1
|
Atuk Kahraman T, Yılmaz M, Aslan K, Canatan H, Kara A, Nalbantoglu OU, Gundogdu A, Eken A. Lycopene Supplemented Mediterranean Diet Ameliorates Experimental Autoimmune Encephalomyelitis (EAE) in Mice and Changes Intestinal Microbiome. J Neuroimmune Pharmacol 2025; 20:50. [PMID: 40323426 PMCID: PMC12052919 DOI: 10.1007/s11481-025-10212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
This study aimed to determine the effects of the Mediterranean diet (MD) and lycopene on the development of EAE and on inflammatory markers. In the 43-day study, 72 female C57BL/6 mice were randomly divided into eight groups according to whether they were EAE or naive (control) mice, fed a Western diet or a MD, and whether they received lycopene. During the study, mice were fed ad libitum, and lycopene groups were given 10 mg/kg/day lycopene per mouse every other day for 28 days in oral gavage. The mice were scored for EAE, sacrificed and their spleen, lymph nodes, and spinal cords were removed. We observed slightly delayed EAE onset in the MD-Lyc group compared to the others, and the EAE clinical scores were also lower than in the other groups. T-cell counts in the spleen and lymph nodes of the MD-Lyc group were significantly lower than in other groups. The production of IFN-γ and IL-22 was higher than in the other groups. IL-17 A cytokine produced in the spleen was lower in the MD-Lyc group than in the other groups. In addition, the highest myelination score was seen in the MD-Lyc group. MD-Lyc group also had a unique microbiome profile compared with the remaining groups. In summary, MD and lycopene administration positively impacted EAE scores and myelination. However, more comprehensive studies at the in vitro and in vivo levels are needed to reveal the effect of this intervention on cell numbers in the CNS.
Collapse
Affiliation(s)
- Tutku Atuk Kahraman
- Department of Nutrition and Dietetics, Institute of Health Sciences, Erciyes University, Kayseri, 38039, Türkiye
- , Current Address: 6/b, 2404th Street, Yenişehir, Mersin, 33110, Türkiye
| | - Müge Yılmaz
- Department of Nutrition and Dietetics, Institute of Health Sciences, Erciyes University, Kayseri, 38039, Türkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erciyes University, Kayseri, 38030, Türkiye
| | - Kübra Aslan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Türkiye
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Türkiye
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye
| | - Ayca Kara
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye
| | - Ozkan Ufuk Nalbantoglu
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye
- Department of Computer Engineering, Faculty of Engineering, Erciyes University, Kayseri, 38030, Türkiye
| | - Aycan Gundogdu
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Türkiye
| | - Ahmet Eken
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Türkiye.
- Genome and Stem Cell Center (GenKok), Erciyes University, Melikgazi, Kayseri, 38280, Türkiye.
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Bodur M, Yilmaz B, Ağagündüz D, Ozogul Y. Immunomodulatory Effects of Omega-3 Fatty Acids: Mechanistic Insights and Health Implications. Mol Nutr Food Res 2025; 69:e202400752. [PMID: 40159804 PMCID: PMC12087734 DOI: 10.1002/mnfr.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 04/02/2025]
Abstract
Omega-3 fatty acids play a significant role in immunomodulation, with nutrigenomic approaches highlighting their impact on gene expression related to immune responses. Research indicates that omega-3 fatty acids can modulate inflammatory pathways, potentially reducing chronic inflammation and enhancing immune function. This review discusses the intersection of nutrigenomics and nutriepigenomics, focusing on how omega-3 fatty acids influence gene expression, immune function, and overall health. The immune system is a complex network responsible for defending the body against pathogens and maintaining internal balance. Comprised of innate and adaptive immunity, the system involves various cells, tissues, and organs working together to combat infections and prevent diseases. Omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a significant role in modulating the immune system. These fatty acids influence immune cell function, membrane fluidity, and signaling processes, enhancing immune responses and reducing inflammation. Furthermore, EPA and DHA affect several signaling pathways, reducing the expression of proinflammatory cytokines and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, a critical transcription factor in the inflammatory response. Additionally, they activate PPAR-γ, further diminishing inflammatory gene expression. As precursors to specialized proresolving lipid mediators, EPA and DHA help shift the lipid mediator profile from proinflammatory to antiinflammatory derivatives, thus aiding in the resolution of inflammation.
Collapse
Affiliation(s)
- Mahmut Bodur
- Faculty of Health SciencesDepartment of Nutrition and DieteticsAnkara UniversityAnkaraTurkey
| | - Birsen Yilmaz
- Department of Biological SciencesTata Institute of Fundamental ResearchHyderabadIndia
- Faculty of Health SciencesDepartment of Nutrition and DieteticsCukurova UniversityAdanaTurkey
| | - Duygu Ağagündüz
- Faculty of Health SciencesDepartment of Nutrition and DieteticsGazi UniversityAnkaraTurkey
| | - Yeşim Ozogul
- Faculty of FisheriesDepartment of Seafood Processing TechnologyCukurova UniversityAdanaTurkey
| |
Collapse
|
3
|
Gong Y, Xu R, Gao G, Li S, Liu Y. The role of fatty acid metabolism on B cells and B cell-related autoimmune diseases. Inflamm Res 2025; 74:75. [PMID: 40299047 DOI: 10.1007/s00011-025-02042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Fatty acid metabolism plays a critical role in regulating immune cell function, including B cells, which are central to humoral immunity and the pathogenesis of autoimmune diseases. Emerging evidence suggests that fatty acid metabolism influences B cell development, activation, differentiation, and antibody production, thereby impacting B cell-related autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In this review, we discuss the mechanisms by which fatty acid metabolism modulates B cell biology, including energy provision, membrane composition, and signaling pathways. We highlight how alterations in fatty acid synthesis, oxidation, and uptake affect B cell function and contribute to autoimmune pathogenesis. Additionally, we explore the therapeutic potential of targeting fatty acid metabolism in B cells to treat autoimmune diseases. Understanding the interplay between fatty acid metabolism and B cell immunity may provide novel insights into the development of precision therapies for B cell-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Yanmei Gong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Ruiqi Xu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Guohui Gao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Simiao Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Ying Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China.
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China, China.
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, Shandong, China.
| |
Collapse
|
4
|
Amr M, Farid A. Impact of cow, buffalo, goat or camel milk consumption on oxidative stress, inflammation and immune response post weaning time. Sci Rep 2024; 14:9967. [PMID: 38693190 PMCID: PMC11063178 DOI: 10.1038/s41598-024-59959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Milk is a whitish liquid that is secreted from mammary glands; and considered as the primary source of nutrition for newborns since they are not able to digest solid food. However, it contains primary nutrients, as well as growth and immune factors. Early weaning is a critical issue that face women and their babies in developing countries. To avoid infant malnutrition, they tend to use other milk types instead of baby formula. Therefore, the present study aimed to evaluate the impact of cow, buffalo, goat or camel milk consumption on oxidative stress, inflammation and immune response in male and female Sprague Dawley rats post weaning time. The amino acids, fatty acids, minerals and vitamins in the tested milk types were evaluated. Animals were divided into 5 groups (control, cow, buffalo, goat and camel milk administrated groups) (10 rats/group); each animal was administrated by 3.4 ml/day. Rats were administered with milk for 6 weeks; at the end of the 5th week, five animals of each group were isolated and the remaining five animals were immunized with sheep red blood cells (SRBCs) and kept for another week to mount immune response. The effect of different milk types on rats' immune response towards SRBCs was evaluated through pro-inflammatory cytokines, antioxidants, ESR and CRP measurement; together, with the histopathological examination of spleen samples and hemagglutination assay. Camel milk consumption reduced oxidative stress and inflammation in spleen that resulted from SRBCs immunization; in addition to, B cell stimulation that was apparent from the high level of anti-SRBCs antibodies. Camel milk is recommended for newborn consumption, due to its high-water content, unsaturated fatty acids, and vitamin C, as well as low lactose and fat content.
Collapse
Affiliation(s)
- Maryam Amr
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| |
Collapse
|
5
|
Che L, Zhou Q, Liu Y, Hu L, Peng X, Wu C, Zhang R, Tang J, Wu F, Fang Z, Lin Y, Xu S, Feng B, Li J, Jiang P, Wu D, Chen D. Flaxseed oil supplementation improves intestinal function and immunity, associated with altered intestinal microbiome and fatty acid profile in pigs with intrauterine growth retardation. Food Funct 2020; 10:8149-8160. [PMID: 31696186 DOI: 10.1039/c9fo01877h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Flaxseed oil (FO), enriched in n-3 polyunsaturated fatty acids (PUFAs), is an important oil source for intestinal development and health. We aimed to study the different effects of FO versus soybean oil (SO) on growth, intestinal health and immune function of neonates with intrauterine growth retardation (IUGR) using a weaned piglet model. Forty pairs of male IUGR and normal birth weight piglets, weaned at 21 ± 1 d, were fed diets containing either 4% FO or SO for 3 weeks consecutively. Growth performance, nutrient digestibility and intestinal function parameters, immunology and microbiota composition were determined. IUGR led to a poor growth rate, nutrient digestibility and abnormal immunology variables, whereas feeding FO diet improved systemic and gut immunity, as indicated by increased plasma concentration of immunoglobulin G and decreased CD3+CD8+ T lymphocytes, and down-regulated intestinal expression of genes (MyD88, NF-κB, TNF-α, IL-10). Although IUGR tended to decrease villous height, feeding FO diet tended to increase the villi-crypt ratio and up-regulated expressions of tight junction genes (Claudin-1 and ZO-1), together with increased mucosa contents of n-3 PUFAs and a lower Σn-6/Σn-3 ratio. Besides, FO diet decreased the abundance of pathogenic bacteria Spirochaetes, and increased phylum Actinobacteria, and genera Blautia and Bifidobacterium in colonic digesta. Our findings indicate that IUGR impairs growth rate, nutrient digestibility, and partly immunology variables, whereas feeding FO-supplemented diet could improve intestinal function and immunity of both IUGR and NBW pigs, associated with the altered gut microbiome and mucosal fatty acid profile.
Collapse
Affiliation(s)
- Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, No. 46 Xinkang Road, Ya'an 625014, Sichuan, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Giannoni P, Claeysen S, Noe F, Marchi N. Peripheral Routes to Neurodegeneration: Passing Through the Blood-Brain Barrier. Front Aging Neurosci 2020; 12:3. [PMID: 32116645 PMCID: PMC7010934 DOI: 10.3389/fnagi.2020.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
A bidirectional crosstalk between peripheral players of immunity and the central nervous system (CNS) exists. Hence, blood-brain barrier (BBB) breakdown is emerging as a participant mechanism of dysregulated peripheral-CNS interplay, promoting diseases. Here, we examine the implication of BBB damage in neurodegeneration, linking it to peripheral brain-directed autoantibodies and gut-brain axis mechanisms. As BBB breakdown is a factor contributing to, or even anticipating, neuronal dysfunction(s), we here identify contemporary pharmacological strategies that could be exploited to repair the BBB in disease conditions. Developing neurovascular, add on, therapeutic strategies may lead to a more efficacious pre-clinical to clinical transition with the goal of curbing the progression of neurodegeneration.
Collapse
Affiliation(s)
| | - Sylvie Claeysen
- CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, University of Montpellier, Montpellier, France
| | - Francesco Noe
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Nicola Marchi
- CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, University of Montpellier, Montpellier, France
| |
Collapse
|
7
|
Cucchi D, Camacho-Muñoz D, Certo M, Pucino V, Nicolaou A, Mauro C. Fatty acids - from energy substrates to key regulators of cell survival, proliferation and effector function. Cell Stress 2019; 4:9-23. [PMID: 31922096 PMCID: PMC6946016 DOI: 10.15698/cst2020.01.209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Recent advances in immunology and cancer research show that fatty acids, their metabolism and their sensing have a crucial role in the biology of many different cell types. Indeed, they are able to affect cellular behaviour with great implications for pathophysiology. Both the catabolic and anabolic pathways of fatty acids present us with a number of enzymes, receptors and agonists/antagonists that are potential therapeutic targets, some of which have already been successfully pursued. Fatty acids can affect the differentiation of immune cells, particularly T cells, as well as their activation and function, with important consequences for the balance between anti- and pro-inflammatory signals in immune diseases, such as rheumatoid arthritis, psoriasis, diabetes, obesity and cardiovascular conditions. In the context of cancer biology, fatty acids mainly provide substrates for energy production, which is of crucial importance to meet the energy demands of these highly proliferating cells. Fatty acids can also be involved in a broader transcriptional programme as they trigger signals necessary for tumorigenesis and can confer to cancer cells the ability to migrate and generate distant metastasis. For these reasons, the study of fatty acids represents a new research direction that can generate detailed insight and provide novel tools for the understanding of immune and cancer cell biology, and, more importantly, support the development of novel, efficient and fine-tuned clinical interventions. Here, we review the recent literature focusing on the involvement of fatty acids in the biology of immune cells, with emphasis on T cells, and cancer cells, from sensing and binding, to metabolism and downstream effects in cell signalling.
Collapse
Affiliation(s)
- Danilo Cucchi
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health sciences, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, School of Health sciences, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Mindelsohn Way, Birmingham B15 2WB, UK
| |
Collapse
|
8
|
Radzikowska U, Rinaldi AO, Çelebi Sözener Z, Karaguzel D, Wojcik M, Cypryk K, Akdis M, Akdis CA, Sokolowska M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019; 11:E2990. [PMID: 31817726 PMCID: PMC6950146 DOI: 10.3390/nu11122990] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Zeynep Çelebi Sözener
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Department of Chest Disease, Division of Allergy and Clinical Immunology, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Dilara Karaguzel
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Marzena Wojcik
- Department of Structural Biology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Medicine and Diabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| |
Collapse
|
9
|
Gutiérrez S, Svahn SL, Johansson ME. Effects of Omega-3 Fatty Acids on Immune Cells. Int J Mol Sci 2019; 20:ijms20205028. [PMID: 31614433 PMCID: PMC6834330 DOI: 10.3390/ijms20205028] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Alterations on the immune system caused by omega-3 fatty acids have been described for 30 years. This family of polyunsaturated fatty acids exerts major alterations on the activation of cells from both the innate and the adaptive immune system, although the mechanisms for such regulation are diverse. First, as a constitutive part of the cellular membrane, omega-3 fatty acids can regulate cellular membrane properties, such as membrane fluidity or complex assembly in lipid rafts. In recent years, however, a new role for omega-3 fatty acids and their derivatives as signaling molecules has emerged. In this review, we describe the latest findings describing the effects of omega-3 fatty acids on different cells from the immune system and their possible molecular mechanisms.
Collapse
Affiliation(s)
- Saray Gutiérrez
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Sara L Svahn
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
10
|
Petta I, Fraussen J, Somers V, Kleinewietfeld M. Interrelation of Diet, Gut Microbiome, and Autoantibody Production. Front Immunol 2018; 9:439. [PMID: 29559977 PMCID: PMC5845559 DOI: 10.3389/fimmu.2018.00439] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
B cells possess a predominant role in adaptive immune responses via antibody-dependent and -independent functions. The microbiome of the gastrointestinal tract is currently being intensively investigated due to its profound impact on various immune responses, including B cell maturation, activation, and IgA antibody responses. Recent findings have demonstrated the interplay between dietary components, gut microbiome, and autoantibody production. "Western" dietary patterns, such as high fat and high salt diets, can induce alterations in the gut microbiome that in turn affects IgA responses and the production of autoantibodies. This could contribute to multiple pathologies including autoimmune and inflammatory diseases. Here, we summarize current knowledge on the influence of various dietary components on B cell function and (auto)antibody production in relation to the gut microbiota, with a particular focus on the gut-brain axis in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Ioanna Petta
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium.,Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Judith Fraussen
- Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Veerle Somers
- Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium.,Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| |
Collapse
|
11
|
Teague H, Harris M, Whelan J, Comstock SS, Fenton JI, Shaikh SR. Short-term consumption of n-3 PUFAs increases murine IL-5 levels, but IL-5 is not the mechanistic link between n-3 fatty acids and changes in B-cell populations. J Nutr Biochem 2015; 28:30-6. [PMID: 26878780 DOI: 10.1016/j.jnutbio.2015.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/31/2022]
Abstract
N-3 polyunsaturated fatty acids (PUFAs) exert immunomodulatory effects on B cells. We previously demonstrated that n-3 PUFAs enhanced the relative percentage and/or frequency of select B2 cell subsets. The objectives here were to determine if n-3 PUFAs (a) could boost cytokines that target B-cell frequency, (b) enhance the frequency of the B1 population and (c) to identify the mechanism by which n-3 PUFAs modify the proportion of B cells. Administration of n-3 PUFAs as fish oil to C57BL/6 mice enhanced secretion of the Th2 cytokine IL-5 but not IL-9 or IL-13. N-3 PUFAs had no influence on the percentage or frequency of peritoneal B1 or B2 cells. Subsequent experiments with IL-5(-/-) knockout mice showed n-3 PUFAs decreased the percentage of bone marrow B220(lo)IgM(hi) cells and increased the proportion and number of splenic IgM(+)IgD(lo)CD21(lo) cells compared to the control. These results, when compared with our previous findings with wild-type mice, suggested IL-5 had no role in mediating the effect of n-3 PUFAs on B-cell populations. To confirm this conclusion, we assayed IL-5 secretion in a diet-induced obesity model in which n-3 PUFAs enhanced the frequency of select B-cell subsets. N-3 PUFA supplementation as ethyl esters to obesogenic diets did not alter circulating IL-5 levels. Altogether, the data establish that n-3 PUFAs as fish oil can increase circulating IL-5 in lean mice, which has implications for several disease end points, but this increase in IL-5 is not the mechanistic link between n-3 PUFAs and changes in B-cell populations.
Collapse
Affiliation(s)
- Heather Teague
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Mitchel Harris
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Jarrett Whelan
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI; College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University; Department of Microbiology & Immunology, East Carolina University.
| |
Collapse
|
12
|
Whelan J, Gowdy KM, Shaikh SR. N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections. Eur J Pharmacol 2015; 785:10-17. [PMID: 26022530 DOI: 10.1016/j.ejphar.2015.03.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/15/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
B cell antigen presentation, cytokine production, and antibody production are targets of pharmacological intervention in inflammatory and infectious diseases. Here we review recent pre-clinical evidence demonstrating that pharmacologically relevant levels of n-3 polyunsaturated fatty acids (PUFA) derived from marine fish oils influence key aspects of B cell function through multiple mechanisms. N-3 PUFAs modestly diminish B cell mediated stimulation of classically defined naïve CD4(+) Th1 cells through the major histocompatibility complex (MHC) class II pathway. This is consistent with existing data showing that n-3 PUFAs suppress the activation of Th1/Th17 cells through direct effects on helper T cells and indirect effects on antigen presenting cells. Mechanistically, n-3 PUFAs lower antigen presentation and T cell signaling by disrupting the formation of lipid microdomains within the immunological synapse. We then review data to show that n-3 PUFAs boost B cell activation and antibody production in the absence and presence of antigen stimulation. This has potential benefits for several clinical populations such as the aged and obese that have poor humoral immunity. The mode of action by which n-3 PUFA boost B cell activation and antibody production remains unclear, but may involve Th2 cytokines, enhanced production of specialized proresolving lipid mediators, and targeting of protein lateral organization in lipid microdomains. Finally, we highlight evidence to show that different n-3 PUFAs are not biologically equivalent, which has implications for the development of future interventions to target B cell activity.
Collapse
Affiliation(s)
- Jarrett Whelan
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Kymberly M Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Microbiology & Immunology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
13
|
Shaikh SR, Haas KM, Beck MA, Teague H. The effects of diet-induced obesity on B cell function. Clin Exp Immunol 2015; 179:90-9. [PMID: 25169121 DOI: 10.1111/cei.12444] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 12/12/2022] Open
Abstract
B-1 and B-2 B cell subsets carry out a diverse array of functions that range broadly from responding to innate stimuli, antigen presentation, cytokine secretion and antibody production. In this review, we first cover the functional roles of the major murine B cell subsets. We then highlight emerging evidence, primarily in preclinical rodent studies, to show that select B cell subsets are a therapeutic target in obesity and its associated co-morbidities. High fat diets promote accumulation of select murine B cell phenotypes in visceral adipose tissue. As a consequence, B cells exacerbate inflammation and thereby insulin sensitivity through the production of autoantibodies and via cross-talk with select adipose resident macrophages, CD4(+) and CD8(+) T cells. In contrast, interleukin (IL)-10-secreting regulatory B cells counteract the proinflammatory profile and improve glucose sensitivity. We subsequently review data from rodent studies that show pharmacological supplementation of obesogenic diets with long chain n-3 polyunsaturated fatty acids or specialized pro-resolving lipid mediators synthesized from endogenous n-3 polyunsaturated fatty acids boost B cell activation and antibody production. This may have potential benefits for improving inflammation in addition to combating the increased risk of viral infection that is an associated complication of obesity and type II diabetes. Finally, we propose potential underlying mechanisms throughout the review by which B cell activity could be differentially regulated in response to high fat diets.
Collapse
Affiliation(s)
- S R Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC, USA; Department of Microbiology and Immunology, East Carolina Diabetes and Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | | | | | | |
Collapse
|
14
|
Gurzell EA, Teague H, Duriancik D, Clinthorne J, Harris M, Shaikh SR, Fenton JI. Marine fish oils are not equivalent with respect to B-cell membrane organization and activation. J Nutr Biochem 2014; 26:369-77. [PMID: 25616447 DOI: 10.1016/j.jnutbio.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/29/2022]
Abstract
We previously reported that docosahexaenoic-acid (DHA)-enriched fish oil (DFO) feeding altered B-cell membrane organization and enhanced B-cell function. The purpose of this study was to evaluate whether menhaden oil (MO) and eicosapentaenoic-acid (EPA)-enriched fish oil (EFO) alters B-cell function/phenotype similarly. Mice were fed control (CON), MO, EFO or DFO diets for 5weeks. We evaluated the fatty acid composition of B-cell phospholipids, membrane microdomain organization, ex vivo B-cell functionality and in vivo B-cell subsets. Red blood cells and B cells were found to be strongly (r>0.85) and significantly (P<.001) correlated for major n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFAs). Compared to CON, MO and DFO resulted in decreased clustering of membrane microdomains, whereas EFO increased clustering. All fish oil treatments had 1.12-1.60 times higher CD40 expression following stimulation; however, we observed 0.86 times lower major histocompatibility complex class II expression and 0.7 times lower interleukin (IL)-6 production from EFO, but 3.25 times higher interferon-γ from MO and 1.5 times higher IL-6 from DFO. By 90min of incubation, MO had 1.11 times higher antigen uptake compared to CON, whereas EFO was 0.86 times lower. All fish oil treatments resulted in decreasingly mature splenic and bone marrow B-cell subsets. We conclude that diets high in n-3 LCPUFAs may elicit similar B-cell phenotypes but different organizational and functional outcomes. More specifically, these data suggest that the EPA and DHA content of a diet influences immunological outcomes, highlighting the importance of understanding how specific n-3 LCPUFAs modulate B-cell development and function.
Collapse
Affiliation(s)
- Eric A Gurzell
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - Heather Teague
- Department of Biochemistry & Molecular Biology, Department of Microbiology & Immunology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - David Duriancik
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - Jonathan Clinthorne
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - Mitchel Harris
- Department of Biochemistry & Molecular Biology, Department of Microbiology & Immunology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, Department of Microbiology & Immunology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824; College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
15
|
Tomasdottir V, Vikingsson A, Hardardottir I, Freysdottir J. Murine antigen-induced inflammation--a model for studying induction, resolution and the adaptive phase of inflammation. J Immunol Methods 2014; 415:36-45. [PMID: 25268546 DOI: 10.1016/j.jim.2014.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 08/27/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
Abstract
Murine zymosan-induced peritonitis is the model most frequently used to study resolution of inflammation. However, the antigen-induced peritonitis model may be better suited for studying resolution of inflammation and the adaptive phase that follows. The objective of this study was to provide an evaluation of the kinetics of cells and mediators during induction, resolution and the adaptive immune phases of a murine antigen-induced inflammation. Female C57BL/6 mice were immunized twice subcutaneously with mBSA and three weeks after the initial immunization they were injected intraperitoneally (i.p.) with mBSA, which induced peritonitis. Peritoneal cells were counted and expression of surface molecules and chemokine receptors analyzed with flow cytometry. Chemokine and cytokine concentrations in peritoneal fluid were determined by ELISA. Two neutrophil populations, differing in size and granularity and slightly in expression of surface molecules, were observed in the peritoneal cavity after induction of inflammation. Macrophages disappeared from the peritoneal cavity following i.p. administration of mBSA but appeared again as they differentiated from recruited monocytes and peaked in numbers at 48 h. At that time point, two distinct populations of macrophages were present in the peritoneal cavity; one with high expression of F4/80, also expressing the atypical chemokine receptor D6 as well as CCR7; the other expressing low levels of F4/80 and also expressing CD11c and CD138. Eosinophils appeared in the peritoneum 3h following i.p. administration of mBSA and peaked at 48 h. At that time point they had upregulated their expression of CCR3 but decreased their expression of CD11b. Peritoneal levels of CCL11 peaked at 6h and may have led to recruitment of the eosinophils. NK cells and T cells peaked at 48 h, whereas B cells peaked at 5 days, with the majority being B1 cells. Peritoneal concentrations of pro-inflammatory cytokines (IL-β and IL-6) and chemokines (CCL2 and CCL3) peaked at 3h, whereas IL-1ra peaked at 6h, sTNF-R at 24h and sIL-6R and TGF-β at 48 h. The results show kinetic alterations in cell populations and mediators in a murine model that may be an excellent model to study initiation and resolution of inflammation and the following adaptive phase.
Collapse
Affiliation(s)
- Valgerdur Tomasdottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland; Department of Immunology, Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Arnor Vikingsson
- Center for Rheumatology Research, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ingibjorg Hardardottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Jona Freysdottir
- Department of Immunology, Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland; Department of Immunology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland; Center for Rheumatology Research, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.
| |
Collapse
|
16
|
Teague H, Harris M, Fenton J, Lallemand P, Shewchuk BM, Shaikh SR. Eicosapentaenoic and docosahexaenoic acid ethyl esters differentially enhance B-cell activity in murine obesity. J Lipid Res 2014; 55:1420-33. [PMID: 24837990 DOI: 10.1194/jlr.m049809] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Indexed: 01/06/2023] Open
Abstract
EPA and DHA are not biologically equivalent; however, their individual activity on B cells is unknown. We previously reported fish oil enhanced murine B-cell activity in obesity. To distinguish between the effects of EPA and DHA, we studied the ethyl esters of EPA and DHA on murine B-cell function as a function of time. We first demonstrate that EPA and DHA maintained the obese phenotype, with no improvements in fat mass, adipose inflammatory cytokines, fasting insulin, or glucose clearance. We then tested the hypothesis that EPA and DHA would increase the frequency of splenic B cells. EPA and DHA differentially enhanced the frequency and/or percentage of select B-cell subsets, correlating with increased natural serum IgM and cecal IgA. We next determined the activities of EPA and DHA on ex vivo production of cytokines upon lipopolysaccharide stimulation of B cells. EPA and DHA, in a time-dependent manner, enhanced B-cell cytokines with DHA notably increasing IL-10. At the molecular level, EPA and DHA differentially enhanced the formation of ordered microdomains but had no effect on Toll-like receptor 4 mobility. Overall, the results establish differential effects of EPA and DHA in a time-dependent manner on B-cell activity in obesity, which has implications for future clinical studies.
Collapse
Affiliation(s)
- Heather Teague
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Mitchel Harris
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jenifer Fenton
- Department of Food Science and Nutrition, Michigan State University, East Lansing, MI
| | - Perrine Lallemand
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Brian M Shewchuk
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| |
Collapse
|