1
|
Xie G, Zhang Q, Dong J, Fang Z, Che L, Lin Y, Xu S, Zhuo Y, Hua L, Jiang X, Sun M, Huang C, Li L, Zou Y, Wu D, Feng B. Maternal Vitamin D3 Supplementation in an Oxidized-Oil Diet Protects Fetus from Developmental Impairment and Ameliorates Oxidative Stress in Mouse Placenta and Fetus. J Nutr 2024; 154:2920-2931. [PMID: 39053607 DOI: 10.1016/j.tjnut.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Fried food has increased in popularity worldwide. However, deep frying can increase the production of peroxidative toxins in food, which might be harmful to fetal development. The antioxidative effect of vitamin D3 (VD3) has been reported previously. OBJECTIVES This study aimed to explore how maternal VD3 supplementation in an oxidized-oil diet during gestation affects fetal antioxidative ability and development. METHODS Pregnant mice were randomly assigned into 3 groups: Control group (diet with fresh soybean oil), OSO group [diet with oxidized soybean oil (OSO)], and OSOV group (diet with OSO and 10,000 IU/Kg VD3). Mice were fed with the corresponding diet during gestation. On day 16.5 of gestation, the placenta and fetus were harvested to analyze antioxidative status. RESULTS Maternal oxidized-oil diet during gestation significantly reduced placental vessel abundance, labyrinth zone area, and fetal body weight. However, dietary VD3 supplementation prevented these negative effects of oxidized-oil diet. Maternal intake of oxidized-oil diet increased serum concentrations of malondialdehyde, total-nitric oxide synthase, and inducible nitric oxide synthase, whereas VD3 supplementation showed a protection effect on it. Additionally, maternal VD3 supplementation increased the levels of antioxidative enzymes and the nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), thereby protecting placenta and fetus from apoptosis and oxidative stress caused by an oxidized-oil diet. The gene expression and protein levels of a fatty acid transporter solute carrier family 27 member 1 in the fetal liver were increased by maternal VD3 supplementation under oxidized-oil diet. Notably, NRF2 could be co-immunoprecipitated with the VD receptor in the placenta. CONCLUSIONS Maternal VD3 supplementation could protect fetus from oxidized-oil diet induced developmental impairment by alleviating oxidative stress in the placenta and fetus through the VD receptor/NRF2 pathway, at least partially. Thus, ensuring adequate levels of VD3 through supplementation is often critical during pregnancy.
Collapse
Affiliation(s)
- Guangrong Xie
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qipeng Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinbin Dong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Uribarri J, Calvo MS. Does the Maillard Reaction Formation of Dietary Advanced Glycation End Products With Frying Also Merit Study as a Pathogenic Mechanism of Fried Food Toxicity or Does This Toxicity Only Involve Lipid Peroxidation? J Nutr 2024; 154:2901-2903. [PMID: 39216789 DOI: 10.1016/j.tjnut.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Mona S Calvo
- Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, United States.
| |
Collapse
|
3
|
Xie G, Zhang Q, Fang Z, Che L, Lin Y, Xu S, Zhuo Y, Hua L, Jiang X, Li J, Sun M, Zou Y, Huang C, Li L, Wu D, Feng B. Maternal Vitamin D and Inulin Supplementation in Oxidized Oil Diet Improves Growth Performance and Hepatic Innate Immunity in Offspring Mice. Antioxidants (Basel) 2023; 12:1355. [PMID: 37507895 PMCID: PMC10376903 DOI: 10.3390/antiox12071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Dietary oxidized fat contains harmful materials such as hydrogen peroxide and malondialdehyde (MDA). Excessive oxidized fat intake during pregnancy and lactation not only leads to maternal body injury but also damages offspring health. Our previous study demonstrated that vitamin D (VD) had antioxidative capability in sows. This study was conducted to investigate the effect of maternal VD and inulin supplementation in oxidized oil diet on the growth performance and oxidative stress of their offspring. Sixty 5-month-old C57BL/6N female mice were randomly divided into five groups: Control group (basal diet, n = 12), OF group (oxidized-soybean-oil-replaced diet, n = 12), OFV group (oxidized-soybean-oil-replaced diet + 7000 IU/kg VD, n = 12), OFI group (oxidized-soybean-oil-replaced diet + 5% inulin, n = 12) and OFVI group (oxidized-soybean-oil-replaced diet + 7000 IU/kg VD + 5% inulin, n = 12). Mice were fed with the respective diet during pregnancy and lactation. The offspring were then slaughtered on day 21 of age at weaning. Results showed that a maternal oxidized oil diet impaired body weight and liver weight gain of offspring during lactation compared to the control group, while maternal VD, inulin or VD and inulin mixture supplementation reversed this effect. In addition, the activity of T-AOC in the liver of offspring was lower in the OF group than that in the control group, but could be restored by maternal VD and inulin mixture supplementation. Furthermore, the gene expression of both proinflammatory and anti-inflammatory cytokines, such as Il-6, Tnfα and Il-10, in offspring liver were downregulated by a maternal oxidized oil diet compared with the control group, but they were restored by maternal VD or VD and inulin mixture supplementation. The expressions of Vdr and Cyp27a1 were decreased by a maternal oxidized oil diet compared with the control group, while they could be increased by VD or VD and inulin mixture supplementation. Conclusion: maternal oxidized oil diet intake could impair the growth performance by inducing oxidative stress, but this can be relieved by maternal VD and inulin supplementation.
Collapse
Affiliation(s)
- Guangrong Xie
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qipeng Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Dietary oxidized frying oil activates hepatic stellate cells and accelerates the severity of carbon tetrachloride- and thioacetamide-induced liver fibrosis in mice. J Nutr Biochem 2023; 115:109267. [PMID: 36641072 DOI: 10.1016/j.jnutbio.2023.109267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Deep-frying is a common cooking practice worldwide, and after repeated heating's, the oil undergoes various chemical reactions, including hydrolysis, polymerization, lipid oxidation, and the Maillard reaction. Studies have pointed out that oxidized dietary frying oil may cause teratogenesis in mice and increase cancer and cardiovascular risks. The liver is the main organ involved in dietary nutrient catabolism, detoxification, bile production, and lipid metabolism. Nevertheless, the effects of oxidized frying oil exposure on the activation of hepatic stellate cells (HSCs) and liver fibrosis are still unclear. In this study, we showed that exposure to oxidized frying oil enhanced the sensitivity of HSCs to transforming growth factor (TGF)-β1-induced α-smooth muscle actin (α-SMA), collagen 1a2, collagen 1a1, metalloproteinase-2, and phosphorylated smad2/3 activation. In both carbon tetrachloride (CCl4)- and thioacetamide (TAA)-induced liver fibrosis mouse models, we showed that long-term administration of a 10% fried oil-containing diet significantly upregulated fibrogenesis genes expression and deposition of hepatic collagen. Furthermore, long-term fried oil exposure not only promoted macrophage infiltration and increased inflammatory-related gene expression, but also accumulated excess cholesterol and lipid peroxidation in the liver tissues. In conclusion, our study demonstrated that feeding a fried oil-containing diet may trigger TGF-β1-induced HSCs activation and thereby promote liver damage and fibrosis progression through enhancing the inflammatory response and lipid peroxidation.
Collapse
|
5
|
Wang C, Sun H, Jiang X, Guan X, Gao F, Shi B. Maternal Oxidized Soybean Oil Administration in Rats during Pregnancy and Lactation Alters the Intestinal DNA Methylation in Offspring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6224-6238. [PMID: 35549255 DOI: 10.1021/acs.jafc.2c01100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a food contaminant, oxidized oil or lipid oxidative products have been proven to exert toxicological effects on the growth and development of animals and humans. Research shows that maternal oxidative stress damage might transmit to another generation by epigenetic modulation. However, current evidence is still not clear on the mechanism of the effects of dietary oxidized oil during pregnancy on the two generations. This study employed a rat model fed with oxidized soybean oil (OSO) during pregnancy and lactation to explore the effects of the oxidative degree (0, 200, 400, and 800 mequiv of O2/kg) on the placental RNA methylation and DNA methylation in offspring jejunum. The results showed that following the ingestion of OSO, the placental genes of different m6A methylation were significantly enriched to nutrient metabolic processes and hormone activity. In addition, the intestine in offspring hypofunctioned observably, such as reducing the height of villi and the level of anti-inflammatory cytokine. Furthermore, maternal intake of OSO during pregnancy can damage the intestinal barrier function of offspring by inhibiting the proliferation and differentiation of intestinal epithelial cells and reducing the activity of intestinal DNA methyltransferase. In conclusion, this study reinforces the assertion that maternal OSO consumption during gestation and lactation negatively affects the placental health and intestinal development of suckling pups.
Collapse
Affiliation(s)
- Chuanqi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Haoyang Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xu Jiang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xin Guan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Feng Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
6
|
Effect of phenolic extracts from Camellia oleifera seed cake on the formation of polar compounds, core aldehydes, and monoepoxy oleic acids during deep-fat frying. Food Chem 2022; 372:131143. [PMID: 34601419 DOI: 10.1016/j.foodchem.2021.131143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/13/2021] [Accepted: 09/14/2021] [Indexed: 01/22/2023]
Abstract
The frying process is an excellent way to obtain food with desirable sensory. However, some harmful substances, such as aldehydes and monoepoxy oleic acids, could also be produced. This study mainly explores the inhibition of polyphenols from the Camellia oleifera seed cake extract (CSCE) on the formation of polar compounds, core aldehydes, and monoepoxy oleic acids during deep-fat frying. The results showed that the CSCE could significantly decrease peroxide, p-anisidine, total polar, and monoepoxy oleic acids compared with other groups. In addition, the CSCE could significantly inhibit the generation of oxidized triacylglycerol polymer (TGP) and oxidized triacylglycerol (ox-TG), indicating its anti-polymerization activity. The total amount of core aldehydes and glycerol ester core aldehydes (9-oxo) in soybean oil was significantly reduced. Furthermore, CSCE had a better inhibitory effect on monoepoxy fatty acids than TBHQ. Our results might be helpful to provide a basis for the search for new natural antioxidants.
Collapse
|
7
|
Wang L, Chen W, Tian Y, Duan X, Yuan Y, Wang N, Xu C, Liu X, Liu Z. Preventive Effects of Sesamol on Deep‐frying Oil‐induced Liver Metabolism Disorders by Altering Gut Microbiota and Protecting Gut Barrier Integrity. Mol Nutr Food Res 2022; 66:e2101122. [DOI: 10.1002/mnfr.202101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/07/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Weixuan Chen
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Yujie Tian
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Xiaorong Duan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Yi Yuan
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Na Wang
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- Zhengzhou Key Laboratory of Nutrition and Health Food Zhengzhou 450002 China
| | - Chao Xu
- College of Food Science and Technology Henan Agricultural University Zhengzhou 450002 China
- Zhengzhou Key Laboratory of Nutrition and Health Food Zhengzhou 450002 China
| | - Xuebo Liu
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Zhigang Liu
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Department of Food Science Cornell University Ithaca New York 14853 United States
| |
Collapse
|
8
|
Liu Z, Liu M, Lyu C, Li B, Meng X, Si X, Shu C. Effect of Heat Treatment on Oxidation of Hazelnut Oil. J Oleo Sci 2022; 71:1711-1723. [DOI: 10.5650/jos.ess22131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Zixuan Liu
- College of Food Science, Shenyang Agricultural University
| | - Meichu Liu
- College of Food Science, Shenyang Agricultural University
| | - Chunmao Lyu
- College of Food Science, Shenyang Agricultural University
| | - Bin Li
- College of Food Science, Shenyang Agricultural University
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University
| | - Xu Si
- College of Food Science, Shenyang Agricultural University
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University
| |
Collapse
|
9
|
Wang C, Liu Y, Wang H, Gao F, Guan X, Shi B. Maternal Exposure to Oxidized Soybean Oil Impairs Placental Development by Modulating Nutrient Transporters in a Rat Model. Mol Nutr Food Res 2021; 65:e2100301. [PMID: 34289236 DOI: 10.1002/mnfr.202100301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/13/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION As an exogenous food contaminant, dietary oxidized lipid impairs growth and development, and triggers chronic diseases in humans or animals. This study explores the effects of soybean oil with different oxidative degree on the placental injury of gestational rats. METHODS AND RESULTS Thirty-two female adult rats are randomly assigned to four groups. The control group is fed the purified diet with fresh soybean oil (FSO), and the treatment groups are fed purified diets with lipid content replaced by oxidized soybean oil (OSO) at 200, 400, and 800 mEqO2 kg-1 from conception until delivery. On day 20 of gestation, OSO decreased placental and embryonic weights as the oxidative degree increased linearly and quadratically. The expression of Bax showed a linear increase, and Bcl-2 decreased as the oxidative degree increased. The expression of Fosl1 and Esx1 is linearly and quadratically decreased in OSO-treated groups than FSO group. OSO decreased the level of IL-10 but increased expression of IL-1β in placenta and plasma. OSO remarkably upregulates levels of Fatp1 and Glut1 and decreases expression of Snat2 and Glut3. CONCLUSION OSO aggravates placental injury by modulating nutrient transporters and apoptosis-related genes, impedes placental growth and development, and ultimately leads to the decrease of fetal weight.
Collapse
Affiliation(s)
- Chuanqi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huiting Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Feng Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xin Guan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
10
|
Lin YS, Chen DL, Shaw HM, Wang GJ, Chao PM. Consuming oxidative frying oil impairs cardiac energy production and calcium recycling, causing cardiac hypertrophy, fibrosis and diastolic dysfunction in male Sprague Dawley rats. J Nutr Biochem 2021; 98:108816. [PMID: 34246734 DOI: 10.1016/j.jnutbio.2021.108816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 05/09/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022]
Abstract
With regards to cardiovascular health, frequent consumption of fried foods is discouraged, despite a lack of clear evidence of a direct link between eating oxidative frying oil (OFO) and cardiovascular diseases. In this study, male Sprague Dawley rats were exposed to diets containing fresh or fried soybean oil (groups C and O, respectively) from in utero to 28 weeks of age. A subset of rats in group O was supplemented with vitamin E (500 mg/kg of DL-α-tocopherol acetate; group OE) from 8 week of age onward to mitigate oxidative stress associated with OFO ingestion. Echocardiography, cardiac histology and indices associated with ATP production and calcium cycling in cardiac tissues were measured. Compared to group C, there was cardiac hypertrophy, fibrosis and diastolic dysfunction, in groups O and OE, with no differences between the latter two groups. Although cardiac mRNA levels of genes associated with mitochondrial biogenesis and function were increased, there were lower ATP concentrations and higher transcripts of uncoupling proteins in groups O and OE than in group C. In addition, decreases in phosphorylation of phospholamban and Ca2+/calmodulin-dependent protein kinase II activity, plus increased protein phosphatase 2A activity in groups O and OE, implied calcium cycling required for cardiac function was disrupted by OFO consumption. We concluded that long-term OFO exposure resulted in cardiac hypertrophy, fibrosis and diastolic dysfunction that was not mitigated by vitamin E supplementation. Underlying mechanisms were partly attributed to inefficient energy production via uncoupled phosphorylation and disrupted calcium cycling.
Collapse
Affiliation(s)
- Yu-Shun Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| | - Da-Long Chen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Department of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Huey-Mei Shaw
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Guei-Jane Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Pei-Min Chao
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| |
Collapse
|
11
|
The formation, determination and health implications of polar compounds in edible oils: Current status, challenges and perspectives. Food Chem 2021; 364:130451. [PMID: 34198033 DOI: 10.1016/j.foodchem.2021.130451] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023]
Abstract
To effectively control the quality of edible oil, polar compounds in edible oils have been studied extensively in the past few decades, particularly in the field of frying. This article critically reviews the formation, determination, and health implications of the polar compounds in edible oils via comprehensive literature research. The challenges and perspectives of polar compounds in edible oils are also discussed. Three chemical reactions, including oxidation, hydrolysis, and polymerization, elaborate polar compound formation. Many techniques are used to determine the total polar compound content of edible oils, with comparative analysis; Fourier transform infrared technique is a relatively ideal method. A major obstacle for nutritional studies focused on polar compounds formed during frying is that few pure compounds have been quantified. To inhibit the formation of the polar compounds effectively, investigations into the applications of enzymatic method in developing new lipophilized antioxidants may be a new direction in research.
Collapse
|
12
|
Wu HP, Lin YS, Chang CF, Lu SY, Chao PM. Dietary Exposure to Oxidized Frying Oil from Fetus to Adulthood Suppresses Male Reproductive Development by Altering Testicular Cholesterol and Testosterone Homeostasis in Sprague Dawley Rats. J Nutr 2020; 150:1713-1721. [PMID: 32286625 DOI: 10.1093/jn/nxaa091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Dietary frying oil may have endocrine-disrupting effects, as a feminization effect was observed in cohorts of C57BL/6J male mice fetuses from dams consuming oxidized frying oil (OFO) during pregnancy. OBJECTIVE The aim of present study was to test the hypothesis that OFO is an anti-androgen. METHODS In experiment 1, male progeny of Sprague Dawley female rats fed fresh oil or an OFO diet (10 g fat/100 g, from fresh or 24-h-fried soybean oil; [control diet (C) and OFO groups, respectively] from midgestation through lactation were studied. Pups were weaned at 3 wk of age and then consumed their mothers' diet until 9 wk of age. In addition, a group of dams and pups that consumed a high-fat diet (HF; 10 g fried and 20 g fresh soybean oil/100 g) was included to counteract body-weight loss associated with OFO ingestion. Indices of male reproductive development and testosterone homeostasis were measured. In experiment 2, male rats were allocated to C and OFO groups (treated as above) and indices of male fertility compared at 9-10 wk of age. RESULTS In experiment 1, final body weights of the HF group were lower (17%) than the C group but higher (14%) than the OFO group (P < 0.0001 for each). In addition to abnormalities in seminiferous tubules, HF and OFO groups did not differ from one another, but, compared with the C group, had delayed preputial separation (4.9 d) and reductions in serum testosterone concentrations (17-74%), anogenital distance (8-20%), weights of androgen-dependent tissues (8-30%), testicular testosterone and cholesterol concentrations (30-40%), and mRNA levels of genes involved in steroidogenesis and cholesterol homeostasis (30-70%). In experiment 2, OFO-exposed males had 20% lower sperm motility (P < 0.05); however, when mated to normal females, pregnancy rates and litter sizes did not differ between OFO and C groups. CONCLUSIONS The anti-androgenic effect of OFO in Sprague Dawley rats was attributed to decreased testicular concentrations of cholesterol (testosterone precursor) and not body-weight loss.
Collapse
Affiliation(s)
- Hai-Ping Wu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yu-Shun Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shui-Yuan Lu
- Department of Applied Toxicology, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung, Taiwan
| | - Pei-Min Chao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Liu Y, Li J, Cheng Y, Liu Y. Volatile components of deep-fried soybean oil as indicator indices of lipid oxidation and quality degradation. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03475-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Gao Y, Lu W, Sun Q, Yang X, Liu J, Ge W, Yang Y, Zhao Y, Xu X, Zhang J. Pancreatic lipase-related protein 2 is responsible for the increased hepatic retinyl ester hydrolase activity in vitamin A-deficient mice. FEBS J 2019; 286:4232-4244. [PMID: 31199585 DOI: 10.1111/febs.14958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/15/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
The formation and hydrolysis of hepatic retinyl esters (RE) is a key process in maintaining serum retinol homeostasis. During vitamin A deficiency, the activity of RE hydrolases (REH) in liver increases to cope with the reduced dietary vitamin A intake. However, it remains unclear which REH is the main enzyme responsible for RE hydrolysis in the liver under physiological conditions. Our previous studies have shown that pancreatic lipase-related protein 2 (PLRP2) is conditionally expressed in the liver and may be involved in the hydrolysis of hepatic RE. In the current study, we generated Plrp2-/- mice using transcription activator-like effector nuclease technology to investigate the role of PLRP2 in the metabolism of hepatic RE. Compared with the mice fed normal diet, the hepatic REH activity of wild-type (WT) mice fed vitamin A-deficient diet (VAD) increased significantly, while this activity did not increase in Plrp2-/- mice fed VAD. Plrp2-/- mice showed higher residual RE content in liver and lower serum retinol level, compared with WT mice fed VAD. Hepatic metabolic profiling from 1 H NMR-based metabolomics suggested that Plrp2-/- mice were more sensitive to VAD. Docking analysis and enzyme activity assay revealed that retinyl palmitate was the substrate with higher affinity for PLRP2. Our results indicate that Plrp2 can be activated in the liver and is responsible for the increased REH activity in the liver of mice fed VAD.
Collapse
Affiliation(s)
- Yan Gao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, China
| | - Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, China
| | - Qi Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, China
| | - Xiao Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, China
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, China
| |
Collapse
|
15
|
Lin YS, Lu SY, Wu HP, Chang CF, Chiu YT, Yang HT, Chao PM. Is frying oil a dietary source of an endocrine disruptor? Anti-estrogenic effects of polar compounds from frying oil in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:18-27. [PMID: 30412894 DOI: 10.1016/j.ecoenv.2018.10.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
The objective was to investigate endocrine-disrupting effects of polar compounds from oxidized frying oil. Estrogenicity of polar compounds was tested with a rat uterotrophic bioassay. Dietary oxidized frying oil (containing 51% polar compounds) or polar compounds isolated from it were incorporated into feed (in lieu of fresh soybean oil) and fed to ovariectomized rats, with or without treatment with exogenous ethynyl estradiol. Exogenous estrogen restored uterine weight, and caused histological abnormalities (stratified epithelia and conglomerate glands) as well as proliferation of uterine epithelial cells. However, tamoxifen or polar compounds reduced these effects. Furthermore, tamoxifen or polar compounds down-regulated uterine mRNA expression of estrogen receptor (ER)-target genes, implicating reduced ER activity in this hypo-uterotrophic effect. Inhibition of ER signaling and mitosis by polar compounds were attributed to reduced MAPK and AKT activation, as well as a reduced ligand binding domain-transactivity of ERα/β. We concluded polar compounds from frying oil are potential endocrine-disrupting chemicals, with implications for food and environmental safety.
Collapse
Affiliation(s)
- Yu-Shun Lin
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Shui-Yuan Lu
- Department of Applied Toxicology, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung 413, Taiwan
| | - Hai-Ping Wu
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Yung-Tsung Chiu
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Hui-Ting Yang
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Pei-Min Chao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
16
|
Ju J, Zheng Z, Xu YJ, Cao P, Li J, Li Q, Liu Y. Influence of total polar compounds on lipid metabolism, oxidative stress and cytotoxicity in HepG2 cells. Lipids Health Dis 2019; 18:37. [PMID: 30709407 PMCID: PMC6359786 DOI: 10.1186/s12944-019-0980-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recently, the harmful effects of frying oil on health have been gradually realized. However, as main components of frying oils, biochemical effects of total polar compounds (TPC) on a cellular level were underestimated. METHODS The effects of total polar compounds (TPC) in the frying oil on the lipid metabolism, oxidative stress and cytotoxicity of HepG2 cells were investigated through a series of biochemical methods, such as oil red staining, real-time polymerase chain reaction (RT-PCR), cell apoptosis and cell arrest. RESULTS Herein, we found that the survival rate of HepG2 cells treated with TPC decreased in a time and dose dependent manner, and thereby presented significant lipid deposition over the concentration of 0.5 mg/mL. TPC were also found to suppress the expression levels of PPARα, CPT1 and ACOX, elevate the expression level of MTP and cause the disorder of lipid metabolism. TPC ranged from 0 to 2 mg/mL could significantly elevate the amounts of reactive oxygen species (ROS) in HepG2 cells, and simultaneously increase the malondialdehyde (MDA) content from 21.21 ± 2.62 to 65.71 ± 4.20 μmol/mg of protein (p < 0.05) at 24 h. On the contrary, antioxidant enzymes superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) respectively decreased by 0.52-, 0.56- and 0.28-fold, when HepG2 cells were exposed to 2 mg/mL TPC for 24 h. In addition, TPC could at least partially induce the apoptosis of HepG2 cells, and the transition from G0/G1 to G2 phase in HepG2 cells was impeded. CONCLUSIONS TPC could progressively cause lipid deposition, oxidative stress and cytotoxicity, providing the theoretical support for the detrimental health effects of TPC.
Collapse
Affiliation(s)
- Jingjie Ju
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhaojun Zheng
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Peirang Cao
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Jingwei Li
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Qiu Li
- Shandong LuHua group co., LTD, Laiyang, 265200, People's Republic of China
| | - Yuanfa Liu
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Chen SH, Chao PM. Prenatal PPARα activation by clofibrate increases subcutaneous fat browning in male C57BL/6J mice fed a high-fat diet during adulthood. PLoS One 2017; 12:e0187507. [PMID: 29095960 PMCID: PMC5667850 DOI: 10.1371/journal.pone.0187507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/22/2017] [Indexed: 12/04/2022] Open
Abstract
We tested the hypothesis that prenatal administration of PPARα agonist clofibrate may permanently increase browning capacity of developing white adipose tissue (WAT). Pregnant C57BL/6J mice were fed a basal diet, without (C) or with 0.5% clofibrate (CF, a PPARα agonist) throughout pregnancy. After parturition, only male offspring were used; all suckled their mothers (who were eating the C diet) and after weaning, they ate a standard chow diet for 4 wk, followed by a high-fat diet (HFD) for 5 wk. Administration of CF up-regulated serum concentrations and hepatic expression of FGF21 in fetuses, with a return to basal levels after CF withdrawal. At postnatal day 84 (P84), CF-offspring had significantly higher expression of thermogenic genes (Ucp1, Cidea, Ppara Ppargc1a, Cpt1b) and UCP1 protein levels in response to HFD in inguinal fat, but not in retroperitoneal (combined with perirenal) or epididymal fat. Based on UCP1 levels in inguinal fat on P7, P14, and P21, appearance of the transient brown-adipocyte phenotype seemed to be hastened by CF exposure. We concluded that giving CF to pregnant mice programmed greater HFD-induced WAT browning in subcutaneous, but not in visceral fat, in their male offspring at adulthood.
Collapse
Affiliation(s)
- Szu-Han Chen
- Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Pei-Min Chao
- Institute of Nutrition, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
18
|
A novel chiral stationary phase LC-MS/MS method to evaluate oxidation mechanisms of edible oils. Sci Rep 2017; 7:10026. [PMID: 28855636 PMCID: PMC5577281 DOI: 10.1038/s41598-017-10536-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
The elucidation of lipid oxidation mechanisms of food is vital. In certain lipids, characteristic lipid hydroperoxide isomers are formed by different oxidation mechanisms (i.e., photo-oxidation or auto-oxidation). For example, linoleic acid is photo-oxidized to 13-9Z, 11E-hydroperoxyoctadecadienoic acid (HPODE), 12-9Z,13E-HPODE, 10-8E,12Z-HPODE and 9-10E,12Z-HPODE, whereas 13-9Z, 11E-HPODE, 13-9E,11E-HPODE, 9-10E,12Z-HPODE and 9-10E,12E-HPODE are formed by auto-oxidation. Therefore, we considered that oxidation mechanisms could be evaluated by analyzing these characteristic positional and cis/trans lipid hydroperoxide isomers. In this study, we developed a novel chiral stationary phase LC-MS/MS (CSP-LC-MS/MS) method to analyze the positional and cis/trans isomers of HPODE, with the use of a chiral column and sodium ion. Also, as an application of the method, either light-exposed or heated edible oils were treated with lipase to hydrolyze triacylglycerols. The resultant fatty acids including HPODE isomers were analyzed with the developed method. As a result, HPODE isomers characteristic to photo-oxidation were certainly detected in light-exposed edible oils. On the other hand, in heated edible oils, the HPODE isomers characteristic to auto-oxidation were largely increased. Thus, the combination of the developed CSP-LC-MS/MS method with lipase proves to be a powerful tool to evaluate the involvement and mechanisms of lipid oxidation in the process of food deterioration.
Collapse
|
19
|
Peroxisome Proliferator-Activated Receptor α Activation Is Not the Main Contributor to Teratogenesis Elicited by Polar Compounds from Oxidized Frying Oil. Int J Mol Sci 2017; 18:ijms18030510. [PMID: 28264465 PMCID: PMC5372526 DOI: 10.3390/ijms18030510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 01/28/2023] Open
Abstract
We previously reported that polar compounds (PO) in cooking oil are teratogenic and perturbed retinoic acid (RA) metabolism. Considering PO as a potent peroxisome proliferator-activated receptor α (PPARα) activator, this study aimed to investigate the role of PPARα in PO-induced teratogenesis and disturbance of RA metabolism. Female PPARα knockout or wild type mice were mated with males of the same genotype. Pregnant mice were fed a diet containing 10% fat from either fresh oil (FO) or PO from gestational day1 to day18, and killed at day18. The PO diet significantly increased the incidence of teratogenesis and fetal RA concentrations, regardless of genotype. Though PPARα deficiency disturbed maternal RA homeostasis, itself did not contribute to teratogenesis as long as FO diet was given. The mRNA profile of genes involved in RA metabolism was differentially affected by diet or genotype in mothers and fetuses. Based on hepatic mRNA levels of genes involved in xenobiotic metabolism, we inferred that PO not only activated PPARα, but also altered transactivity of other xenobiotic receptors. We concluded that PO-induced fetal anomalies and RA accumulation were independent of PPARα activation.
Collapse
|
20
|
Medeiros MC, Aquino JS, Soares J, Figueiroa EB, Mesquita HM, Pessoa DC, Stamford TM. Buriti oil (
Mauritia flexuosa
L.) negatively impacts somatic growth and reflex maturation and increases retinol deposition in young rats. Int J Dev Neurosci 2015; 46:7-13. [DOI: 10.1016/j.ijdevneu.2015.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022] Open
|