, while their formation seems to be prevented by zinc. Metallothioneins (MT), zinc-binding proteins exert an antioxidant function by regulating intracellular zinc availability and protecting cells from ROS damages. +1245 A/G MT1A polymorphism was implicated in type 2 diabetes and in cardiovascular disease development as well as in the modulation of antioxidant response. The purpose of this study was to investigate the influence of +1245 A/G MT1A polymorphism on AGEs and ROS production and to verify the effect of zinc supplementation on plasma AGEs, zinc status parameters and antioxidant enzyme activity in relation to this SNP. One hundred and ten healthy subjects (72 ± 6 years) from the ZincAge study were supplied with zinc aspartate (10 mg/day for 7 weeks) and screened for +1245 MT1A polymorphism. +1245 MT1A G+ (Arginine) genotype showed higher plasma AGEs and ROS production in peripheral blood mononuclear cells (PBMCs) than G- (Lysine) one at the baseline. No significant changes after zinc supplementation were observed for AGEs, ROS and MT levels as well as for enzyme antioxidant activity in relation to the genotype. Among zinc status parameters, major increases were observed for the intracellular labile zinc (iZnL) and the NO-induced release of zinc in PBMCs, in G+ genotype as compared to G- one. In summary, +1245 G+ carriers showed increased plasma AGEs and ROS production in PBMCs at baseline and a higher improvement in iZnL after zinc intervention with respect to G- individuals.
Collapse
Affiliation(s)
- Robertina Giacconi
- Translation Research Center of Nutrition and Ageing, Italian National Research Centre on Aging (INRCA-IRCCS), Via Birarelli 8, 60121, Ancona, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, DeMartiis M, Giannandrea E, Renieri C, Busco F, Galeazzi R, Mocchegiani E. Effects of zinc-fortified drinking skim milk (as functional food) on cytokine release and thymic hormone activity in very old persons: a pilot study. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9656. [PMID: 24771015 PMCID: PMC4082592 DOI: 10.1007/s11357-014-9656-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/08/2014] [Indexed: 05/13/2023]
Abstract
Zinc is a relevant nutritional factor for the whole life of an organism because it affects the inflammatory/immune response and antioxidant activity, leading to a healthy state. Despite its important function, the dietary intake of zinc is inadequate in elderly. Possible interventions include food fortification because it does not require changes in dietary patterns, the cost is low and it can reach a large portion of the elderly population, including very old subjects. Studies evaluating the impact of Zn-fortified foods on functional parameters in elderly, in particular, in very old individuals, are missing. The objective of this study was to evaluate the efficacy of consumption of a zinc-fortified drinking skim milk (Zn-FMilk) for a period of 2 months in comparison to standard non-fortified milk (No-FMilk) on some biochemical parameters, zinc status, inflammatory/immune response and on a key parameter of the T cell-mediated immunity (thymulin hormone) in healthy very old subjects. The treatment with zinc-fortified milk (Zn-FMilk) is a good omen to increase the cell-mediated immunity in very old age represented by thymulin activity and some cytokine (IL-12p70, IFN-γ) release. At clinical level, a good healthy state occurs in 70 % of the subjects with no hospitalization after 1 year of the follow-up in comparison to very old control subjects that did not participate to crossover design. In conclusion, the Zn-FMilk can be considered a good functional food for elderly, including older people. It might be a good replacement to the zinc tablets or lozenges taking into account the attitude of old people to uptake milk as a preferential food.
Collapse
Affiliation(s)
- Laura Costarelli
- />Translational Center of Research in Nutrition and Ageing, Scientific and Technologic Pole, INRCA, Ancona, Italy
| | - Robertina Giacconi
- />Translational Center of Research in Nutrition and Ageing, Scientific and Technologic Pole, INRCA, Ancona, Italy
| | - Marco Malavolta
- />Translational Center of Research in Nutrition and Ageing, Scientific and Technologic Pole, INRCA, Ancona, Italy
| | - Andrea Basso
- />Translational Center of Research in Nutrition and Ageing, Scientific and Technologic Pole, INRCA, Ancona, Italy
| | - Francesco Piacenza
- />Translational Center of Research in Nutrition and Ageing, Scientific and Technologic Pole, INRCA, Ancona, Italy
| | | | | | - Carlo Renieri
- />Veterinary Faculty, University of Camerino, Camerino, MC Italy
| | - Franco Busco
- />Laboratory Analysis, INRCA Hospital, Ancona, Italy
| | | | - Eugenio Mocchegiani
- />Translational Center of Research in Nutrition and Ageing, Scientific and Technologic Pole, INRCA, Ancona, Italy
| |
Collapse
|
15
|
Learning the oral and cutaneous signs of micronutrient deficiencies. J Wound Ostomy Continence Nurs 2014; 41:127-35; quiz E1-2. [PMID: 24595176 DOI: 10.1097/won.0000000000000012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing is a complex process that is influenced by multiple systemic factors, including nutritional status. While nutritional support is commonly recognized as an important aspect of comprehensive wound management, the focus is typically on replacement of macronutrients, specifically calories and protein. Our experience strongly suggests that micronutrients are equally important, that micronutrient deficiencies are common, and that correction of these deficiencies frequently leads to wound healing when incorporated into a comprehensive wound management program. This article provides guidelines for assessment and management of micronutrient deficiencies.
Collapse
|
16
|
Giacconi R, Costarelli L, Malavolta M, Piacenza F, Galeazzi R, Gasparini N, Basso A, Mariani E, Fulop T, Rink L, Dedoussis G, Kanoni S, Herbein G, Jajte J, Busco F, Mocchegiani E. Association among 1267 A/G HSP70-2, −308 G/A TNF-α polymorphisms and pro-inflammatory plasma mediators in old ZincAge population. Biogerontology 2013; 15:65-79. [DOI: 10.1007/s10522-013-9480-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/08/2013] [Indexed: 11/30/2022]
|
17
|
Huang M, Wang L, Ma H, Wang J, Xiang M. Lack of an association between interleukin-6 -174G/C polymorphism and circulating interleukin-6 levels in normal population: a meta-analysis. DNA Cell Biol 2013; 32:654-64. [PMID: 24044580 DOI: 10.1089/dna.2013.2148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interleukin-6 (IL-6) signaling may play a causal role in the development of coronary heart disease. However, the relationship between IL-6 genotypes and plasma levels of IL-6 appears to be complex. To help clarify the inconsistent findings, we conducted a meta-analysis of the published genetic association studies of the -174 G/C polymorphisms in the IL-6 gene and the circulating IL-6 levels in a normal population. In this meta-analysis, no significant association of IL-6 -174G/C polymorphism and circulating IL-6 levels in a normal population was observed. However, when compared among GG, GC, and CC genotypes, heterogeneity existed among the studies. Sensitivity analysis revealed that, the independent study by Shen et al. influenced the heterogeneity in the homozygous and heterozygous comparison. Although Shen et al.'s study was excluded, no significant association was observed between IL-6 -174G/C polymorphism and circulating IL-6 levels in a normal population [homozygous comparison (GG vs. CC): the pooled standard mean difference (SMD) was -0.01, 95% confidence interval (CI): -0.1-0.08; heterozygous comparison (GC vs. GG or CC): the pooled SMD (GG vs. GC) was -0.05, 95%CI: -0.11-0.01, and the pooled SMD (CC vs. GC) was 0.03, 95%CI: -0.03-0.1]. Under the dominant model, the pooled SMD was -0.05, 95%CI: -0.11-0.01). The meta-analysis provides evidence that the -174G/C polymorphism in the IL-6 gene is not significantly associated with circulating IL-6 levels in a normal population.
Collapse
Affiliation(s)
- Mingyuan Huang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, China
| | | | | | | | | |
Collapse
|
18
|
Mocchegiani E, Romeo J, Malavolta M, Costarelli L, Giacconi R, Diaz LE, Marcos A. Zinc: dietary intake and impact of supplementation on immune function in elderly. AGE (DORDRECHT, NETHERLANDS) 2013; 35:839-60. [PMID: 22222917 PMCID: PMC3636409 DOI: 10.1007/s11357-011-9377-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 12/21/2011] [Indexed: 05/07/2023]
Abstract
The diet in the elderly does not provide a sufficient level of nutrients needed to maintain an adequate healthy status leading to micronutrient deficiencies and impaired immune response with subsequent development of degenerative diseases. Nutrient "zinc" is a relevant micronutrient involved in maintaining a good integrity of many body homeostatic mechanisms, including immune efficiency, owing to its requirement for the biological activity of many enzymes, proteins and for cellular proliferation and genomic stability. Old people aged 60-65 years and older have zinc intakes below 50% of the recommended daily allowance on a given day. Many causes can be involved: among them, altered intestinal absorption, inadequate mastication, psychosocial factors, drugs interactions, altered subcellular processes (zinc transporters (Zip and ZnT family), metallothioneins, divalent metal transporter-1). Zinc supplementation may remodel the immune alterations in elderly leading to healthy ageing. Several zinc trials have been carried out with contradictory data, perhaps due to incorrect choice of an effective zinc supplementation in old subjects showing subsequent zinc toxic effects on immunity. Old subjects with specific IL-6 polymorphism (GG allele carriers; named C-) are more prone for zinc supplementation than the entire old population, in whom correct dietary habits with foods containing zinc (Mediterranean diet) may be sufficient in restoring zinc deficiency and impaired immune response. We summarise the main causes of low zinc dietary intake in elderly reporting an update on the impact of zinc supplementation upon the immune response also on the basis of individual IL-6 polymorphism.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Ctr. Nutrition and Ageing, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121, Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Giuli C, Papa R, Mocchegiani E, Marcellini F. Dietary habits and ageing in a sample of Italian older people. J Nutr Health Aging 2012; 16:875-9. [PMID: 23208025 DOI: 10.1007/s12603-012-0080-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES To analyse dietary habits and explore the role of socioeconomic status in a sample of elderly Italians. STUDY DESIGN Observational. PARTICIPANTS AND SETTING 306 elderly subjects aged 65 and over living in the Marche Region (Italy). MEASUREMENTS Assessment of dietary habits and life-style characteristics using a "Life-style questionnaire". Nutritional data collected by means of a 53-item "Frequency food questionnaire". RESULTS The study revealed differences in dietary patterns and food consumption. Age was negatively related to all food categories. Some socio-economic characteristics (level of education and economic status) were correlated with consumption of many foods, such ad Fish, Red Meat and Diary products. Between-the-sexes differences were also documented. CONCLUSION Our findings showed that the nutritional and dietary habits varied greatly within the sample investigated. The mapping of these dietary and nutritional patterns may be of value for future research in elderly populations, particularly those with low educational status and poor economic means. Conclusively, greater promotion of healthy dietary habits should be targeted towards elderly populations.
Collapse
Affiliation(s)
- C Giuli
- INRCA (Italian National Institute on Aging), Geriatrics Operative Unit, Contrada Mossa, Fermo, Italy.
| | | | | | | |
Collapse
|
20
|
Stathopoulou MG, Kanoni S, Papanikolaou G, Antonopoulou S, Nomikos T, Dedoussis G. Mineral Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:201-36. [DOI: 10.1016/b978-0-12-398397-8.00009-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Kanoni S, Nettleton JA, Hivert MF, Ye Z, van Rooij FJ, Shungin D, Sonestedt E, Ngwa JS, Wojczynski MK, Lemaitre RN, Gustafsson S, Anderson JS, Tanaka T, Hindy G, Saylor G, Renstrom F, Bennett AJ, van Duijn CM, Florez JC, Fox CS, Hofman A, Hoogeveen RC, Houston DK, Hu FB, Jacques PF, Johansson I, Lind L, Liu Y, McKeown N, Ordovas J, Pankow JS, Sijbrands EJ, Syvänen AC, Uitterlinden AG, Yannakoulia M, Zillikens MC, the MAGIC Investigators, Wareham NJ, Prokopenko I, Bandinelli S, Forouhi NG, Cupples LA, Loos RJ, Hallmans G, Dupuis J, Langenberg C, Ferrucci L, Kritchevsky SB, McCarthy MI, Ingelsson E, Borecki IB, Witteman JC, Orho-Melander M, Siscovick DS, Meigs JB, Franks PW, Dedoussis GV. Total zinc intake may modify the glucose-raising effect of a zinc transporter (SLC30A8) variant: a 14-cohort meta-analysis. Diabetes 2011; 60:2407-16. [PMID: 21810599 PMCID: PMC3161318 DOI: 10.2337/db11-0176] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 06/01/2011] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants. RESEARCH DESIGN AND METHODS We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes. RESULTS We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: -0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: -0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant. CONCLUSIONS Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels.
Collapse
Affiliation(s)
- Stavroula Kanoni
- Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
- Wellcome Trust Sanger Institute, Hinxton, U.K
| | - Jennifer A. Nettleton
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas
| | - Marie-France Hivert
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Sherbrooke, Canada
| | - Zheng Ye
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Frank J.A. van Rooij
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- The Netherlands Genomics Initiative–Sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden, the Netherlands
| | - Dmitry Shungin
- Genetic Epidemiology and Clinical Research Group, Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University Hospital, Umeå, Sweden
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Emily Sonestedt
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Julius S. Ngwa
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Mary K. Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine and Epidemiology, University of Washington, Seattle, Washington
| | - Stefan Gustafsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Toshiko Tanaka
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland
| | - George Hindy
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Georgia Saylor
- Baptist Medical Center, Wake Forest University, Winston-Salem, North Carolina
| | - Frida Renstrom
- Genetic Epidemiology and Clinical Research Group, Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University Hospital, Umeå, Sweden
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts
| | - Amanda J. Bennett
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- The Netherlands Genomics Initiative–Sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden, the Netherlands
| | - Jose C. Florez
- Diabetes Unit, Center for Human Genetic Research and Diabetes Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Caroline S. Fox
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- The Netherlands Genomics Initiative–Sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden, the Netherlands
| | - Ron C. Hoogeveen
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart Center, Houston, Texas
| | - Denise K. Houston
- Sticht Center on Aging, Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Frank B. Hu
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts
| | - Paul F. Jacques
- Nutrition Epidemiology Program, U.S. Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA) at Tufts University, Boston, Massachusetts
| | | | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Nicola McKeown
- Nutrition Epidemiology Program, U.S. Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA) at Tufts University, Boston, Massachusetts
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Jose Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer USDA HNRCA at Tufts University, Boston, Massachusetts
| | - James S. Pankow
- Department of Epidemiology, University of Minnesota, Minneapolis, Minnesota
| | - Eric J.G. Sijbrands
- The Netherlands Genomics Initiative–Sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- The Netherlands Genomics Initiative–Sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mary Yannakoulia
- Department of Nutrition-Dietetics, Harokopio University, Athens, Greece
| | - M. Carola Zillikens
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Nick J. Wareham
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Inga Prokopenko
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | | | - Nita G. Forouhi
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts
| | - Ruth J. Loos
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Goran Hallmans
- Genetic Epidemiology and Clinical Research Group, Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University Hospital, Umeå, Sweden
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, Massachusetts
| | - Claudia Langenberg
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland
| | - Stephen B. Kritchevsky
- Sticht Center on Aging, Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Erik Ingelsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid B. Borecki
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline C.M. Witteman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- The Netherlands Genomics Initiative–Sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden, the Netherlands
| | | | - David S. Siscovick
- Cardiovascular Health Research Unit, Department of Medicine and Epidemiology, University of Washington, Seattle, Washington
| | - James B. Meigs
- General Medicine Division, Clinical Epidemiology Unit and Diabetes Research Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Paul W. Franks
- Genetic Epidemiology and Clinical Research Group, Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University Hospital, Umeå, Sweden
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
22
|
Affiliation(s)
- Dolores Corella
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
- Genetic and Molecular Epidemiology Unit and CIBER Fisiopatología de la Obesidad y Nutrición as an initiative of the ISCIII. School of Medicine. University of Valencia, Valencia, Spain
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|