1
|
Baldea I, Moldovan R, Nagy AL, Bolfa P, Decea R, Miclaus MO, Lung I, Gherman AMR, Sevastre-Berghian A, Martin FA, Kacso I, Răzniceanu V. Ketoconazole-Fumaric Acid Pharmaceutical Cocrystal: From Formulation Design for Bioavailability Improvement to Biocompatibility Testing and Antifungal Efficacy Evaluation. Int J Mol Sci 2024; 25:13346. [PMID: 39769112 PMCID: PMC11678873 DOI: 10.3390/ijms252413346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Development of cocrystals through crystal engineering is a viable strategy to formulate poorly water-soluble active pharmaceutical ingredients as stable crystalline solid forms with enhanced bioavailability. This study presents a controlled cocrystallization process by cooling for the 1:1 cocrystal of Ketoconazole, an antifungal class II drug with the Fumaric acid coformer. This was successfully set up following the meta-stable zone width determination in acetone-water 4:6 (V/V) and pure ethanol. Considering the optimal crystallization data, laboratory scale-up processes were carried out at 1 g batch size, efficiently delivering the cocrystal in high yields up to 90% pure and single phase as revealed by powder X-ray diffraction. Biological assays in vitro showed improved viability and oxidative damage of the cocrystal over Ketoconazole on human dermal fibroblasts and hepatocarcinoma cells; in vivo, on Wistar rats, the cocrystal increased oral Ketoconazole bioavailability with transient minor biochemical transaminases increases and without histological liver alterations. Locally on Balb C mice, it induced no epicutaneuous sensitization. A molecular docking study conducted on sterol 14α-demethylase (CYP51) enzyme from the pathogenic yeast Candida albicans revealed that the cocrystal interacts more efficiently with the enzyme compared to Ketoconazole, indicating that the coformer enhances the binding affinity of the active ingredient.
Collapse
Affiliation(s)
- Ioana Baldea
- Department of Physiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (R.M.); (R.D.); (A.S.-B.); (V.R.)
| | - Remus Moldovan
- Department of Physiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (R.M.); (R.D.); (A.S.-B.); (V.R.)
| | - Andras-Laszlo Nagy
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (A.-L.N.); (P.B.)
| | - Pompei Bolfa
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (A.-L.N.); (P.B.)
| | - Roxana Decea
- Department of Physiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (R.M.); (R.D.); (A.S.-B.); (V.R.)
| | - Maria Olimpia Miclaus
- National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.O.M.); (I.L.); (A.M.R.G.)
| | - Ildiko Lung
- National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.O.M.); (I.L.); (A.M.R.G.)
| | - Ana Maria Raluca Gherman
- National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.O.M.); (I.L.); (A.M.R.G.)
| | - Alexandra Sevastre-Berghian
- Department of Physiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (R.M.); (R.D.); (A.S.-B.); (V.R.)
| | - Flavia Adina Martin
- National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.O.M.); (I.L.); (A.M.R.G.)
| | - Irina Kacso
- National Institute for R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania; (M.O.M.); (I.L.); (A.M.R.G.)
| | - Vlad Răzniceanu
- Department of Physiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (R.M.); (R.D.); (A.S.-B.); (V.R.)
| |
Collapse
|
2
|
Ma W, Chen R, Hu T, Xing S, Zhou G, Qin X, Ren H, Zhang Z, Chen J, Niu Q. New dual-responsive fluorescent sensor for hypochlorite and cyanide sensing and its imaging application in live cells and zebrafish. Talanta 2023; 265:124910. [PMID: 37418961 DOI: 10.1016/j.talanta.2023.124910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Excessive levels of cyanide (CN-) and hypochlorite (ClO-) anions are the significant threats to the human health and the environment. Thus, great efforts have been to design and synthesize molecular sensors for the simple, instantaneous and efficient detecting environmentally and biologically important anions. Currently, developing a single molecular sensor for multi-analyte sensing is still a challenging task. In our present work, we developed a new molecular sensor (3TM) based on oligothiophene and Meldrum's acid units for detecting cyanide and hypochlorite anions in biological, environmental and food samples. The detecting ability of 3TM has been examined to various testing substances containing amino acids, reactive oxygen species, cations and anions, showing its high selectivity, excellent sensitivity, short response time (ClO-: 30 s, CN-: 100 s), and broad pH working range (4-10). The detection limits were calculated as 4.2 nM for ClO- in DMSO/H2O (1/8, v/v) solution and 6.5 nM for CN- in DMSO/H2O (1/99, v/v) solution. Sensor 3TM displayed sharp turn-on fluorescence increasement (555 nm, 435 nm) and sensitive fluorescence color changes caused by CN-/ClO-, which is ascribed to the nucleophilic addition and oxidation of ethylenic linkage by cyanide and hypochlorite, respectively. Moreover, sensor 3TM was applied for hypochlorite and cyanide detecting in real-world water, food samples and bio-imaging in live cells and zebrafish. To our knowledge, the developed 3TM sensor is the seventh single-molecular sensor for simultaneous and discriminative detecting hypochlorite and cyanide in food, biological and aqueous environments using two distinct sensing modes.
Collapse
Affiliation(s)
- Wenwen Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ruiming Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Tingting Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Shu Xing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guanglian Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Xiaoxu Qin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Huijun Ren
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zhengyang Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
3
|
Liang Y, Chen Z, Liu Q, Huang H, Meng Z, Gong S, Wang Z, Wang S. A NIR BODIPY-based ratiometric fluorescent probe for HClO detection with high selectivity and sensitivity in real water samples and living zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122268. [PMID: 36580754 DOI: 10.1016/j.saa.2022.122268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Hypochlorous acid (HClO) plays an important role in many physiological and pathological activities. In this work, a novel BODIPY-based Near-infrared (NIR) ratiometric fluorescent probe BODIPY-Hyp was designed for the rapid detection of HClO. The probe BODIPY-Hyp was highly selective and sensitive for HClO with a low detection limit of 16.74 nM and short response time of less than 60 s. The probe BODIPY-Hyp in response to HClO exhibited a significant blue-shifted fluorescence emission from 700 nm to 530 nm, and its fluorescence intensity ratio (I530 nm/I700 nm) increased about 1200 times before and after adding HClO. Moreover, the reaction mechanism of BODIPY-Hyp with HClO was verified by HRMS analysis, 1H NMR titration and DFT calculations. Furthermore, BODIPY-Hyp was successfully processed into a portable test strip-based device for the detection of HClO. In addition, the probe BODIPY-Hyp could be used in real time to monitor the levels of HClO in living zebrafish larvae. In conclusion, BODIPY-Hyp has great application potential in the life and environmental sciences.
Collapse
Affiliation(s)
- Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhen Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qianting Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haiting Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Salimi A, Shabani M, Bayrami D, Saray A, Farshbaf Moghimi N. Gallic acid and sesame oil exert cardioprotection via mitochondrial protection and antioxidant properties on Ketamine-Induced cardiotoxicity model in rats. TOXIN REV 2023. [DOI: 10.1080/15569543.2023.2165503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences
| | - Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Deniz Bayrami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Armin Saray
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
5
|
Wang Z, Zhang Y, Liang Y, Li M, Meng Z, Gong S, Yang Y, Xu X, Wang S. Rational design of a facile camphor-based fluorescence turn-on probe for real-time tracking of hypochlorous acid in vivo and in vitro. Analyst 2022; 147:2080-2088. [DOI: 10.1039/d2an00321j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel camphor-based fluorescence turn-on probe with high selectivity and sensitivity was developed for HClO detection, and it was successfully employed for real-time imaging of exogenous and endogenous HClO in living cells as well as in living zebrafish.
Collapse
Affiliation(s)
- Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yueyin Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Mingxin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhiyuan Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuai Gong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiqin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Xu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| | - Shifa Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
6
|
Self-Nanoemulsifying Drug Delivery Systems for Enhancing Solubility, Permeability, and Bioavailability of Sesamin. Molecules 2020; 25:molecules25143119. [PMID: 32650503 PMCID: PMC7397308 DOI: 10.3390/molecules25143119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 11/17/2022] Open
Abstract
Sesamin (SSM) is a water-insoluble compound that is easily eliminated by liver metabolism. To improve the solubility and bioavailability of SSM, this study developed and characterized a self-nanoemulsifying drug delivery system (SNEDDS) for the oral delivery of SSM and conducted pharmacokinetic assessments. Oil and surfactant materials suitable for SNEDDS preparation were selected on the basis of their saturation solubility at 37 ± 0.5 °C. The mixing ratios of excipients were determined on the basis of their dispersibility, transmittance (%), droplet sizes, and polydispersity index. An SNEDDS (F10) formulation comprising glyceryl trioctanoate, polyoxyethylene castor oil, and Tween 20 at a ratio of 10:10:80 (w/w/w) was the optimal formulation. This formulation maintained over 90% of its contents in different storage environments for 12 weeks. After the self-emulsification of SNEDDS, the SSM dispersed droplet size was 66.4 ± 31.4 nm, intestinal permeability increased by more than three-fold, relative bioavailability increased by approximately 12.9-fold, and absolute bioavailability increased from 0.3% to 4.4%. Accordingly, the developed SNEDDS formulation can preserve SSM's solubility, permeability, and bioavailability. Therefore, this SNEDDS formulation has great potential for the oral administration of SSM, which can enhance its pharmacological application value.
Collapse
|
7
|
Yang K, Zou Z, Wu Y, Hu G. MiR-195 suppression alleviates apoptosis and oxidative stress in CCl4-induced ALI in mice by targeting Pim-1. Exp Mol Pathol 2020; 115:104438. [PMID: 32277959 DOI: 10.1016/j.yexmp.2020.104438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute liver injury (ALI) is associated with the oxidative stress and apoptosis in liver. Recent studies have shown that miR-195, a critical member of miR-15 family, has modulated the apoptosis in various organic diseases. However, it is elusive whether miR-195 regulation exert a hepatic ameliorative effect on ALI by the suppression of apoptosis and oxidative stress levels. We aimed to explore the regulated role of miR-195 in acute liver injury via the current study. METHODS C57BL/6 J mice (male, seven-week, 18-20 g) were administrated intraperitoneal injection with tetrachloromethane (CCl4) to induce ALI. miR-195 inhibitor or mimics loaded in lentivirus vectors (miR-195 INH or MMC) and Pim-1 loaded in Adeno-associated viral vectors (AAV-Pim-1) were respectively delivered into mouse tail intravenous to establish silence or overexpression of miR-195 and overexpression of Pim-1. Western blotting, Reverse Transcription-Polymerase Chain Reaction (RT-PCR), enzyme linked immunosorbent assay (ELISA) technique, Immunohistochemistry (IHC) and Hematoxylin-eosin (H&E) staining were conducted to measure miR-195 and Pim-1 expression, apoptosis and oxidative stress levels, histological and functional change. RESULTS We found that the expression of miR-195 markedly increased in CCl4-induced ALI. Besides, we demonstrated that the silence of miR-195 attenuated the apoptosis and oxidative stress via up-regulating Pim-1 in CCl4-induced ALI. Moreover, the inhibition of miR-195 protected the integrity and function of liver tissue. CONCLUSIONS The above results showed that the suppression of miR-195 ameliorated ALI through inhibiting apoptosis and oxidative stress via targeting Pim-1. Our research provided a novel scheme that the miR-195 modulation in process of ALI may be an effective therapy method and verifies a promising target for diagnostic and therapeutic strategy of miRNAs.
Collapse
Affiliation(s)
- Kun Yang
- Department of Emergency, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, China.; Department of Emergency, Jinan City People's Hospital, Jinan, China
| | - Zhongyu Zou
- Department of Emergency, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, China.; Department of Emergency, Jinan City People's Hospital, Jinan, China
| | - Yucheng Wu
- Department of PICC Clinic, The First People's Hospital of Jining, Jinan, China
| | - Guiju Hu
- Department of PICC Clinic, The First People's Hospital of Jining, Jinan, China..
| |
Collapse
|
8
|
Chen Z, Meng X, Zou L, Zhao M, Liu S, Tao P, Jiang J, Zhao Q. A Dual-Emissive Phosphorescent Polymeric Probe for Exploring Drug-Induced Liver Injury via Imaging of Peroxynitrite Elevation In Vivo. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12383-12394. [PMID: 32091195 DOI: 10.1021/acsami.9b18135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-induced liver injury (DILI) is a widespread clinical problem. The pathophysiological mechanisms of DILI are complicated, and the traditional diagnostic methods for DILI have their limitations. Owing to its convenient operation, high sensitivity, and high specificity, luminescent sensing and imaging as an indispensable tool in biological research and clinical trials may provide an important means for DILI study. Herein, we report the rational design and preparation of a near-infrared dual-phosphorescent polymeric probe (P-ONOO) for exploring the DILI via specific imaging of peroxynitrite (ONOO-) elevation in vivo, which was one of early markers of DILI and very difficult to be detected due to its short half-life and high reactive activity. With the utilization of P-ONOO, the raised ONOO- was visualized successfully in the drug-treated hepatocytes with a high signal-to-noise ratio via ratiometric and time-resolved photoluminescence imaging. Importantly, the ONOO- boost in the acetaminophen-induced liver injury in real time was verified, and the direct observation of the elevated ONOO- production in ketoconazole-induced liver injury was achieved for the first time. Our findings may contribute to understanding the exact mechanism of ketoconazole-induced hepatotoxicity that is still ambiguous. Notably, this luminescent approach for revealing the liver injury works fast and conveniently.
Collapse
Affiliation(s)
- Zejing Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Jiangxi Key Laboratory for Nano-Biomaterials, Institute of Advanced Materials (IAM), East China Jiaotong University, 808 Shuanggang East Main Street, Nanchang 330013, P. R. China
| | - Xiangchun Meng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Liang Zou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Peng Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Jiayang Jiang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| |
Collapse
|
9
|
Eweda SM, Newairy ASA, Abdou HM, Gaber AS. Bisphenol A-induced oxidative damage in the hepatic and cardiac tissues of rats: The modulatory role of sesame lignans. Exp Ther Med 2019; 19:33-44. [PMID: 31853270 PMCID: PMC6909485 DOI: 10.3892/etm.2019.8193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
Bisphenol A (BPA) is an environmental pollutant that is widely produced throughout the world. It is primarily used in the manufacture of polycarbonate plastics, epoxy resins, paints and dental materials. BPA has been reported to promote hepatotoxicity and cardiotoxicity. The antioxidant activity of sesame lignans is well established. The current study assessed the protective efficiency of sesame lignans against BPA-induced hepatotoxicity and cardiotoxicity. Rats were divided into 4 groups: A control group, a BPA-treated group, a sesame lignans-treated group and a sesame lignans and BPA-treated group. Rats were orally administered their respective doses daily [30 mg/kg body weight (BW) BPA and/or 20 mg/kg BW sesame lignans] for 6 weeks. Liver function tests were performed using serum of all groups. Lipid profile and antioxidant status were also measured in liver tissue of the studied groups. The results were confirmed by histopathological examination of liver and heart tissues. The oral administration of BPA was revealed to elicit significant decreases in the activities of hepatic glutathione peroxidase, glutathione reductase, superoxide dismutase and glutathione. It also significantly increased levels of malondialdehyde. Furthermore, BPA-treatment resulted in lipid accumulation, elevated activities of alanine aminotransferase, creatine kinase MB and lactate dehydrogenase, and histological changes of liver and heart tissues. However, the co-administration of sesame lignans and BPA attenuated hepatotoxicity, cardiotoxicity and BPA-induced histological changes. The results of the current study indicated that sesame lignans may be helpful in the development of novel natural drugs to treat hepatic and cardiovascular disorders.
Collapse
Affiliation(s)
- Saber M Eweda
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21561, Egypt
| | - Al Sayeda A Newairy
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia
| | - Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21561, Egypt
| | - Assmaa S Gaber
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Cytotoxic and Genotoxic Effects of Fluconazole on African Green Monkey Kidney (Vero) Cell Line. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6271547. [PMID: 30515410 PMCID: PMC6236965 DOI: 10.1155/2018/6271547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Fluconazole is a broad-spectrum triazole antifungal that is well-established as the first-line treatment for Candida albicans infections. Despite its extensive use, reports on its genotoxic/mutagenic effects are controversial; therefore, further studies are needed to better clarify such effects. African green monkey kidney (Vero) cells were exposed in vitro to different concentrations of fluconazole and were then evaluated for different parameters, such as cytotoxicity (MTT/cell death by fluorescent dyes), genotoxicity/mutagenicity (comet assay/micronucleus test), and induction of oxidative stress (DCFH-DA assay). Fluconazole was used at concentrations of 81.6, 163.2, 326.5, 653, 1306, and 2612.1μM for the MTT assay and 81.6, 326.5, and 1306μM for the remaining assays. MTT results showed that cell viability reduced upon exposure to fluconazole concentration of 1306μM (85.93%), being statistically significant (P<0.05) at fluconazole concentration of 2612.1μM (35.25%), as compared with the control (100%). Fluconazole also induced necrosis (P<0.05) in Vero cell line when cells were exposed to all concentrations (81.6, 326.5, and 1306μM) for both tested harvest times (24 and 48 h) as compared with the negative control. Regarding genotoxicity/mutagenicity, results showed fluconazole to increase significantly (P<0.05) DNA damage index, as assessed by comet assay, at 1306μM versus the negative control (DI=1.17 vs DI=0.28, respectively). Micronucleus frequency also increased until reaching statistical significance (P<0.05) at 1306μM fluconazole (with 42MN/1000 binucleated cells) as compared to the negative control (13MN/1000 binucleated cells). Finally, significant formation of reactive oxygen species (P<0.05) was observed at 1306μM fluconazole vs the negative control (OD=40.9 vs OD=32.3, respectively). Our experiments showed that fluconazole is cytotoxic and genotoxic in the assessed conditions. It is likely that such effects may be due to the oxidative properties of fluconazole and/or the presence of FMO (flavin-containing monooxygenase) in Vero cells.
Collapse
|
11
|
Takahashi M, Nishizaki Y, Morimoto K, Sugimoto N, Sato K, Inoue K. Design of synthetic single reference standards for the simultaneous determination of sesamin, sesamolin, episesamin, and sesamol by HPLC using relative molar sensitivity. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Miki Takahashi
- College of Pharmaceutical Sciences; Ritsumeikan University; Kusatsu Shiga Japan
| | | | - Koji Morimoto
- College of Pharmaceutical Sciences; Ritsumeikan University; Kusatsu Shiga Japan
| | | | - Kyoko Sato
- National Institute of Health Sciences; Kawasaki Japan
| | - Koichi Inoue
- College of Pharmaceutical Sciences; Ritsumeikan University; Kusatsu Shiga Japan
| |
Collapse
|
12
|
Yang L, Yan C, Zhang F, Jiang B, Gao S, Liang Y, Huang L, Chen W. Effects of ketoconazole on cyclophosphamide metabolism: evaluation of CYP3A4 inhibition effect using the in vitro and in vivo models. Exp Anim 2017; 67:71-82. [PMID: 29129847 PMCID: PMC5814316 DOI: 10.1538/expanim.17-0048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cyclophosphamide (CP) is widely used in anticancer therapy regimens and 2-dechloroethylcyclophosphamide (DECP) is its side-chain dechloroethylated metabolite. N-dechloroethylation of CP mediated by the enzyme CYP3A4 yields nephrotoxic and neurotoxic chloroacetaldehyde (CAA) in equimolar amount to DECP. This study aimed to evaluate the inhibitory effect of ketoconazole (KTZ) on CP metabolism through in vitro and in vivo drug-drug interaction (DDI) research. Long-term treatment of KTZ induces hepatic injury; thus single doses of KTZ at low, middle, and high levels (10, 20, and 40 mg/kg) were investigated for pharmacokinetic DDI with CP. Our in vitro human liver microsome modeling approach suggested that KTZ inhibited CYP3A4 activity and then decreased DECP exposure. In addition, an UHPLC-MS/MS method for quantifying CP, DECP, and KTZ in rat plasma was developed and fully validated with a 4 min analysis coupled with a simple and reproducible one-step protein precipitation. A further in vivo pharmacokinetic study demonstrated that combination use of CP (10 mg/kg) and KTZ (10, 20, and 40 mg/kg) in rats caused a KTZ dose-dependent decrease in main parameters of DECP (Cmax, Tmax, and AUC0-∞) and provided magnitude exposure of DECP (more than a 50% AUC decrease) as a consequence of CYP3A inhibition but had only a small effect on the CP plasma concentration. Our results suggested that combination usage of a CYP3A4 inhibitor like KTZ may decrease CAA exposure and thus intervene against CAA-induced adverse effects in CP clinical treatment.
Collapse
Affiliation(s)
- Le Yang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, P.R. China
| | - Chenyang Yan
- Department of Quality Management, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, P.R. China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, P.R. China
| | - Bo Jiang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, P.R. China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, P.R. China
| | - Youtian Liang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, P.R. China
| | - Lifeng Huang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, P.R. China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai 200003, P.R. China
| |
Collapse
|
13
|
Characterization of sesame (Sesamum indicum L.) seed oil from Pakistan for phenolic composition, quality characteristics and potential beneficial properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9514-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|