1
|
Keuls RA, Finnell RH, Parchem RJ. Maternal metabolism influences neural tube closure. Trends Endocrinol Metab 2023; 34:539-553. [PMID: 37468429 PMCID: PMC10529122 DOI: 10.1016/j.tem.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
Changes in maternal nutrient availability due to diet or disease significantly increase the risk of neural tube defects (NTDs). Because the incidence of metabolic disease continues to rise, it is urgent that we better understand how altered maternal nutrient levels can influence embryonic neural tube development. Furthermore, primary neurulation occurs before placental function during a period of histiotrophic nutrient exchange. In this review we detail how maternal metabolites are transported by the yolk sac to the developing embryo. We discuss recent advances in understanding how altered maternal levels of essential nutrients disrupt development of the neuroepithelium, and identify points of intersection between metabolic pathways that are crucial for NTD prevention.
Collapse
Affiliation(s)
- Rachel A Keuls
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine. Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H Finnell
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision Environmental Health, Department of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronald J Parchem
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine. Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Schwartz AV, Sant KE, Navarrete J, George UZ. Mathematical modeling of the interaction between yolk utilization and fish growth in zebrafish, Danio rerio. Development 2021; 148:261800. [PMID: 33960383 DOI: 10.1242/dev.193508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Optimal embryonic development plays a major role in the health of an individual beyond the developmental stage. Nutritional perturbation during development is associated with cardiovascular and metabolic disease later in life. With both nutritional uptake and overall growth being risk factors for eventual health, it is necessary to understand not only the behavior of the processes during development but also their interactions. In this study, we used differential equations, image analyses, curve fittings, parameter estimation and laboratory experiments to quantify the rate of yolk absorption and its effect on early development of a vertebrate model (Danio rerio). Findings from this study establish a nonlinear functional relationship between nutrient absorption and early fish growth. We found that the rate of change in fish length and yolk utilization is logistic, that is the yolk decays rapidly for a period of time before leveling out. An interesting finding from this study is that yolk utilization reaches its maximum at 84 h post-fertilization. We validated our mathematical models against experimental observations, making them powerful tools for replication and future simulations.
Collapse
Affiliation(s)
- Ashley V Schwartz
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Julian Navarrete
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Uduak Z George
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
3
|
Harris C. Rat Whole Embryo Culture. Methods Mol Biol 2019; 1965:195-217. [PMID: 31069677 DOI: 10.1007/978-1-4939-9182-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The direct effects of chemical exposures, environmental extremes, and nutrient quality/quantity have been very difficult to study in mammalian embryos due to their anatomical inaccessibility, paucity of tissue, and other factors that make human studies unethical. Many acute and chronic developmental anomalies can trace their origins to postimplantation phases of gestation, where the organs are first being established and growth and differentiation are in highly active states of flux. Most chemical insults and conditions that produce birth defects are believed to act during this period of organogenesis. The evolution of rodent whole embryo culture (WEC) techniques has provided a valuable experimental model where physiological conditions and exposures can be carefully controlled and manipulated to test hypotheses and explore biochemical and molecular mechanisms of action that would otherwise be extremely difficult. Exposure to chemicals can be controlled through their direct addition to the culture medium. Optimal in vitro culture conditions support the growth of intact, viable conceptuses (embryo and associated extraembryonic membranes) from early egg cylinder stages through the establishment of the neural plate, gastrulation, neural tube closure, onset of active heartbeat and circulation, and the initial formation of all major organ systems that occur prior to the establishment of a functional placenta. Detailed comparisons of in vivo and in vitro growth show that conceptuses grown in WEC are nearly identical, structurally and functionally, to conceptuses of the same developmental stage that are allowed to develop normally in utero during a comparable developmental period. Culture conditions and mechanical apparatuses can be modified to suit a large number of different experimental approaches and paradigms.
Collapse
Affiliation(s)
- Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Harris C. Assessment of Histiotrophic Nutrition Using Fluorescent Probes. Methods Mol Biol 2019; 1965:261-279. [PMID: 31069681 DOI: 10.1007/978-1-4939-9182-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Histiotrophic nutrition is a process whereby the rodent visceral yolk sac (VYS) internalizes exogenous macromolecules, degrades them, and sends the degradation products to the embryo. Quantification and visualization of histiotrophic nutrition can be accomplished using fluorescent tracer molecules such as fluorescein isothiocyanate-conjugated albumin (FITC-albumin). The methods are simple and can provide complimentary functional and structural information in studies of the effects of embryotoxicants on visceral yolk sac function.
Collapse
Affiliation(s)
- Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Sant KE, Dolinoy DC, Jilek JL, Shay BJ, Harris C. Mono-2-ethylhexyl phthalate (MEHP) alters histiotrophic nutrition pathways and epigenetic processes in the developing conceptus. J Nutr Biochem 2016; 27:211-8. [PMID: 26507544 PMCID: PMC4750404 DOI: 10.1016/j.jnutbio.2015.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/24/2022]
Abstract
Histiotrophic nutrition pathways (HNPs) are processes by which the organogenesis-stage conceptus obtains nutrients, amino acids, vitamins and cofactors required for protein biosynthesis and metabolic activities. Nutrients are captured from the maternal milieu as whole proteins and cargoes via receptor-mediated endocytosis in the visceral yolk sac (VYS), degraded by lysosomal proteolysis and delivered to the developing embryo (EMB). Several nutrients obtained by HNPs are required substrates for one-carbon (C1) metabolism and supply methyl groups required for epigenetic processes, including DNA and histone methylation. Increased availability of methyl donors has been associated with reduced risk for neural tube defects (NTDs). Here, we show that mono-2-ethylhexyl phthalate (MEHP) treatment (100 or 250μM) alters HNPs, C1 metabolism and epigenetic programming in the organogenesis-stage conceptus. Specifically, 3-h MEHP treatment of mouse EMBs in whole culture resulted in dose-dependent reduction of HNP activity in the conceptus. To observe nutrient consequences of decreased HNP function, C1 components and substrates and epigenetic outcomes were quantified at 24h. Treatment with 100-μM MEHP resulted in decreased dietary methyl donor concentrations, while treatment with 100- or 250-μM MEHP resulted in dose-dependent elevated C1 products and substrates. In MEHP-treated EMBs with NTDs, H3K4 methylation was significantly increased, while no effects were seen in treated VYS. DNA methylation was reduced in MEHP-treated EMB with and without NTDs. This research suggests that environmental toxicants such as MEHP decrease embryonic nutrition in a time-dependent manner and that epigenetic consequences of HNP disruption may be exacerbated in EMB with NTDs.
Collapse
Affiliation(s)
- Karilyn E Sant
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, 48109-2029
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, 48109-2029
| | - Joseph L Jilek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, 48109-2029
| | - Brian J Shay
- Department of Pharmacology, Biomedical Mass Spectrometry Facility, University of Michigan, Ann Arbor, Michigan, 48109-5632
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, 48109-2029.
| |
Collapse
|
6
|
Amino acid starvation induced by protease inhibition produces differential alterations in redox status and the thiol proteome in organogenesis-stage rat embryos and visceral yolk sacs. J Nutr Biochem 2015; 26:1589-98. [PMID: 26365578 DOI: 10.1016/j.jnutbio.2015.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/23/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022]
Abstract
The process of embryonic nutrition in rodent conceptuses during organogenesis has been shown to involve a dominant histiotrophic mechanism where essential developmental substrates and micronutrients are supplied as whole maternal proteins or cargoes associated with proteins. The histiotrophic nutrition pathways (HNP) responsible for uptake and initial processing of proteins across maternal-conceptal interfaces involve uptake via receptor mediated endocytosis and protein degradation via lysosomal proteolysis. Chemical inhibition of either process can lead to growth deficits and malformation in the embryo (EMB), but selective inhibition of either HNP component will elicit a different subset of developmental perturbations. In vitro, whole embryo culture exposure of GD10 or GD11 rat conceptuses to the natural protease inhibitor, leupeptin, leads to significant reductions in all measured embryonic growth parameters as well as a myriad of other effects. Leupeptin doses of 10 μM or 20 μM over a 26-h period (GD10-GD11) and 50 μM over a 3 h pulse period produced significant decreases in the clearance of FITC-albumin from culture media. The near complete loss of acid soluble fluorescence and increased total visceral yolk sac (VYS) protein content confirmed the selective inhibition of proteolysis. Inhibition of lysosomal proteolysis thus deprives the developing EMB of essential nutrient amino acids producing conditions akin to amino acid starvation, but may also cause direct effects on pathways critical for normal growth and differentiation. Following leupeptin exposure for 26 or 6 h, total glutathione (GSH) concentrations dropped significantly in the VYS, but only slightly in yolk sac (YSF) and amniotic (AF) fluids. Cys concentrations increased in VYS and EMB, but dropped in YSF and AF fluids. Redox potentials (Eh) for the glutathione disulfide (GSSG)/glutathione (GSH) redox couple trended significantly toward the positive, confirming the net oxidation of conceptual tissues following leupeptin treatment. Analysis of the thiol proteome showed few alterations to specific pathways mapped to the Kyoto Encyclopedia of Genes and Genomes Pathway database, but did reveal significant increases in concentrations of proteins associated with glycolysis/gluconeogenesis in the VYS and decreased concentrations proteins associated with ribosome biogenesis and function in the EMB. A subset of proteins elevated by >2-23-fold in the VYS were identified as serum (blood) proteins and represent the maternal-side proteins captured by the VYS and which are not degraded in the lysosomes as a result of leupeptin's inhibitory action. The observed constellation of proteins decreased in the EMB by leupeptin represent proteins from several adaptive pathways that are commonly altered in responses to amino acid starvation. These studies show clear differential responses to protease inhibition in VYS and EMB during organogenesis and suggest the possibility for additional roles of redox regulation, cellular adaptations and metabolic insufficiency caused by protease inhibition.
Collapse
|
7
|
Nahar MS, Liao C, Kannan K, Harris C, Dolinoy DC. In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. CHEMOSPHERE 2015; 124:54-60. [PMID: 25434263 PMCID: PMC4297568 DOI: 10.1016/j.chemosphere.2014.10.071] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 05/18/2023]
Abstract
While urine has been an easily accessible and feasible matrix for human biomonitoring, analytical measurements in internal tissues and organs can provide more accurate exposure assessments to understand disease etiology. This is especially important for the endocrine active compound, bisphenol A (BPA), where studies investigating internal doses at sensitive periods of human development are currently lacking. Herein, BPA concentrations, BPA-specific metabolizing enzyme gene expression, and global DNA methylation were characterized across three matched tissues from elective pregnancy terminations of 2nd trimester human fetuses: the placenta, liver, and kidney (N=12 each; N=36 total). Compared to liver (free: 0.54-50.5 ng g(-1)), BPA concentrations were lower in matched placenta (<0.05-25.4 ng g(-1)) and kidney (0.08-11.1 ng g(-1)) specimens. BPA-specific metabolism gene expression of GUSB, UGT2B15, STS, and SULT1A1 differed across each tissue type; however, conjugation and deconjugation expression patterns were similar across the fetus. Average LINE1 and CCGG global methylation were 58.3% and 59.2% in placenta, 79.5% and 66.4% in fetal liver, and 77.9% and 77.0% in fetal kidney, with significant tissue-specific DNA methylation differences in both LINE1 (p-value<0.001) and CCGG content (p-value<0.001). Total BPA concentrations were positively associated with global methylation for the placenta only using the LINE1 assay (p-value: 0.002), suggesting organ-specific biological effects after fetal exposure. Utilizing sensitive human clinical specimens, results are informative for BPA toxicokinetics and toxicodynamics assessment in the developing human fetus.
Collapse
Affiliation(s)
- Muna S Nahar
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Chunyang Liao
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, State University of New York at Albany, Albany, NY, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, State University of New York at Albany, Albany, NY, USA; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Craig Harris
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Marshall VA, Johnson KJ, Moore NP, Rasoulpour RJ, Tornesi B, Carney EW. Comparative Response of Rat and Rabbit Conceptuses In Vitro to Inhibitors of Histiotrophic Nutrition. ACTA ACUST UNITED AC 2015; 104:1-10. [DOI: 10.1002/bdrb.21134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/18/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Valerie A. Marshall
- Toxicology and Environmental Research and Consulting; The Dow Chemical Company; Midland Michigan
| | - Kamin J. Johnson
- Toxicology and Environmental Research and Consulting; The Dow Chemical Company; Midland Michigan
| | | | - Reza J. Rasoulpour
- Toxicology and Environmental Research and Consulting; The Dow Chemical Company; Midland Michigan
| | - Belen Tornesi
- Toxicology and Environmental Research and Consulting; The Dow Chemical Company; Midland Michigan
| | - Edward W. Carney
- Toxicology and Environmental Research and Consulting; The Dow Chemical Company; Midland Michigan
| |
Collapse
|
9
|
Hansen JM, Harris C. Glutathione during embryonic development. Biochim Biophys Acta Gen Subj 2014; 1850:1527-42. [PMID: 25526700 DOI: 10.1016/j.bbagen.2014.12.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/19/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glutathione (GSH) is a ubiquitous, non-protein biothiol in cells. It plays a variety of roles in detoxification, redox regulation and cellular signaling. Many processes that can be regulated through GSH are critical to developing systems and include cellular proliferation, differentiation and apoptosis. Understanding how GSH functions in these aspects can provide insight into how GSH regulates development and how during periods of GSH imbalance how these processes are perturbed to cause malformation, behavioral deficits or embryonic death. SCOPE OF REVIEW Here, we review the GSH system as it relates to events critical for normal embryonic development and differentiation. MAJOR CONCLUSIONS This review demonstrates the roles of GSH extend beyond its role as an antioxidant but rather GSH acts as a mediator of numerous processes through its ability to undergo reversible oxidation with cysteine residues in various protein targets. Shifts in GSH redox potential cause an increase in S-glutathionylation of proteins to change their activity. As such, redox potential shifts can act to modify protein function on a possible longer term basis. A broad group of targets such as kinases, phosphatases and transcription factors, all critical to developmental signaling, is discussed. GENERAL SIGNIFICANCE Glutathione regulation of redox-sensitive events is an overlying theme during embryonic development and cellular differentiation. Various stresses can change GSH redox states, we strive to determine developmental stages of redox sensitivity where insults may have the most impactful damaging effect. In turn, this will allow for better therapeutic interventions and preservation of normal developmental signaling. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, United States.
| | - Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 40109-2029, United States
| |
Collapse
|