1
|
Ren H, Ke Y, Li X, Wang L, Song K, Guardiola FA, Zhang C, Lu K, Rahimnejad S. Application of Branched-Chain Amino Acids Mitigates Mitochondrial Damage to Spotted Seabass ( Lateolabrax maculatus) Hepatocytes Cultured in High-Glucose and High-Fat Media. Animals (Basel) 2025; 15:560. [PMID: 40003041 PMCID: PMC11851538 DOI: 10.3390/ani15040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/17/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
This study explored the metabolic effects of branched-chain amino acids (BCAAs) on the hepatocytes of spotted seabass (Lateolabrax maculatus) under high-glucose (HG) or high-fat (HF) conditions. Hepatocytes were cultured under five different conditions: control, high glucose (HG), HG + BCAAs (Leu 0.8 mM, Ile 0.4 mM, Val 0.8 mM), high fat (HF), and HF + BCAAs (Leu 0.8 mM, Ile 0.8 mM, Val 0.8 mM). After 72 h of culture, cells and cell supernatants were collected to measure relevant indicators. The results revealed that BCAAs supplementation significantly reduced glycogen and lipid accumulation in hepatocytes exposed to HG or HF conditions (p < 0.05). Additionally, alanine aminotransferase and aspartate aminotransferase activities in the supernatant were significantly decreased, indicating that BCAAs supplementation alleviated hepatocyte damage induced by these conditions. Furthermore, BCAAs addition markedly enhanced antioxidant defense by increasing superoxide dismutase and catalase activities, improving total antioxidant capacity, and reducing malondialdehyde levels. Metabolic enzyme activity analysis revealed that BCAAs significantly increased the activities of citrate synthase (CS), alpha-ketoglutarate dehydrogenase complex (α-KGDHC), succinate dehydrogenase (SDH), phosphoenolpyruvate carboxykinase (PEPCK), and liver pyruvate kinase (LPS), while significantly decreasing fatty acid synthase (FAS) activity. Gene expression analysis further demonstrated that BCAAs supplementation downregulated the expression of lipogenic genes (fas and srebp-1c) and upregulated the expression of lipolytic genes (ppaα and atgl) and glucose metabolism-related genes (g6pd, hk, pfk, pk, fbp, and g6pase). Under HG or HF conditions, hepatocytes exhibited decreased adenosine triphosphate (ATP) content, increased reactive oxygen species (ROS) levels, and reduced mitochondrial membrane potential. These adverse effects were mitigated by BCAAs supplementation. In conclusion, BCAAs supplementation alleviated hepatocyte damage caused by HG or HF conditions, enhanced antioxidant defenses, and protected mitochondrial activity and function by promoting glucose and lipid metabolism.
Collapse
Affiliation(s)
- Huijuan Ren
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.R.); (X.L.); (L.W.); (K.S.); (C.Z.)
| | - Yixiong Ke
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.R.); (X.L.); (L.W.); (K.S.); (C.Z.)
| | - Xueshan Li
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.R.); (X.L.); (L.W.); (K.S.); (C.Z.)
| | - Lin Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.R.); (X.L.); (L.W.); (K.S.); (C.Z.)
| | - Kai Song
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.R.); (X.L.); (L.W.); (K.S.); (C.Z.)
| | - Francisco A. Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Chunxiao Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.R.); (X.L.); (L.W.); (K.S.); (C.Z.)
| | - Kangle Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.R.); (X.L.); (L.W.); (K.S.); (C.Z.)
| | - Samad Rahimnejad
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Weifang University, Weifang 261061, China
- Weifang Key Laboratory of Salmon and Trout Health Culture, Conqueren Leading Fresh Science & Technology Inc., Ltd., Weifang 261205, China
| |
Collapse
|
2
|
Abdualkader AM, Karwi QG, Lopaschuk GD, Al Batran R. The role of branched-chain amino acids and their downstream metabolites in mediating insulin resistance. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13040. [PMID: 39007094 PMCID: PMC11239365 DOI: 10.3389/jpps.2024.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Elevated levels of circulating branched-chain amino acids (BCAAs) and their associated metabolites have been strongly linked to insulin resistance and type 2 diabetes. Despite extensive research, the precise mechanisms linking increased BCAA levels with these conditions remain elusive. In this review, we highlight the key organs involved in maintaining BCAA homeostasis and discuss how obesity and insulin resistance disrupt the intricate interplay among these organs, thus affecting BCAA balance. Additionally, we outline recent research shedding light on the impact of tissue-specific or systemic modulation of BCAA metabolism on circulating BCAA levels, their metabolites, and insulin sensitivity, while also identifying specific knowledge gaps and areas requiring further investigation. Finally, we summarize the effects of BCAA supplementation or restriction on obesity and insulin sensitivity.
Collapse
Affiliation(s)
- Abdualrahman Mohammed Abdualkader
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| | - Qutuba G. Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Gary D. Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| |
Collapse
|
3
|
Vidal Moreno de Vega C, de Meeûs d’Argenteuil C, Boshuizen B, De Mare L, Gansemans Y, Van Nieuwerburgh F, Deforce D, Goethals K, De Spiegelaere W, Leybaert L, Verdegaal ELJ, Delesalle C. Baselining physiological parameters in three muscles across three equine breeds. What can we learn from the horse? Front Physiol 2024; 15:1291151. [PMID: 38384798 PMCID: PMC10879303 DOI: 10.3389/fphys.2024.1291151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Mapping-out baseline physiological muscle parameters with their metabolic blueprint across multiple archetype equine breeds, will contribute to better understanding their functionality, even across species. Aims: 1) to map out and compare the baseline fiber type composition, fiber type and mean fiber cross-sectional area (fCSA, mfCSA) and metabolic blueprint of three muscles in 3 different breeds 2) to study possible associations between differences in histomorphological parameters and baseline metabolism. Methods: Muscle biopsies [m. pectoralis (PM), m. vastus lateralis (VL) and m. semitendinosus (ST)] were harvested of 7 untrained Friesians, 12 Standardbred and 4 Warmblood mares. Untargeted metabolomics was performed on the VL and PM of Friesian and Warmblood horses and the VL of Standardbreds using UHPLC/MS/MS and GC/MS. Breed effect on fiber type percentage and fCSA and mfCSA was tested with Kruskal-Wallis. Breeds were compared with Wilcoxon rank-sum test, with Bonferroni correction. Spearman correlation explored the association between the metabolic blueprint and morphometric parameters. Results: The ST was least and the VL most discriminative across breeds. In Standardbreds, a significantly higher proportion of type IIA fibers was represented in PM and VL. Friesians showed a significantly higher representation of type IIX fibers in the PM. No significant differences in fCSA were present across breeds. A significantly larger mfCSA was seen in the VL of Standardbreds. Lipid and nucleotide super pathways were significantly more upregulated in Friesians, with increased activity of short and medium-chain acylcarnitines together with increased abundance of long chain and polyunsaturated fatty acids. Standardbreds showed highly active xenobiotic pathways and high activity of long and very long chain acylcarnitines. Amino acid metabolism was similar across breeds, with branched and aromatic amino acid sub-pathways being highly active in Friesians. Carbohydrate, amino acid and nucleotide super pathways and carnitine metabolism showed higher activity in Warmbloods compared to Standardbreds. Conclusion: Results show important metabolic differences between equine breeds for lipid, amino acid, nucleotide and carbohydrate metabolism and in that order. Mapping the metabolic profile together with morphometric parameters provides trainers, owners and researchers with crucial information to develop future strategies with respect to customized training and dietary regimens to reach full potential in optimal welfare.
Collapse
Affiliation(s)
- Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Constance de Meeûs d’Argenteuil
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Lorie De Mare
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Klara Goethals
- Biometrics Research Center, Ghent University, Ghent, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elisabeth-Lidwien J.M.M. Verdegaal
- Thermoregulation Research Group, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Martínez-Montoro JI, Núñez-Sánchez MÁ, Martinez-Sanchez MA, Balaguer-Román A, Fernández-Ruiz VE, Ferrer-Gómez M, Sledzinski T, Frutos MD, Fernández-García JC, Mika A, Ramos-Molina B. Hepatic and serum branched-chain fatty acid profile in patients with nonalcoholic fatty liver disease: A case-control study. Obesity (Silver Spring) 2023; 31:1064-1074. [PMID: 36876627 DOI: 10.1002/oby.23711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 03/07/2023]
Abstract
OBJECTIVE Alterations in the hepatic lipidome are a crucial factor involved in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the serum and hepatic profile of branched-chain fatty acids (BCFAs) in patients with different stages of NAFLD. METHODS This was a case-control study performed in 27 patients without NAFLD, 49 patients with nonalcoholic fatty liver, and 17 patients with nonalcoholic steatohepatitis, defined by liver biopsies. Serum and hepatic levels of BCFAs were analyzed by gas chromatography-mass spectrometry. The hepatic expression of genes involved in the endogenous synthesis of BCFAs was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS A significant increase in hepatic BCFAs was found in subjects with NAFLD compared with those without NAFLD; no differences were observed in serum BCFAs between study groups. Trimethyl BCFAs, iso-BCFAs, and anteiso-BCFAs were increased in subjects with NAFLD (either nonalcoholic fatty liver or nonalcoholic steatohepatitis) compared with those without NAFLD. Correlation analysis showed a relationship between hepatic BCFAs and the histopathological diagnosis of NAFLD, as well as other histological and biochemical parameters related to this disease. Gene expression analysis in liver showed that the mRNA levels of BCAT1, BCAT2, and BCKDHA were upregulated in patients with NAFLD. CONCLUSIONS These results suggest that the increased production of liver BCFAs might be related to NAFLD development and progression.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
| | | | | | - Andrés Balaguer-Román
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Virginia E Fernández-Ruiz
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Mercedes Ferrer-Gómez
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Department of Endocrinology and Nutrition, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - José Carlos Fernández-García
- Department of Endocrinology and Nutrition, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Bruno Ramos-Molina
- Obesity and Metabolism Research Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
5
|
Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr 2021; 63:2559-2597. [PMID: 34542351 DOI: 10.1080/10408398.2021.1977910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Leal Yepes FA, Mann S, Overton TR, Behling-Kelly E, Nydam DV, Wakshlag JJ. Hepatic effects of rumen-protected branched-chain amino acids with or without propylene glycol supplementation in dairy cows during early lactation. J Dairy Sci 2021; 104:10324-10337. [PMID: 34176626 DOI: 10.3168/jds.2021-20265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
Essential amino acids (EAA) are critical for multiple physiological processes. Branched-chain amino acid (BCAA) supplementation provides energy substrates, promotes protein synthesis, and stimulates insulin secretion in rodents and humans. Most dairy cows face a protein and energy deficit during the first weeks postpartum and utilize body reserves to counteract this shortage. The objective was to evaluate the effect of rumen-protected BCAA (RP-BCAA; 375 g of 27% l-leucine, 85 g of 48% l-isoleucine, and 91 g of 67% l-valine) with or without oral propylene glycol (PG) administration on markers of liver health status, concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) in plasma, and liver triglycerides (TG) during the early postpartum period in dairy cows. Multiparous Holstein cows were enrolled in blocks of 3 and randomly assigned to either the control group or 1 of the 2 treatments from calving until 35 d postpartum. The control group (n = 16) received 200 g of dry molasses per cow/d; the RP-BCAA group (n = 14) received RP-BCAA mixed with 200 g of dry molasses per cow/d; the RP-BCAA plus PG (RP-BCAAPG) group (n = 16) received RP-BCAA mixed with 200 g of dry molasses per cow/d, plus 300 mL of PG, once daily from calving until 7 d in milk (DIM). The RP-BCAA and RP-BCAAGP groups, on average (± standard deviation), were predicted to receive a greater supply of metabolizable protein in the form of l-Leu 27.4 ± 3.5 g/d, l-Ile 15.2 ± 1.8 g/d, and l-Val 24.2 ± 2.4 g/d compared with the control cows. Liver biopsies were collected at d 9 ± 4 prepartum and at 5 ± 1 and 21 ± 1 DIM. Blood was sampled 3 times per week from calving until 21 DIM. Milk yield, dry matter intake, NEFA, BHB, EAA blood concentration, serum chemistry, insulin, glucagon, and liver TG and protein abundance of total and phosphorylated branched-chain ketoacid dehydrogenase E1α (p-BCKDH-E1α) were analyzed using repeated measures ANOVA. Cows in the RP-BCAA and RP-BCAAPG groups had lower liver TG and lower activities of aspartate aminotransferase and glutamate dehydrogenase during the first 21 DIM, compared with control. All cows, regardless of treatment, showed an upregulation of p-BCKDH-E1α at d 5 postpartum, compared with levels at 21 d postpartum. Insulin, Met, and Glu blood concentration were greater in RP-BCAA and RP-BCAAPG compared with control during the first 35 DIM. Therefore, the use of RP-BCAA in combination with PG might be a feasible option to reduce hepatic lipidosis in dairy cows during early lactation.
Collapse
Affiliation(s)
- F A Leal Yepes
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853.
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - T R Overton
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - E Behling-Kelly
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - D V Nydam
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - J J Wakshlag
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
7
|
Ghaffari MH, Sadri H, Hammon HM, Steinhoff-Wagner J, Henschel N, Sauerwein H. Short communication: Colostrum versus formula: Effects on mRNA expression of genes related to branched-chain amino acid metabolism in neonatal dairy calves. J Dairy Sci 2020; 103:9656-9666. [PMID: 32828514 DOI: 10.3168/jds.2020-18429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
The objective of the current study was to elucidate the effect of feeding colostrum or milk-based formula on the tissue mRNA abundance of the most relevant branched-chain amino acids (BCAA) transporters and catabolizing enzymes in newborn calves. German Holstein calves were fed either colostrum (COL; n = 7) or milk-based formula (FOR; n = 7) with comparable nutrient composition but lower contents of free BCAA, insulin, and insulin-like growth factor-I in the formula than in the respective colostrum for up to 4 d of life. Tissue samples from liver, kidney fat, 3 different muscles [M. longissimus dorsi (MLD), M. semitendinosus (MST), and M. masseter (MM)], as well as duodenum, jejunum, and ileum were collected following euthanasia on d 4 at 2 h after feeding. The plasma-free BCAA were analyzed, and the tissue abundance of solute carrier family 1 member 5 (SLC1A5), SLC7A5, and SLC38A2 as well as mitochondrial isoform of branched-chain aminotransferase (BCATm), branched-chain α-keto acid dehydrogenase E1α (BCKDHA), and branched-chain α-keto acid dehydrogenase E1β (BCKDHB) were assessed. The preprandial plasma concentrations of free BCAA were affected by time but did not differ between groups. The plasma concentrations of free BCAA decreased in COL, whereas they increased in FOR after feeding, resulting in higher postprandial plasma total BCAA concentrations in FOR than in COL. The mRNA abundances of BCATm, BCKDHA, BCKDHB, as well as BCAA transporters in the liver, were not affected by the diet. In kidney fat, the mRNA abundance of BCAA catabolizing enzymes did not differ between groups, but that of SLC1A5 was lower in FOR than in COL. The mRNA abundance of BCAA catabolizing enzymes in different sections of the small intestine was not affected by the diet, whereas that of SLC7A5 was or tended to be lower in the duodenum, proximal jejunum, and mid jejunum of the COL calves compared with the FOR calves. The mRNA abundance of BCKDHA was lower in MLD and MM but greater in MS for the FOR calves compared with the COL calves. The mRNA abundance of SLC7A5 in MST was lower in FOR than in COL, whereas it was unaffected by the diet in MLD and MM. The differential effect of feeding colostrum on the mRNA abundance of BCKDHA in 3 different muscle tissues might point to a muscle type-specific response. The results also indicate that the colostral BCAA might be favorably used for anabolic metabolism in the small intestine of neonatal calves. Such effects are speculated to be due to the stimulatory effects of growth factors and hormones present in colostrum.
Collapse
Affiliation(s)
- Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran.
| | - Harald M Hammon
- Institute of Nutritional Physiology, Oskar Kellner, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Julia Steinhoff-Wagner
- Institute of Nutritional Physiology, Oskar Kellner, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Nico Henschel
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany
| |
Collapse
|
8
|
Li Y, Ma Q, Li P, Wang J, Wang M, Fan Y, Wang T, Wang C, Wang T, Zhao B. Proteomics reveals different pathological processes of adipose tissue, liver, and skeletal muscle under insulin resistance. J Cell Physiol 2020; 235:6441-6461. [PMID: 32115712 DOI: 10.1002/jcp.29658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus is the most common type of diabetes, and insulin resistance (IR) is its core pathological mechanism. Proteomics is an ingenious and promising Omics technology that can comprehensively describe the global protein expression profiling of body or specific tissue, and is widely applied to the study of molecular mechanisms of diseases. In this paper, we focused on insulin target organs: adipose tissue, liver, and skeletal muscle, and analyzed the different pathological processes of IR in these three tissues based on proteomics research. By literature studies, we proposed that the main pathological processes of IR among target organs were diverse, which showed unique characteristics and focuses. We further summarized the differential proteins in target organs which were verified to be related to IR, and discussed the proteins that may play key roles in the emphasized pathological processes, aiming at discovering potentially specific differential proteins of IR, and providing new ideas for pathological mechanism research of IR.
Collapse
Affiliation(s)
- Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingkang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Webb L, Sadri H, Schuh K, Egert S, Stehle P, Meyer I, Koch C, Dusel G, Sauerwein H. Branched-chain amino acids: Abundance of their transporters and metabolizing enzymes in adipose tissue, skeletal muscle, and liver of dairy cows at high or normal body condition. J Dairy Sci 2020; 103:2847-2863. [DOI: 10.3168/jds.2019-17147] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
|
10
|
Biswas D, Duffley L, Pulinilkunnil T. Role of branched‐chain amino acid–catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J 2019; 33:8711-8731. [DOI: 10.1096/fj.201802842rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dipsikha Biswas
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Luke Duffley
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology Faculty of Medicine Dalhousie Medicine New Brunswick Dalhousie University Saint John New Brunswick Canada
| |
Collapse
|
11
|
Webb LA, Sadri H, von Soosten D, Dänicke S, Egert S, Stehle P, Sauerwein H. Changes in tissue abundance and activity of enzymes related to branched-chain amino acid catabolism in dairy cows during early lactation. J Dairy Sci 2019; 102:3556-3568. [PMID: 30712942 DOI: 10.3168/jds.2018-14463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022]
Abstract
Branched-chain α-keto acid dehydrogenase (BCKDH) complex catalyzes the irreversible oxidative decarboxylation of branched-chain α-keto acids. This reaction is considered as the rate-limiting step in the overall branched-chain amino acid (BCAA) catabolic pathway in mammals. For characterizing the potential enzymatic involvement of liver, skeletal muscle, adipose tissue (AT), and mammary gland (MG) in BCAA metabolism during early lactation, tissue and blood samples were examined on d 1, 42, and 105 after parturition from 25 primiparous Holstein cows. Serum BCAA profiles were analyzed and the mRNA and protein abundance as well as the activity in the different tissues were assessed for the BCAA catabolic enzymes, partly for the branched-chain aminotransferase and completely for BCKDH. Total BCAA concentration in serum was lowest on d 1 after parturition and increased thereafter to a steady level for the duration of the experiment. Pronounced differences between the tissues were observed at all molecular levels. The mRNA abundance of the mitochondrial isoform of branched-chain aminotransferase (BCATm) was greatest in AT as compared with the other tissues studied, indicating that AT might be an important contributor in the initiation of BCAA catabolism in dairy cows. From the different subunits of the BCKDH E1 component, only the mRNA for the β polypeptide (BCKDHB), not for the α polypeptide (BCKDHA), was elevated in liver. The BCKDHA mRNA abundance was similar across all tissues except muscle, which tended to lower values. Highest BCKDHA protein abundance was observed in both liver and MG, whereas BCKDHB protein was detectable in these tissues but could not be quantified. Adipose tissue and muscle only displayed abundance of the α subunit, with muscle having the lowest BCKDHA protein of all tissues. We found similarities in protein abundance for both BCKDH E1 subunits in liver and MG; however, the corresponding overall BCKDH enzyme activity was 7-fold greater in liver compared with MG, allowing for hepatic oxidation of BCAA transamination products. Reduced BCKDH activity in MG associated with no measurable activity in AT and muscle may favor sparing of BCAA for the synthesis of the different milk components, including nonessential AA. Deviating from previously published data on BCAA net fluxes and isotopic tracer studies in ruminants, our observed results might in part be due to complex counter-regulatory mechanisms during early lactation.
Collapse
Affiliation(s)
- L A Webb
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran.
| | - D von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116 Brunswick, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116 Brunswick, Germany
| | - S Egert
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany
| | - P Stehle
- Department of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
12
|
Green CL, Lamming DW. Regulation of metabolic health by essential dietary amino acids. Mech Ageing Dev 2019; 177:186-200. [PMID: 30044947 PMCID: PMC6333505 DOI: 10.1016/j.mad.2018.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
Although the beneficial effects of calorie restriction (CR) on health and aging were first observed a century ago, the specific macronutrients and molecular processes that mediate the effect of CR have been heavily debated. Recently, it has become clear that dietary protein plays a key role in regulating both metabolic health and longevity, and that both the quantity and quality - the specific amino acid composition - of dietary protein mediates metabolic health. Here, we discuss recent findings in model organisms ranging from yeast to mice and humans regarding the influence of dietary protein as well as specific amino acids on metabolic health, and the physiological and molecular mechanisms which may mediate these effects. We then discuss recent findings which suggest that the restriction of specific dietary amino acids may be a potent therapy to treat or prevent metabolic syndrome. Finally, we discuss the potential for dietary restriction of specific amino acids - or pharmaceuticals which harness these same mechanisms - to promote healthy aging.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
13
|
Porosk R, Terasmaa A, Mahlapuu R, Soomets U, Kilk K. Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:721-732. [PMID: 29257731 DOI: 10.1089/omi.2017.0143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wolfram syndrome 1 is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Mutations in the WFS1 gene encoding the wolframin glycoprotein can lead to endoplasmic reticulum stress and unfolded protein responses in cells, but the pathophysiology at whole organism level is poorly understood. In this study, several organs (heart, liver, kidneys, and pancreas) and bodily fluids (trunk blood and urine) of 2- and 6-month old Wfs1 knockout (KO), heterozygote (HZ), and wild-type (WT) mice were analyzed by untargeted and targeted metabolomics using liquid chromatography-mass spectrometry. The key findings were significant perturbations in the metabolism of pancreas and heart before the onset of related clinical signs such as glycosuria that precedes hyperglycemia and thus implies a kidney dysfunction before the onset of classical diabetic nephropathy. The glucose use and gluconeogenesis in KO mice are intensified in early stages, but later the energetic needs are mainly covered by lipolysis. Furthermore, in young mice liver and trunk blood hypouricemia, which in time turns to hyperuricemia, was detected. In summary, we show that the metabolism in Wfs1-deficient mice markedly differs from the metabolism of WT mice in many aspects and discuss the future biological and clinical relevance of these observations.
Collapse
Affiliation(s)
- Rando Porosk
- 1 Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu, Estonia
| | - Anton Terasmaa
- 2 Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu, Estonia
| | - Riina Mahlapuu
- 1 Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu, Estonia
| | - Ursel Soomets
- 1 Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu, Estonia
| | - Kalle Kilk
- 1 Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu, Estonia
| |
Collapse
|
14
|
Li Z, Rasmussen ML, Li J, Olguín CH, Knudsen JR, Søgaard O, Madsen AB, Jensen TE. Low- and high-protein diets do not alter ex vivo insulin action in skeletal muscle. Physiol Rep 2018; 6:e13798. [PMID: 29998629 PMCID: PMC6041700 DOI: 10.14814/phy2.13798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 11/24/2022] Open
Abstract
A low-protein high carbohydrate (LPHC) diet and a high-protein low carbohydrate (HPLC) diet have been reported to positively and negatively regulate whole-body glucose tolerance and insulin sensitivity, respectively. Skeletal muscle is quantitatively the most important tissue clearing glucose in the postprandial state, but it is unclear if LPHC and HPLC diets directly influence insulin action in skeletal muscle. To test this, mice were placed on control chow diet, LPHC and HPLC diets for 13.5 weeks at which time the submaximal insulin-stimulated glucose transport and insulin signaling were evaluated in ex vivo incubated oxidative soleus and glycolytic EDL muscle. At the whole-body level, the diets had the anticipated effects, with LPHC diet improving glucose tolerance and insulin-sensitivity whereas HPLC diet had the opposite effect. However, neither insulin-stimulated Akt/TBC1D4 signaling and glucose transport ex vivo, nor cell signaling in vivo were altered by the diets. These data imply that skeletal muscle insulin sensitivity does not contribute to the whole-body effects of LPHC and HPLC diets on glucose metabolism.
Collapse
Affiliation(s)
- Zhencheng Li
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Mette Line Rasmussen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Jingwen Li
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Carlos Henríquez Olguín
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Jonas Roland Knudsen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Ole Søgaard
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Agnete B. Madsen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Thomas E. Jensen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
15
|
Lai CQ, Smith CE, Parnell LD, Lee YC, Corella D, Hopkins P, Hidalgo BA, Aslibekyan S, Province MA, Absher D, Arnett DK, Tucker KL, Ordovas JM. Epigenomics and metabolomics reveal the mechanism of the APOA2-saturated fat intake interaction affecting obesity. Am J Clin Nutr 2018; 108:188-200. [PMID: 29901700 PMCID: PMC6454512 DOI: 10.1093/ajcn/nqy081] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Background The putative functional variant -265T>C (rs5082) within the APOA2 promoter has shown consistent interactions with saturated fatty acid (SFA) intake to influence the risk of obesity. Objective The aim of this study was to implement an integrative approach to characterize the molecular basis of this interaction. Design We conducted an epigenome-wide scan on 80 participants carrying either the rs5082 CC or TT genotypes and consuming either a low-SFA (<22 g/d) or high-SFA diet (≥22 g/d), matched for age, sex, BMI, and diabetes status in the Boston Puerto Rican Health Study (BPRHS). We then validated the findings in selected participants in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study (n = 379) and the Framingham Heart Study (FHS) (n = 243). Transcription and metabolomics analyses were conducted to determine the relation between epigenetic status, APOA2 mRNA expression, and blood metabolites. Results In the BPRHS, we identified methylation site cg04436964 as exhibiting significant differences between CC and TT participants consuming a high-SFA diet, but not among those consuming low-SFA. Similar results were observed in the GOLDN Study and the FHS. Additionally, in the FHS, cg04436964 methylation was negatively correlated with APOA2 expression in the blood of participants consuming a high-SFA diet. Furthermore, when consuming a high-SFA diet, CC carriers had lower APOA2 expression than those with the TT genotype. Lastly, metabolomic analysis identified 4 pathways as overrepresented by metabolite differences between CC and TT genotypes with high-SFA intake, including tryptophan and branched-chain amino acid (BCAA) pathways. Interestingly, these pathways were linked to rs5082-specific cg04436964 methylation differences in high-SFA consumers. Conclusions The epigenetic status of the APOA2 regulatory region is associated with SFA intake and APOA2 -265T>C genotype, promoting an APOA2 expression difference between APOA2 genotypes on a high-SFA diet, and modulating BCAA and tryptophan metabolic pathways. These findings identify potential mechanisms by which this highly reproducible gene-diet interaction influences obesity risk, and contribute new insights to ongoing investigations of the relation between SFA and human health. This study was registered at clinicaltrials.gov as NCT03452787.
Collapse
Affiliation(s)
- Chao-Qiang Lai
- USDA Agricultural Research Service,Address correspondence to C-QL (e-mail )
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | | | - Yu-Chi Lee
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Dolores Corella
- Department of Preventive Medicine, University of Valencia and CIBER Physiopathology of Obesity and Nutrition, Valencia, Spain
| | - Paul Hopkins
- Department of Cardiovascular Genetics, University of Utah, Salt Lake City, UT
| | - Bertha A Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL
| | - Stella Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL
| | - Michael A Province
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Devin Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY
| | - Katherine L Tucker
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
16
|
Determination of Branched-Chain Keto Acids in Serum and Muscles Using High Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Molecules 2018; 23:molecules23010147. [PMID: 29324714 PMCID: PMC6017427 DOI: 10.3390/molecules23010147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Branched-chain keto acids (BCKAs) are derivatives from the first step in the metabolism of branched-chain amino acids (BCAAs) and can provide important information on animal health and disease. Here, a simple, reliable and effective method was developed for the determination of three BCKAs (α-ketoisocaproate, α-keto-β-methylvalerate and α-ketoisovalerate) in serum and muscle samples using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS). The samples were extracted using methanol and separated on a 1.8 μm Eclipse Plus C18 column within 10 min. The mobile phase was 10 mmol L−1 ammonium acetate aqueous solution and acetonitrile. The results showed that recoveries for the three BCKAs ranged from 78.4% to 114.3% with relative standard deviation (RSD) less than 9.7%. The limit of quantitation (LOQ) were 0.06~0.23 μmol L−1 and 0.09~0.27 nmol g−1 for serum and muscle samples, respectively. The proposed method can be applied to the determination of three BCKAs in animal serum and muscle samples.
Collapse
|
17
|
Salinas-Rubio D, Tovar AR, Noriega LG. Emerging perspectives on branched-chain amino acid metabolism during adipocyte differentiation. Curr Opin Clin Nutr Metab Care 2018; 21:49-57. [PMID: 29035970 DOI: 10.1097/mco.0000000000000429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Adipogenesis has been extensively studied in the context of carbohydrate and lipid metabolism. However, little information exists on the role of amino acid metabolism during adipocyte differentiation. Here, we review how branched-chain amino acid (BCAA) metabolism is modified during adipogenesis and, due to the limited information in the area, address questions that remain to be answered with further research. RECENT FINDINGS BCAAs are rapidly consumed during adipocyte differentiation and are indispensable for this process. Furthermore, we describe how BCAA catabolic enzymes and the metabolic fate of BCAAs are modified during adipogenesis. SUMMARY Obesity is a chronic disease characterized by increased adipose tissue due to either an increase in the size (hypertrophy) and/or number of adipocytes (hyperplasia). Hyperplasia is determined by the rate of adipogenesis. Therefore, understanding the mechanism that modulates adipogenesis in the context of amino acid metabolism will help to establish pharmacological and dietary interventions involving the type and amount of dietary protein for the treatment of obesity and its associated comorbidities.Video abstract http://links.lww.com/COCN/A11.
Collapse
Affiliation(s)
- Daniela Salinas-Rubio
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | | | | |
Collapse
|
18
|
Cummings NE, Williams EM, Kasza I, Konon EN, Schaid MD, Schmidt BA, Poudel C, Sherman DS, Yu D, Arriola Apelo SI, Cottrell SE, Geiger G, Barnes ME, Wisinski JA, Fenske RJ, Matkowskyj KA, Kimple ME, Alexander CM, Merrins MJ, Lamming DW. Restoration of metabolic health by decreased consumption of branched-chain amino acids. J Physiol 2017; 596:623-645. [PMID: 29266268 DOI: 10.1113/jp275075] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS We recently found that feeding healthy mice a diet with reduced levels of branched-chain amino acids (BCAAs), which are associated with insulin resistance in both humans and rodents, modestly improves glucose tolerance and slows fat mass gain. In the present study, we show that a reduced BCAA diet promotes rapid fat mass loss without calorie restriction in obese mice. Selective reduction of dietary BCAAs also restores glucose tolerance and insulin sensitivity to obese mice, even as they continue to consume a high-fat, high-sugar diet. A low BCAA diet transiently induces FGF21 (fibroblast growth factor 21) and increases energy expenditure. We suggest that dietary protein quality (i.e. the precise macronutrient composition of dietary protein) may impact the effectiveness of weight loss diets. ABSTRACT Obesity and diabetes are increasing problems around the world, and although even moderate weight loss can improve metabolic health, reduced calorie diets are notoriously difficult to sustain. Branched-chain amino acids (BCAAs; leucine, isoleucine and valine) are elevated in the blood of obese, insulin-resistant humans and rodents. We recently demonstrated that specifically reducing dietary levels of BCAAs has beneficial effects on the metabolic health of young, growing mice, improving glucose tolerance and modestly slowing fat mass gain. In the present study, we examine the hypothesis that reducing dietary BCAAs will promote weight loss, reduce adiposity, and improve blood glucose control in diet-induced obese mice with pre-existing metabolic syndrome. We find that specifically reducing dietary BCAAs rapidly reverses diet-induced obesity and improves glucoregulatory control in diet-induced obese mice. Most dramatically, mice eating an otherwise unhealthy high-calorie, high-sugar Western diet with reduced levels of BCAAs lost weight and fat mass rapidly until regaining a normal weight. Importantly, this normalization of weight was mediated not by caloric restriction or increased activity, but by increased energy expenditure, and was accompanied by a transient induction of the energy balance regulating hormone FGF21 (fibroblast growth factor 21). Consumption of a Western diet reduced in BCAAs was also accompanied by a dramatic improvement in glucose tolerance and insulin resistance. Our results link dietary BCAAs with the regulation of metabolic health and energy balance in obese animals, and suggest that specifically reducing dietary BCAAs may represent a highly translatable option for the treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Nicole E Cummings
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Williams
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth N Konon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michael D Schaid
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian A Schmidt
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Chetan Poudel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Dawn S Sherman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Deyang Yu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Sebastian I Arriola Apelo
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Sara E Cottrell
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Rural and Urban Scholars in Community Health Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabriella Geiger
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Macy E Barnes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Jaclyn A Wisinski
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rachel J Fenske
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristina A Matkowskyj
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle E Kimple
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.,Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew J Merrins
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.,Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.,Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|